1
|
Gajawada P, Cetinkaya A, von Gerlach S, Kubin N, Burger H, Näbauer M, Grinninger C, Rolf A, Schönburg M, Choi YH, Kubin T, Richter M. Myocardial Accumulations of Reg3A, Reg3γ and Oncostatin M Are Associated with the Formation of Granulomata in Patients with Cardiac Sarcoidosis. Int J Mol Sci 2021; 22:ijms22084148. [PMID: 33923774 PMCID: PMC8072627 DOI: 10.3390/ijms22084148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac sarcoidosis (CS) is a poorly understood disease and is characterized by the focal accumulation of immune cells, thus leading to the formation of granulomata (GL). To identify the developmental principles of fatal GL, fluorescence microscopy and Western blot analysis of CS and control patients is presented here. CS is visualized macroscopically by positron emission tomography (PET)/ computed tomography (CT). A battery of antibodies is used to determine structural, cell cycle and inflammatory markers. GL consist of CD68+, CD163+ and CD206+ macrophages surrounded by T-cells within fibrotic areas. Cell cycle markers such as phospho-histone H3, phospho-Aurora and Ki67 were moderately present; however, the phosphorylated ERM (ezrin, radixin and moesin) and Erk1/2 proteins, strong expression of the myosin motor protein and the macrophage transcription factor PU.1 indicate highly active GL. Mild apoptosis is consistent with PI3 kinase and Akt activation. Massive amounts of the IL-1R antagonist reflect a mild activation of stress and inflammatory pathways in GL. High levels of oncostatin M and the Reg3A and Reg3γ chemokines are in accordance with macrophage accumulation in areas of remodeling cardiomyocytes. We conclude that the formation of GL occurs mainly through chemoattraction and less by proliferation of macrophages. Furthermore, activation of the oncostatin/Reg3 axis might help at first to wall-off substances but might initiate the chronic development of heart failure.
Collapse
Affiliation(s)
- Praveen Gajawada
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
| | - Ayse Cetinkaya
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
| | - Susanne von Gerlach
- Universitätsklinikum Giessen und Marburg GmbH, Standort Marburg, Baldingerstr., 35033 Marburg, Germany;
| | - Natalia Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
| | - Heiko Burger
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
| | - Michael Näbauer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistr. 15, 81377 Munich, Germany; (M.N.); (C.G.)
| | - Carola Grinninger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistr. 15, 81377 Munich, Germany; (M.N.); (C.G.)
| | - Andreas Rolf
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
- Department of Cardiology, Kerckhoff Heart and Lung Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus Schönburg
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
| | - Yeong-Hoon Choi
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 60549 Frankfurt/Main, Germany
- Correspondence: (Y.-H.C.); (T.K.); (M.R.)
| | - Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Correspondence: (Y.-H.C.); (T.K.); (M.R.)
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
- Correspondence: (Y.-H.C.); (T.K.); (M.R.)
| |
Collapse
|
2
|
Ahmad Azam A, Ismail IS, Kumari Y, Shaikh MF, Abas F, Shaari K. The anti-neuroinflammatory effects of Clinacanthus nutans leaf extract on metabolism elucidated through 1H NMR in correlation with cytokines microarray. PLoS One 2020; 15:e0238503. [PMID: 32925968 PMCID: PMC7489527 DOI: 10.1371/journal.pone.0238503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 μL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1β, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1β significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.
