1
|
Aonsri C, Kuljarusnont S, Tungmunnithum D. Discovering Skin Anti-Aging Potentials of the Most Abundant Flavone Phytochemical Compound Reported in Siam Violet Pearl, a Medicinal Plant from Thailand by In Silico and In Vitro Assessments. Antioxidants (Basel) 2025; 14:272. [PMID: 40227229 PMCID: PMC11939551 DOI: 10.3390/antiox14030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Currently, nutraceuticals and functional food/cosmeceutical sectors are seeking natural molecules to develop various types of phytopharmaceutical products. Flavonoids have been reported in antioxidant and many medical/pharmacological activities. Monochoria angustifolia or Siam violet pearl medicinal plant is the newest species of the genus Monochoria C. Presl, which have long been consumed as food and herbal medicines. Though previous work showed that apigenin-7-O-glucoside is the most abundant antioxidant phytochemical found in this medicinal plant, the report on anti-aging activity is still lacking and needs to be filled in. The objective of this work is to explore anti-aging capacities of the most abundant antioxidant phytochemical reported in this plant using both in silico and in vitro assessments. In addition, pharmacokinetic properties were predicted. Interestingly, the results from both in silico and in vitro analysis showed a similar trend that apigenin-7-O-glucoside is a potential anti-aging agent against three enzymes. The pharmacokinetic properties, such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), of this compound are also provided in this work. The current study is also the first report on anti-aging properties of this Thai medicinal plant. However, the safety and efficacy of future developed products from this compound and clinical study should be determined in the future.
Collapse
Affiliation(s)
- Chaiyawat Aonsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
- Unit of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| |
Collapse
|
2
|
Bonardi A, Gratteri P. Computational studies of tyrosinase inhibitors. Enzymes 2024; 56:191-229. [PMID: 39304287 DOI: 10.1016/bs.enz.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Computational studies have significantly advanced the understanding of tyrosinase (TYR) function, mechanism, and inhibition, accelerating the development of more effective and selective inhibitors. This chapter provides an overview of in silico studies on TYR inhibitors, emphasizing key inhibitory chemotypes and the main residues involved in ligand-target interactions. The chapter discusses tools applied in the context of TYR inhibitor development, e.g., structure-based virtual screening, molecular docking, artificial intelligence, and machine learning algorithms.
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
3
|
Irfan A, Bin Jardan YA, Rubab L, Hameed H, Zahoor AF, Supuran CT. Bacterial tyrosinases and their inhibitors. Enzymes 2024; 56:231-260. [PMID: 39304288 DOI: 10.1016/bs.enz.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bacterial tyrosinase is a copper-containing metalloenzyme with diverse physio-chemical properties, that have been identified in various bacterial strains, including actinobacteria and proteobacteria. Tyrosinases are responsible for the rate-limiting catalytic steps in melanin biosynthesis and enzymatic browning. The physiological role of bacterial tyrosinases in melanin biosynthesis has been harnessed for the production of coloring and dyeing agents. Additionally, bacterial tyrosinases have the capability of cross-linking activity, demonstrated material functionalization applications, and applications in food processing with varying substrate specificities and stability features. These characteristics make bacterial tyrosinases a valuable alternative to well-studied mushroom tyrosinases. The key feature of substrate specificity of bacterial tyrosinase has been exploited to engineer biosensors that have the ability to detect the minimal amount of different phenolic compounds. Today, the world is facing the challenge of multi-drugs resistance in various diseases, especially antibiotic resistance, skin cancer, enzymatic browning of fruits and vegetables, and melanogenesis. To address these challenges, medicinal scientists are developing novel chemotherapeutic agents by inhibiting bacterial tyrosinases. To serve this purpose, heterocyclic compounds are of particular interest due to their vast spectrum of biological activities and their potential as effective tyrosinase inhibitors. In this chapter, a plethora of research explores applications of bacterial tyrosinases in different fields, such as the production of dyes and pigments, catalytic applications in organic synthesis, bioremediation, food and feed applications, biosensors, wool fiber coating and the rationalized synthesis, and structure-activity relationship of bacterial tyrosinase inhibitors.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Laila Rubab
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Claudiu T Supuran
