1
|
Hoag HA, Raymond M, Ulmer JM, Schwéger S, van de Kamp T, Hamann E, Zuber M, Werren JH, Gaucher G, Hazen M, Mikó I. The cranial gland system of Nasonia spp.: a link between chemical ecology, evo-devo, and descriptive taxonomy (Hymenoptera: Chalcidoidea). JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:13. [PMID: 40232241 PMCID: PMC11997971 DOI: 10.1093/jisesa/ieaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Nasonia is an emerging model system for investigating the evolution of complex species-specific behavioral and morphological phenotypes. For example, the male head shape differs considerably between Nasonia Ashmead (Hymenoptera: Chalcidoidea) species. In addition, differences in courtship behaviors, and possibly influences of a male-specific aphrodisiac pheromone, contribute to interspecific prezygotic isolation. However, the possible relationships between courtship, pheromone signaling, and male head shape are unknown. Using multimodal imaging techniques, we conducted a comprehensive examination of the skeletomuscular and exocrine gland systems of the lower head region of all 4 Nasonia species and their sister genus Trichomalopsis Crawford (Hymenoptera: Chalcidoidea). This analysis reveals the presence of 3 undescribed exocrine glands in the lower head region and a unique mandibular modification, the basal mandibular carina, that might be involved in pheromone spread. We performed morphometric and volumetric analyses using 3D datasets from synchrotron X-ray microtomography and found that the size of the genomandibular gland and the corresponding basal mandibular carina correlates with both interspecific courtship length and head shape differences, indicating that this gland is a likely source of the oral aphrodisiac pheromone. These differences correlate with the prevalence of within-host mating rather than phylogenetic relatedness in Nasonia species, with increased within-host mating occurring in species with larger genomandibular glands. Our findings create an opportunity to better understand the complex gene regulatory networks underlying superficially unrelated traits and serve as a link between behavior, chemical ecology, evo-devo, and descriptive taxonomy.
Collapse
Affiliation(s)
- Holly A Hoag
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
- Boston IVF, Waltham, MA, USA
| | - Monique Raymond
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | | | | | - Thomas van de Kamp
- Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology (KIT), Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe, Germany
| | - Elias Hamann
- Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), Eggenstein-Leopoldshafen, Germany
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Grace Gaucher
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Missy Hazen
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - István Mikó
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Pollmann M, Kuhn D, König C, Homolka I, Paschke S, Reinisch R, Schmidt A, Schwabe N, Weber J, Gottlieb Y, Steidle JLM. New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests. Ecol Evol 2023; 13:e10524. [PMID: 37720058 PMCID: PMC10500055 DOI: 10.1002/ece3.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The pteromalid parasitoid Lariophagus distinguendus (Foerster) belongs to the Hymenoptera, a megadiverse insect order with high cryptic diversity. It attacks stored product pest beetles in human storage facilities. Recently, it has been shown to consist of two separate species. To further study its cryptic diversity, strains were collected to compare their relatedness using barcoding and nuclear genes. Nuclear genes identified two clusters which agree with the known two species, whereas the barcode fragment determined an additional third Clade. Total reproductive isolation (RI) according to the biological species concept (BSC) was investigated in crossing experiments within and between clusters using representative strains. Sexual isolation exists between all studied pairs, increasing from slight to strong with genetic distance. Postzygotic barriers mostly affected hybrid males, pointing to Haldane's rule. Hybrid females were only affected by unidirectional Spiroplasma-induced cytoplasmic incompatibility and behavioural sterility, each in one specific strain combination. RI was virtually absent between strains separated by up to 2.8% COI difference, but strong or complete in three pairs from one Clade each, separated by at least 7.2%. Apparently, each of these clusters represents one separate species according to the BSC, highlighting cryptic diversity in direct vicinity to humans. In addition, these results challenge the recent 'turbo-taxonomy' practice of using 2% COI differences to delimitate species, especially within parasitic Hymenoptera. The gradual increase in number and strength of reproductive barriers between strains with increasing genetic distance also sheds light on the emergence of barriers during the speciation process in L. distinguendus.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Denise Kuhn
- Department of Entomology 360c, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Christian König
- Akademie für Natur‐ und Umweltschutz Baden‐WürttembergStuttgartGermany
| | - Irmela Homolka
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Sina Paschke
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Ronja Reinisch
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Anna Schmidt
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Noa Schwabe
- Plant Evolutionary Biology 190b, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Justus Weber
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Yuval Gottlieb
- Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - Johannes Luitpold Maria Steidle
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
- KomBioTa – Center of Biodiversity and Integrative TaxonomyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
3
|
Malec P, Weber J, Böhmer R, Fiebig M, Meinert D, Rein C, Reinisch R, Henrich M, Polyvas V, Pollmann M, von Berg L, König C, Steidle JLM. The emergence of ecotypes in a parasitoid wasp: a case of incipient sympatric speciation in Hymenoptera? BMC Ecol Evol 2021; 21:204. [PMID: 34781897 PMCID: PMC8591844 DOI: 10.1186/s12862-021-01938-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background To understand which reproductive barriers initiate speciation is a major question in evolutionary research. Despite their high species numbers and specific biology, there are only few studies on speciation in Hymenoptera. This study aims to identify very early reproductive barriers in a local, sympatric population of Nasonia vitripennis (Walker 1836), a hymenopterous parasitoid of fly pupae. We studied ecological barriers, sexual barriers, and the reduction in F1-female offspring as a postmating barrier, as well as the population structure using microsatellites. Results We found considerable inbreeding within female strains and a population structure with either three or five subpopulation clusters defined by microsatellites. In addition, there are two ecotypes, one parasitizing fly pupae in bird nests and the other on carrion. The nest ecotype is mainly formed from one of the microsatellite clusters, the two or four remaining microsatellite clusters form the carrion ecotype. There was slight sexual isolation and a reduction in F1-female offspring between inbreeding strains from the same microsatellite clusters and the same ecotypes. Strains from different microsatellite clusters are separated by a reduction in F1-female offspring. Ecotypes are separated only by ecological barriers. Conclusions This is the first demonstration of very early reproductive barriers within a sympatric population of Hymenoptera. It demonstrates that sexual and premating barriers can precede ecological separation. This indicates the complexity of ecotype formation and highlights the general need for more studies within homogenous populations for the identification of the earliest barriers in the speciation process. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01938-y.