Collapse
Affiliation(s)
- Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Thomas K, Ayse C, Natalia K, Peter B, Bedriye SH, Praveen G, Hakan A, Markus S, Wolfgang S, Yeong-Hoon C, Miroslav B, Manfred R. The MEK/ERK Module Is Reprogrammed in Remodeling Adult Cardiomyocytes. Int J Mol Sci 2020; 21:ijms21176348. [PMID: 32882982 PMCID: PMC7503571 DOI: 10.3390/ijms21176348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal and hypertrophic remodeling are hallmarks of cardiac restructuring leading chronically to heart failure. Since the Ras/Raf/MEK/ERK cascade (MAPK) is involved in the development of heart failure, we hypothesized, first, that fetal remodeling is different from hypertrophy and, second, that remodeling of the MAPK occurs. To test our hypothesis, we analyzed models of cultured adult rat cardiomyocytes as well as investigated myocytes in the failing human myocardium by western blot and confocal microscopy. Fetal remodeling was induced through endothelial morphogens and monitored by the reexpression of Acta2, Actn1, and Actb. Serum-induced hypertrophy was determined by increased surface size and protein content of cardiomyocytes. Serum and morphogens caused reprogramming of Ras/Raf/MEK/ERK. In both models H-Ras, N-Ras, Rap2, B- and C-Raf, MEK1/2 as well as ERK1/2 increased while K-Ras was downregulated. Atrophy, MAPK-dependent ischemic resistance, loss of A-Raf, and reexpression of Rap1 and Erk3 highlighted fetal remodeling, while A-Raf accumulation marked hypertrophy. The knock-down of B-Raf by siRNA reduced MAPK activation and fetal reprogramming. In conclusion, we demonstrate that fetal and hypertrophic remodeling are independent processes and involve reprogramming of the MAPK.
Collapse
Affiliation(s)
- Kubin Thomas
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- Correspondence: (K.T.); (B.M.); (R.M.)
| | - Cetinkaya Ayse
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Kubin Natalia
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Bramlage Peter
- Institute for Pharmacology and Preventive Medicine, Bahnhofstraße 20, 49661 Cloppenburg, Germany;
| | - Sen-Hild Bedriye
- Pediatric Heart Center, Justus Liebig University, Feulgenstrasse 10-12, 35392 Giessen, Germany; (S.-H.B.); (A.H.)
| | - Gajawada Praveen
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Akintürk Hakan
- Pediatric Heart Center, Justus Liebig University, Feulgenstrasse 10-12, 35392 Giessen, Germany; (S.-H.B.); (A.H.)
| | - Schönburg Markus
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Schaper Wolfgang
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Choi Yeong-Hoon
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 60590 Frankfurt/Main, Germany
| | - Barancik Miroslav
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
- Correspondence: (K.T.); (B.M.); (R.M.)
| | - Richter Manfred
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- Correspondence: (K.T.); (B.M.); (R.M.)
| |
Collapse
|
4
|
Radixin Relocalization and Nonmuscle α-Actinin Expression Are Features of Remodeling Cardiomyocytes in Adult Patients with Dilated Cardiomyopathy. DISEASE MARKERS 2020; 2020:9356738. [PMID: 32774516 PMCID: PMC7395995 DOI: 10.1155/2020/9356738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 12/28/2022]
Abstract
Background Pediatric patients show an impressive capacity of cardiac regeneration. In contrast, severely deteriorated adult hearts do usually not recover. Since cardiac remodeling—involving the expression of fetal genes—is regarded as an adaptation to stress, we compared hearts of adult patients suffering from dilated cardiomyopathy (DCM) with remodeling of cultured neonatal (NRC) as well as adult (ARC) rat cardiomyocytes and the developing postnatal myocardium. Methods NRC and ARC were stimulated with serum and cardiac morphogens derived from DCM hearts. Protein synthesis (PS) as well as protein accumulation (PA) was measured, and cell survival was determined under ischemic conditions. Fetal markers were investigated by Western blot. Biomarkers of remodeling were analyzed in controls, DCM, and 2- to 6-month-old children with tetralogy of Fallot as well as in neonatal and adult rats by immunofluorescence. Results In NRC, serum and morphogens strongly stimulated PS and PA and the reestablishment of cell-cell contacts (CCC). In ARC, both stimulants increased PS and CCC, but PA was only elevated after serum stimulation. In contrast to serum, morphogen treatment resulted in the expression of fetal genes in ARC as determined by nonmuscle α-actinin-1 and α-actinin-4 expression (NM-actinins) and was associated with increased survival under ischemia. NM-actinins were present in cardiomyocytes of DCM in a cross-striated pattern reminiscent of sarcomeres as well as in extensions of the area of the intercalated disc (ID). NM-actinins are expressed in NRC and in the developing heart. Radixin staining revealed remodeling of the area of the ID in DCM almost identical to stimulated cultured ARC. Conclusions Remodeling was similar in ARC and in cardiomyocytes of DCM suggesting evolutionary conserved mechanisms of regeneration. Despite activation of fetal genes, the atrophy of ARC indicates differences in their regenerative capacity from NRC. Cardiac-derived factors induced NM-actinin expression and increased survival of ischemic ARC while circulating molecules were less effective. Identification of these cardiac-derived factors and determination of their individual capacity to heal or damage are of particular importance for a biomarker-guided therapy in adult patients.
