1
|
Gabriele V, Bisanzio D, Riva A, Meineri G, Adami R, Martello E. Long-term effects of a diet supplement containing Cannabis sativa oil and Boswellia serrata in dogs with osteoarthritis following physiotherapy treatments: a randomised, placebo-controlled and double-blind clinical trial. Nat Prod Res 2022; 37:1782-1786. [PMID: 36067506 DOI: 10.1080/14786419.2022.2119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Dogs are commonly affected by Osteoarthritis (OA). Different approaches can be used to alleviate animals' symptoms. In this randomised, placebo-controlled and double-blind clinical trial, we performed a three months follow-up study assessing the efficacy of a food supplement containing natural ingredients (Cannabis sativa oil, Boswellia serrata Roxb. Phytosome® and Zingiber officinale extract) in dogs with OA after the interruption of physiotherapy that was performed during the previous three months. Inflammation and oxidative stress were reduced in the treated group (higher glutathione (GSH) and lower C-reactive protein [CRP] levels in blood) as well as chronic pain.
Collapse
Affiliation(s)
| | | | | | - Giorgia Meineri
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jun Wan
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Zhao J, Chen S, Yang C, Zhou M, Yang T, Sun B, Zhu J, Zhang H, Lu Q, Li L, Yang Z, Song B, Shen W, Yi S, Dai S. Activation of CXCL13/CXCR5 axis aggravates experimental autoimmune cystitis and interstitial cystitis/bladder pain syndrome. Biochem Pharmacol 2022; 200:115047. [PMID: 35452631 DOI: 10.1016/j.bcp.2022.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
The abnormal CXCL13/CXCR5 axis is involved in many inflammatory diseases and its selective inhibitor, TAK-799 has exhibited strong anti-inflammatory potency. The sequencing of clinical specimens from interstitial cystitis/bladder pain syndrome (IC/BPS) has shown that CXCL13 and CXCR5 are highly expressed, but the role of CXCL13/CXCR5 axis in IC/BPS has not been rarely reported. Therefore, in this study, we analyzed the GSE11783 sequencing data of IC/BPS patients and investigate the role and mechanism of CXCL13/CXCR5 axis and TAK-779 in the mouse model of experimental autoimmune cystitis (EAC). We verified that CXCL13 and CXCR5 were significantly up-regulated in EAC model. EAC mice exhibited increased bladder inflammatory factors (IL-6, TNF-α, IL-1β), apoptosis-related proteins (Bax, Caspase-3, Caspase-8), frequency of voiding. Using TAK779 to block CXCL13/CXCR5 axis significantly attenuated these inflammatory damages and efficiently improved bladder function (significant reduction in micturition frequency, significant prolongation of inter-contraction interval). Further investigation showed that inhibiton of JNK and NF-kappaB activation, the bioinformatics analysis-indicated downstream signaling of CXCL13/CXCR5 axis, is responsible for the protective effect of TAK779. Taken together, we demonstrate that activation of the CXCL13/CXCR5 axis is involved in the pathophysiology of IC/BPS and EAC. Blocking CXCL13/CXCR5 axis activation by TAK-779 reduces bladder inflammation and improves bladder function in EAC mice.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China; Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Shan Chen
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Chengfei Yang
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Jingzheng Zhu
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Qudong Lu
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Bo Song
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital,Army Military Medical University, Chongqing, 400037, PR China
| | - Shuangshuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
4
|
Inhibition of lysophosphatidic acid receptor 1-3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. J Neuroinflammation 2021; 18:240. [PMID: 34666785 PMCID: PMC8527776 DOI: 10.1186/s12974-021-02278-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lysophosphatidic acid receptors (LPARs) are G-protein-coupled receptors involved in many physiological functions in the central nervous system. However, the role of the LPARs in multiple sclerosis (MS) has not been clearly defined yet. Methods Here, we investigated the roles of LPARs in myelin oligodendrocyte glycoprotein peptides-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Results Pre-inhibition with LPAR1–3 antagonist Ki16425 deteriorated motor disability of EAElow. Specifically, LPAR1–3 antagonist (intraperitoneal) deteriorated symptoms of EAElow associated with increased demyelination, chemokine expression, cellular infiltration, and immune cell activation (microglia and macrophage) in spinal cords of mice compared to the sham group. This LPAR1–3 antagonist also increased the infiltration of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells into spinal cords of EAElow mice along with upregulated mRNA expression of IFN-γ and IL-17 and impaired blood–brain barrier (BBB) in the spinal cord. The underlying mechanism for negative effects of LPAR1–3 antagonist was associated with the overproduction of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 2 and NOX3. Interestingly, LPAR1/2 agonist 1-oleoyl-LPA (LPA 18:1) (intraperitoneal) ameliorated symptoms of EAEhigh and improved representative pathological features of spinal cords of EAEhigh mice. Conclusions Our findings strongly suggest that some agents that can
stimulate LPARs might have potential therapeutic implications for autoimmune demyelinating diseases such as MS.