Collapse
Affiliation(s)
- Pawel Malec
- Naturpark Steigerwald E.V., 91443, Scheinfeld, Germany
| | - Justus Weber
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Robin Böhmer
- Natural History Museum Bern, 3005, Bern, Switzerland
| | - Marc Fiebig
- Untere Naturschutzbehörde, Landratsamt Kitzingen, 97318, Kitzingen, Germany
| | | | - Carolin Rein
- Apicultural State Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Ronja Reinisch
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Maik Henrich
- Wildlife Ecology and Management, University of Freiburg, 79106, Freiburg, Germany
| | - Viktoria Polyvas
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marie Pollmann
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Lea von Berg
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Christian König
- Akademie für Natur- und Umweltschutz Baden-Württemberg beim Ministerium für Umwelt, Klima und Energiewirtschaft, 70192, Stuttgart, Germany
| | - Johannes L M Steidle
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
4
|
Tang ZS, Liu YR, Lv Y, Duan JA, Chen SZ, Sun J, Song ZX, Wu XM, Liu L. Quality markers of animal medicinal materials: Correlative analysis of musk reveals distinct metabolic changes induced by multiple factors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:258-269. [PMID: 29551642 DOI: 10.1016/j.phymed.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/04/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Common farming environmental elements, such as longitude, latitude, and altitude, and physiological conditions, such as age and body weight, are thought to influence medicinal animal homeostasis and material quality by altering endocrine functions for primary and secondary metabolite formation. However, the currently available methods for evaluating complex components of traditional Chinese animal medicines have insufficient sensitivity and specificity. PURPOSE Characterizing the primary/secondary metabolomes of medicinal animals is essential for understanding their material basis, controlling product quality, and reflecting on distribution interactions. Therefore, this study aimed to screen ecological- and physiological-related metabolites in captive Moschus berezovskii throughout the collection period based on the quality marker (Q-marker) concept. STUDY DESIGN AND METHODS Fifty-one musk deer samples from 12 different distribution farms ranging in age from 2 to 11 years were enrolled. Differentially expressed musk metabolites were assessed via chromatography-tandem mass spectrometry technologies. A metabolome that mapped connections among these factors was established using chemometric and topological calculations. RESULTS Statistical analysis revealed that muscone, cis-9-hexadecenal, antioxidant 2264, prasterone-3-sulfate, androstan-17-one, and 1,2-benzenedicarboxylic acid showed significantly altered expression. Partial least squares (PLS) regression analysis of qualified data for these 6 secondary metabolites (active components) demonstrated that age is the most important factor underlying the varying levels of muscone, androstan-17-one and 1,2-benzenedicarboxylic acid. Furthermore, weight was the most important factor for cis-9-hexadecenal, longitude was important for antioxidant 2264, latitude was important for prasterone-3-sulfate, and altitude was important for antioxidant 2264, androstan-17-one and 1,2-benzenedicarboxylic. Metabolite analysis within the MetaboAnalyst (MetPA) suite showed that 18 candidate biomarker metabolites were screened, including allantoin, glycine, serine, creatine, alanine, taurine, lactate, 2-oxoglutarate (2-OG), fumarate, proline, xanthine, cytosine, carnitine, arginine, threonine, aspartate, and urea. Metabolic network analysis showed 4 important pathways that were involved: arginine and proline metabolism, the urea cycle, aspartate metabolism, and glycine, serine and threonine metabolism. CONCLUSION Using this combined metabolomic and chemometric approach, this study was successful in screening Q-markers for musk quality control and provided new insights into correlations among "ecological & physiological factors→Q-markers→metabolites", which potentially provides crucial information for musk breeding and material quality control.
Collapse
Affiliation(s)
- Zhi-Shu Tang
- Shaanxi Research Centre on Discovery & Innovation of New Medicine, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China
| | - Yan-Ru Liu
- Shaanxi Research Centre on Discovery & Innovation of New Medicine, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China
| | - Yang Lv
- Shaanxi Research Centre on Discovery & Innovation of New Medicine, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China
| | - Jin-Ao Duan
- Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 210023 Nanjing, PR China
| | - Shi-Zhong Chen
- School of Pharmaceutical Sciences, Peking University, 100191 Beijing, PR China
| | - Jing Sun
- Shaanxi Research Centre on Discovery & Innovation of New Medicine, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China
| | - Zhong-Xing Song
- Shaanxi Research Centre on Discovery & Innovation of New Medicine, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China
| | - Xiao-Min Wu
- Shaanxi Institute of Zoology, Northwest Institute of Endangered Zoological Species, 710032 Xi'an, PR China
| | - Li Liu
- Shaanxi Research Centre on Discovery & Innovation of New Medicine, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China.
| |
Collapse
|