Collapse
|
5
|
Li R, He H, Fang S, Hua Y, Yang X, Yuan Y, Liang S, Liu P, Tian Y, Xu F, Zhang Z, Huang Y. Time Series Characteristics of Serum Branched-Chain Amino Acids for Early Diagnosis of Chronic Heart Failure. J Proteome Res 2019; 18:2121-2128. [PMID: 30895791 DOI: 10.1021/acs.jproteome.9b00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic heart failure (CHF) is an ongoing clinical syndrome with cardiac dysfunction that can be traced to alterations in cardiac metabolism. The identification of metabolic biomarkers in easily accessible fluids to improve the early diagnosis of CHF has been elusive to date. In this study, we took multidimensional analytical techniques to discover potentially new diagnostic biomarkers by focusing on the dynamic changes of metabolites in serum during the progression of CHF. Using mass-spectrometry-based untargeted metabolomics, we identified 23 cardiac metabolites that were altered in a rat model of myocardial infarction induced CHF. Among these differential metabolites, branched-chain amino acids (BCAAs) in serum, especially leucine and valine, showed a high capability to differentiate between CHF and sham-operated rats, of which area under the receiver operating characteristic curve was greater than 0.75. Combining with targeted analysis of the amino acids and related proteins and genes, we confirmed that BCAA metabolic pathway was significantly inhibited in rat failing hearts. On the basis of the time series data of serum samples, we characterized the fluctuation pattern of circulating BCAAs by the disease progression model. Finally, the time-resolved diagnostic potential of serum BCAAs was evaluated by the machine-learning-based classifier, and high diagnostic accuracy of 93.75% was achieved within 3 weeks after surgery. These findings provide a promising metabolic signature that can be further exploited for CHF early diagnostic development.
Collapse
Affiliation(s)
- Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China.,Key Laboratory of Myocardial Ischemia , Harbin Medical University, Ministry of Education , Harbin , China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Shaohong Fang
- Key Laboratory of Myocardial Ischemia , Harbin Medical University, Ministry of Education , Harbin , China
| | - Yunfei Hua
- Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Xuping Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Yi Yuan
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Shuang Liang
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Peifang Liu
- Key Laboratory of Myocardial Ischemia , Harbin Medical University, Ministry of Education , Harbin , China.,Department of Neurology, The Second Affiliated Hospital , Harbin Medical University , Harbin , China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China
| | - Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China.,Key Laboratory of Myocardial Ischemia , Harbin Medical University, Ministry of Education , Harbin , China
| |
Collapse
|
6
|
Kubin T, Cetinkaya A, Schönburg M, Beiras-Fernandez A, Walther T, Richter M. The MEK1 inhibitors UO126 and PD98059 block PDGF-AB induced phosphorylation of threonine 292 in porcine smooth muscle cells. Cytokine 2017; 95:51-54. [PMID: 28235676 DOI: 10.1016/j.cyto.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 11/30/2022]
Abstract
PDGF-AB and FGF-2 (GFs) induce smooth muscle cell (SMC) proliferation which is indispensible for arteriogenesis. While there is common agreement that GFs stimulate SMC proliferation through phosphorylation (P-) of MEK1/2 at Ser218/222, we previously demonstrated that the MEK inhibitors PD98059 and UO126 did not inhibit P-Ser218/222 as originally proposed but caused strong hyperphosphorylation. Here, we demonstrate that GFs increased phosphorylation of MEK1 at Thr292 while UO126 and PD98059 blocked this phosphorylation. This was again surprising since phosphorylation of Thr292 is regarded as a negative feedback loop. Our findings suggest that inhibition of Thr292 phosphorylation in combination with hyperphosphorylation of Ser218/222 serves as an "off" switch of SMC proliferation and potentially of arteriogenesis.