Collapse
|
5
|
Shi J, Jiang D, Yang S, Zhang X, Wang J, Liu Y, Sun Y, Lu Y, Yang K. LPAR1, Correlated With Immune Infiltrates, Is a Potential Prognostic Biomarker in Prostate Cancer. Front Oncol 2020; 10:846. [PMID: 32656075 PMCID: PMC7325998 DOI: 10.3389/fonc.2020.00846] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is a common malignancy in men worldwide. Lysophosphatidic acid receptor 1 (LPAR1) is a critical gene and it mediates diverse biologic functions in tumor. However, the correlation between LPAR1 and prognosis in prostate cancer, as well as the potential mechanism, remains unclear. In the present study, LPAR1 expression analysis was based on The Cancer Genome Atlas (TCGA) and the Oncomine database. The correlation of LPAR1 on prognosis was also analyzed based on R studio. The association between LPAR1 and tumor-infiltrating immune cells were evaluated in the Tumor Immune Estimation Resource site, ssGSEA, and MCPcounter packages in R studio. Gene Set Enrichment Analysis and Gene Ontology analysis were used to analyze the function of LPAR1. TCGA datasets and the Oncomine database revealed that LPAR1 was significantly downregulated in prostate cancer. High LPAR1 expression was correlated with favorable overall survival. LPAR1 was involved in the activation, proliferation, differentiation, and migration of immune cells, and its expression was positively correlated with immune infiltrates, including CD4+ T cells, B cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, and natural killer cells. Moreover, LPAR1 expression was positively correlated with those chemokine/chemokine receptors, indicating that LPAR1 may regulate the migration of immune cells. In summary, LPAR1 is a potential prognostic biomarker and plays an important part in immune infiltrates in prostate cancer.
Collapse
Affiliation(s)
- Jingqi Shi
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuchen Lu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Hwang HJ, Park T, Kim M, Shin HS, Hwang W, Min YK, Song SG, Park D, Lee CH. A Novel Therapeutic Reagent, KA-1002 for Alleviating Lysophosphatidic Acid-Mediated Inflammation Related Gene Expression in Swine Macrophages. Animals (Basel) 2020; 10:ani10030534. [PMID: 32210054 PMCID: PMC7142756 DOI: 10.3390/ani10030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Inflammatory diseases are a key factor reducing the productivity of animals in a livestock industrial environment. We have identified a novel lysophosphatidic acid signaling antagonist, KA-1002, which alleviates lysophosphatidic acid-mediated a broad range of inflammation related gene expression in swine macrophages. Specifically, we found that KA-1002 significantly alleviated LPA-induced genes related with inflammation such as a role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis and STAT3 signal pathway. Taken together, KA-1002 could be considered a novel therapeutic reagent candidate for swine inflammatory diseases. Abstract Stresses and various infectious reagents caused multiple inflammatory diseases in swine in a livestock industrial environment. Therefore, there is a need for an effective therapeutic or preventive agent that could alleviate chronic and acute inflammation. We found that lysophosphatidic acid (LPA), a stress-induced potent endogenous inflammatory molecule, causes a broad range-regulation of inflammation related genes inflammation in swine macrophages. We further investigated the genome scaled transcriptional regulatory effect of a novel LPA-signaling antagonist, KA-1002 on swine macrophages, inducing the alleviated LPA-mediated inflammation related gene expression. Therefore, KA-1002 could potentially serve as a novel therapeutic or preventive agent to maintain physiologically healthy and balanced conditions of pigs.
Collapse
Affiliation(s)
- Hyeon-Jeong Hwang
- Bio and Drug Discovery Division, Center for Information-Based Drug Research, Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (H.-J.H.); (M.K.); (H.-s.S.); (W.H.); (Y.K.M.)
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Miok Kim
- Bio and Drug Discovery Division, Center for Information-Based Drug Research, Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (H.-J.H.); (M.K.); (H.-s.S.); (W.H.); (Y.K.M.)