- Department of NEUROFARBA-Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Ferreira S, Balola A, Sveshnikova A, Hatzimanikatis V, Vilaça P, Maia P, Carreira R, Stoney R, Carbonell P, Souza CS, Correia J, Lousa D, Soares CM, Rocha I. Computer-aided design and implementation of efficient biosynthetic pathways to produce high added-value products derived from tyrosine in Escherichia coli. Front Bioeng Biotechnol 2024; 12:1360740. [PMID: 38978715 PMCID: PMC11228882 DOI: 10.3389/fbioe.2024.1360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Developing efficient bioprocesses requires selecting the best biosynthetic pathways, which can be challenging and time-consuming due to the vast amount of data available in databases and literature. The extension of the shikimate pathway for the biosynthesis of commercially attractive molecules often involves promiscuous enzymes or lacks well-established routes. To address these challenges, we developed a computational workflow integrating enumeration/retrosynthesis algorithms, a toolbox for pathway analysis, enzyme selection tools, and a gene discovery pipeline, supported by manual curation and literature review. Our focus has been on implementing biosynthetic pathways for tyrosine-derived compounds, specifically L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine, with significant applications in health and nutrition. We selected one pathway to produce L-DOPA and two different pathways for dopamine-one already described in the literature and a novel pathway. Our goal was either to identify the most suitable gene candidates for expression in Escherichia coli for the known pathways or to discover innovative pathways. Although not all implemented pathways resulted in the accumulation of target compounds, in our shake-flask experiments we achieved a maximum L-DOPA titer of 0.71 g/L and dopamine titers of 0.29 and 0.21 g/L for known and novel pathways, respectively. In the case of L-DOPA, we utilized, for the first time, a mutant version of tyrosinase from Ralstonia solanacearum. Production of dopamine via the known biosynthesis route was accomplished by coupling the L-DOPA pathway with the expression of DOPA decarboxylase from Pseudomonas putida, resulting in a unique biosynthetic pathway never reported in literature before. In the context of the novel pathway, dopamine was produced using tyramine as the intermediate compound. To achieve this, tyrosine was initially converted into tyramine by expressing TDC from Levilactobacillus brevis, which, in turn, was converted into dopamine through the action of the enzyme encoded by ppoMP from Mucuna pruriens. This marks the first time that an alternative biosynthetic pathway for dopamine has been validated in microbes. These findings underscore the effectiveness of our computational workflow in facilitating pathway enumeration and selection, offering the potential to uncover novel biosynthetic routes, thus paving the way for other target compounds of biotechnological interest.
Collapse
Affiliation(s)
- Sofia Ferreira
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Alexandra Balola
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Anastasia Sveshnikova
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paulo Vilaça
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Paulo Maia
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Rafael Carreira
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Ruth Stoney
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC: Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Caio Silva Souza
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - João Correia
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Diana Lousa
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cláudio M Soares
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
5
|
Paosen S, Bilhman S, Wunnoo S, Ramanathan S, Septama AW, Lethongkam S, Voravuthikunchai SP. Control of biomaterial-associated infections through biofabrication of gold nanoparticles using Musa sapientum extract. Biotechnol J 2023; 18:e2300008. [PMID: 37300817 DOI: 10.1002/biot.202300008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/22/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Biofilm-associated infections are a critical element in infectious diseases and play an important role in antibiotic resistance. Biosynthesized gold nanoparticles (AuNPs) using ethanolic extract of Musa sapientum unripe fruit were performed. The nanoparticles demonstrated an absorption peak at 554 nm with particle sizes ranging from 5.45 to 104.44 nm. High negative zeta potential value of -33.97 mV confirmed the high stability of AuNPs. The presence of bioconstituents responsible for capping and stabilization was indicated by intensity changes of several peaks from Fourier-transform infrared spectroscopy analysis. The minimum inhibitory concentrations (MIC) of the biosynthesized AuNPs against important pathogens ranged from 10 to 40 μg mL-1 . Synthesized nanoparticles at 0.062 to 0.5 × MIC significantly inhibited biofilm formation in all the tested microorganisms (p < 0.05). Scanning electron microscopy and confocal scanning laser microscopy images clearly illustrated in disruption and architectural changes of microbial biofilms at sub-MIC of biosynthesized AuNPs. Excellent antioxidant and antityrosinase activities of AuNPs were observed. The biosynthesized AuNPs at 20 μg mL-1 significantly inhibited nitric oxide production by 93% in lipopolysaccharide-stimulated RAW 264.7 cells, compared with control (p < 0.05). The biosynthesized AuNPs at 0.6 to 40 μg mL-1 demonstrated no toxic effects on L929 fibroblast cells.