Collapse
Affiliation(s)
- Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff-Clinic, Benekestrasse 2-8, Bad Nauheim 61231, Germany; Res Group Vascular Genomics, Kerckhoff Clinic, Benekestrasse 2-8, Bad Nauheim 61231, Germany.
| | - Ayse Cetinkaya
- Department of Cardiac Surgery, Kerckhoff-Clinic, Benekestrasse 2-8, Bad Nauheim 61231, Germany
| | - Markus Schönburg
- Department of Cardiac Surgery, Kerckhoff-Clinic, Benekestrasse 2-8, Bad Nauheim 61231, Germany
| | - Andres Beiras-Fernandez
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University Hospital, Theodor-Stem-Kai 7, 60590 Frankfurt/Main, Germany
| | - Thomas Walther
- Department of Cardiac Surgery, Kerckhoff-Clinic, Benekestrasse 2-8, Bad Nauheim 61231, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Clinic, Benekestrasse 2-8, Bad Nauheim 61231, Germany.
| |
Collapse
|
7
|
Haase T, Börnigen D, Müller C, Zeller T. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med 2016; 3:27. [PMID: 27626034 PMCID: PMC5003874 DOI: 10.3389/fcvm.2016.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to morbidity and mortality worldwide. However, the pathogenesis of CVD is complex and remains elusive. Within the last years, systems medicine has emerged as a novel tool to study the complex genetic, molecular, and physiological interactions leading to diseases. In this review, we provide an overview about the current approaches for systems medicine in CVD. They include bioinformatical and experimental tools such as cell and animal models, omics technologies, network, and pathway analyses. Additionally, we discuss challenges and current literature examples where systems medicine has been successfully applied for the study of CVD.
Collapse
Affiliation(s)
- Tina Haase
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| |
Collapse
|
8
|
Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling. Basic Res Cardiol 2016; 111:54. [PMID: 27435289 PMCID: PMC4951509 DOI: 10.1007/s00395-016-0573-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSC) have been used to treat different clinical conditions although the mechanisms by which pathogenetic processes are affected are still poorly understood. We have previously analyzed the homing of bone marrow-derived MSC to diseased tissues characterized by a high degree of mononuclear cell infiltration and postulated that MSC might modulate inflammatory responses. Here, we demonstrate that MSC mitigate adverse tissue remodeling, improve organ function, and extend lifespan in a mouse model of inflammatory dilative cardiomyopathy (DCM). Furthermore, MSC attenuate Lipopolysaccharide-induced acute lung injury indicating a general role in the suppression of inflammatory processes. We found that MSC released sTNF-RI, which suppressed activation of the NFκBp65 pathway in cardiomyocytes during DCM in vivo. Substitution of MSC by recombinant soluble TNF-R partially recapitulated the beneficial effects of MSC while knockdown of TNF-R prevented MSC-mediated suppression of the NFκBp65 pathway and improvement of tissue pathology. We conclude that sTNF-RI is a major part of the paracrine machinery by which MSC effect local inflammatory reactions.
Collapse
|