- Chungnam National University School of Medicine, Daejeon 34137, Korea
| | - Hee-su Shin
- Bio and Drug Discovery Division, Center for Information-Based Drug Research, Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (H.-J.H.); (M.K.); (H.-s.S.); (W.H.); (Y.K.M.)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Wooyeon Hwang
- Bio and Drug Discovery Division, Center for Information-Based Drug Research, Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (H.-J.H.); (M.K.); (H.-s.S.); (W.H.); (Y.K.M.)
- Department of Pharmaceutical Science, Kyunghee University, Seoul 02447, Korea
| | - Yong Ki Min
- Bio and Drug Discovery Division, Center for Information-Based Drug Research, Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (H.-J.H.); (M.K.); (H.-s.S.); (W.H.); (Y.K.M.)
| | - Suk-gil Song
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (D.P.); (C.H.L.); Tel.: +82-42-610-8251 (D.P.); +82-42-860-7414 (C.H.L.)
| | - Chang Hoon Lee
- Bio and Drug Discovery Division, Center for Information-Based Drug Research, Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (H.-J.H.); (M.K.); (H.-s.S.); (W.H.); (Y.K.M.)
- Correspondence: (D.P.); (C.H.L.); Tel.: +82-42-610-8251 (D.P.); +82-42-860-7414 (C.H.L.)
| |
Collapse
|
7
|
Magkrioti C, Galaris A, Kanellopoulou P, Stylianaki EA, Kaffe E, Aidinis V. Autotaxin and chronic inflammatory diseases. J Autoimmun 2019; 104:102327. [PMID: 31471142 DOI: 10.1016/j.jaut.2019.102327] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids including blood. ATX catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a growth factor-like, signaling phospholipid. LPA exerts pleiotropic effects mediated by its G-protein-coupled receptors that are widely expressed and exhibit overlapping specificities. Although ATX also possesses matricellular properties, the majority of ATX reported functions in adulthood are thought to be mediated through the extracellular production of LPA. ATX-mediated LPA synthesis is likely localized at the cell surface through the possible interaction of ATX with integrins or other molecules, while LPA levels are further controlled by a group of membrane-associated lipid-phosphate phosphatases. ATX expression was shown to be necessary for embryonic development, and ATX deficient embryos exhibit defective vascular homeostasis and aberrant neuronal system development. In adult life, ATX is highly expressed in the adipose tissue and has been implicated in diet-induced obesity and glucose homeostasis with multiple implications in metabolic disorders. Additionally, LPA has been shown to affect multiple cell types, including stromal and immune cells in various ways. Therefore, LPA participates in many processes that are intricately involved in the pathogenesis of different chronic inflammatory diseases such as vascular homeostasis, skeletal and stromal remodeling, lymphocyte trafficking and immune regulation. Accordingly, increased ATX and LPA levels have been detected, locally and/or systemically, in patients with chronic inflammatory diseases, most notably idiopathic pulmonary fibrosis (IPF), chronic liver diseases, and rheumatoid arthritis. Genetic and pharmacological studies in mice have confirmed a pathogenetic role for ATX expression and LPA signaling in chronic inflammatory diseases, and provided the proof of principle for therapeutic interventions, as exemplified by the ongoing clinical trials for IPF.
Collapse
Affiliation(s)
| | - Apostolos Galaris
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | | | | | - Eleanna Kaffe
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece.
| |
Collapse
|
8
|
Chen L, Wang D, Peng F, Qiu J, Ouyang L, Qiao Y, Liu X. Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. NANO LETTERS 2019; 19:3480-3489. [PMID: 31091110 DOI: 10.1021/acs.nanolett.9b00237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A proper immune response is key for the successful implantation of biomaterials, and designing and fabricating biomaterials to regulate immune responses is the future trend. In this work, three different nanostructures were constructed on the surface of titanium using a hydrothermal method, and through a series of in vitro and in vivo experiments, we found that the aspect ratio of nanostructures can affect the elastic modulus of a material surface and further regulate immune cell behaviors. This work demonstrates that nanostructures with a higher aspect ratio can endow a material surface with a lower elastic modulus, which was confirmed by experiments and theoretical analyses. The deflection of nanostructures under the cell adsorption force is a substantial factor in stretching macrophages to enhance cell adhesion and spreading, further inducing macrophage polarization toward the M1 phenotype and leading to intense immune responses. In contrast, a nanostructure with a lower aspect ratio on a material surface leads to a higher surface elastic modulus, making deflection of the material difficult and creating a surface that is not conducive to macrophage adhesion and spreading, thus reducing the immune response. Moreover, molecular biology experiments indicated that regulation of the immune response by the elastic modulus is primarily related to the NF-κB signaling pathway. These findings suggest that the immune response can be regulated by constructing nanostructural surfaces with the proper elastic modulus through their influence on cell adhesion and spreading, which provides new insights into the surface design of biomaterials.
Collapse
Affiliation(s)
- Lan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Feng Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
9
|
Yuan X, Wang J, Cheng M, Zhang X. Mouse β-defensin-14 for inducing the maturation of dendritic cells. Int Immunopharmacol 2017; 55:133-141. [PMID: 29253819 DOI: 10.1016/j.intimp.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND β-defensins are an excellent antimicrobial peptide against microbial infection in which dendritic cells (DCs) play a crucial role by improving the innate and adaptive immune defense. However, it is unclear whether BDs affect DC maturation. This work aimed to study the effects of mouse β-defensin-14 (MBD-14) on DC maturation. METHODS Via in vitro using mouse bone marrow DCs, the maturation of DCs was evaluated by cell morphological staining, flow cytometry, endocytosis assay, and allogeneic mixed lymphocyte reaction, respectively. And it was also assessed by in vivo establishing a mouse air-pouch model for flow cytometric determination, cytokine analysis, and histological staining. Additionally, CLI-095, an inhibitor of Toll-like receptor-4 (TLR-4), was used to determine whether TLR-4 is possibly involved in DC maturation. RESULTS It was found MBD-14 promoted DCs to form more filopodia and lamellipodia, increased the expression of DC maturation markers (CD40 and MHC-II), decreased their endocytic capacity, and enhanced T-cell proliferation. The analyses of the air-pouch exudates were consistent with the in vitro results of MBD-14 activating DCs. And when CLI-095 was applied, DC maturation was inhibited partly. CONCLUSIONS This work demonstrates that MBD-14 can promote the maturation of DCs in which TLR-4 is possibly involved.
Collapse
Affiliation(s)
- Xiangwei Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Mengqi Cheng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
10
|
Li HL, Lu L, Wang XS, Qin LY, Wang P, Qiu SP, Wu H, Huang F, Zhang BB, Shi HL, Wu XJ. Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Front Cell Infect Microbiol 2017; 7:455. [PMID: 29124041 PMCID: PMC5662589 DOI: 10.3389/fcimb.2017.00455] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Disturbed homeostasis of gut microbiota has been suggested to be closely associated with 5-fluorouracil (5-Fu) induced mucositis. However, current knowledge of the overall profiles of 5-Fu-disturbed gut microbiota is limited, and so far there is no direct convincing evidence proving the causality between 5-Fu-disturbed microbiota and colonic mucositis. In mice, in agreement with previous reports, 5-Fu resulted in severe colonic mucositis indicated by weight loss, diarrhea, bloody stool, shortened colon, and infiltration of inflammatory cells. It significantly changed the profiles of inflammatory cytokines/chemokines in serum and colon. Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and VE-Cadherin were increased. While tight junction protein occludin was reduced, however, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were increased in colonic tissues of 5-Fu treated mice. Meanwhile, inflammation related signaling pathways including NF-κB and mitogen activated protein kinase (MAPKs) in the colon were activated. Further study disclosed that 5-Fu diminished bacterial community richness and diversity, leading to the relative lower abundance of Firmicutes and decreased Firmicutes/Bacteroidetes (F/B) ratio in feces and cecum contents. 5-Fu also reduced the proportion of Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division TM7, but increased that of Verrucomicrobia and Actinobacteria in feces and/or cecum contents. The fecal transplant from healthy mice prevented body weight loss and colon shortening of 5-Fu treated mice. In addition, the fecal transplant from 5-Fu treated mice reduced body weight and colon length of vancomycin-pretreated mice. Taken together, our study demonstrated that gut microbiota was actively involved in the pathological process of 5-Fu induced intestinal mucositis, suggesting potential attenuation of 5-Fu induced intestinal mucositis by manipulating gut microbiota homeostasis.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Lu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Shuang Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Yue Qin
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shui-Ping Qiu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Anti-Inflammatory Chromatinscape Suggests Alternative Mechanisms of Glucocorticoid Receptor Action. Immunity 2017; 47:298-309.e5. [PMID: 28801231 DOI: 10.1016/j.immuni.2017.07.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/14/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
Abstract
Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome."
Collapse
|