Collapse
Affiliation(s)
- Supakit Paosen
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Siwaporn Bilhman
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suttiwan Wunnoo
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Srinivasan Ramanathan
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Cibinong Science Center, Bogor, West Java, Indonesia
| | - Sakkarin Lethongkam
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
6
|
Moldovan C, Frumuzachi O, Babotă M, Pinela J, Barros L, Rocchetti G, López V, Lucini L, Crișan G, Mocan A. Untargeted phytochemical profiling and biological activity of small yellow onion (Allium flavum L.) from different regions of Romania. Food Chem 2023; 426:136503. [PMID: 37301042 DOI: 10.1016/j.foodchem.2023.136503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study examined the phytochemical profiles (mainly phenolics, carotenoids, and organosulfur compounds) and biological effects of hydroalcoholic extracts of Allium flavum (AF), a species of the Allium genus commonly known as small yellow onion. Unsupervised and supervised statistical approaches revealed clear differences between extracts prepared with samples collected from different areas of Romania. Overall, the AFFF (AF flowers collected from Făget) extract was the best source of polyphenols, also showing the highest antioxidant capacity evaluated through both in vitro DPPH, FRAP, and TEAC anti-radical scavenging assays and cell-based OxHLIA and TBARS assays. All the tested extracts exhibited α-glucosidase inhibition potential, while only the AFFF extract exhibited anti-lipase inhibitory activity. The phenolic subclasses annotated were positively correlated with the assessed antioxidant and enzyme inhibitory activities. Our findings suggested that A. flavum has bioactive properties worth exploring further, being a potential edible flower with health-promoting implications.
Collapse
Affiliation(s)
- Cadmiel Moldovan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Víctor López
- Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Benslama O, Lekmine S, Mansouri N. Phytochemical constituents of Astragalus monspessulanus and integrative analysis for its antioxidant, photoprotective, and antityrosinase activities: Experimental and computational investigation. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Gryn-Rynko A, Sperkowska B, Majewski MS. Screening and Structure-Activity Relationship for Selective and Potent Anti-Melanogenesis Agents Derived from Species of Mulberry (Genus Morus). Molecules 2022; 27:molecules27249011. [PMID: 36558142 PMCID: PMC9783946 DOI: 10.3390/molecules27249011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Tyrosinase is a multifunctional, copper-containing and rate-limiting oxidase that catalyses crucial steps in the melanogenesis pathway and is responsible for skin-pigmentation abnormalities in mammals. Numerous tyrosinase inhibitors derived from natural and synthetic sources have been identified as an objective for the development of anti-melanogenesis agents. However, due to side effects and lack of expected efficiency, only a small percentage of them are used for medical and cosmetic purposes. This critical review focuses on searching for novel active substances and recently discovered plant-derived anti-tyrosinase inhibitors from the Morus genus (Moraceae family). A detailed analysis of their structure-activity relationships is discussed. The information contained in this article is crucial for the cosmetics and medical industries, in order to show new directions for the effective search for natural anti-melanogenesis products (with satisfactory efficiency and safety) to treat and cure hyperpigmentation.
Collapse
Affiliation(s)
- Anna Gryn-Rynko
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury, Warszawska 30 Street, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-508-150-669
| | - Beata Sperkowska
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, A. Jurasza 2 Street, 85-089 Bydgoszcz, Poland
| | - Michał S. Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury, Warszawska 30 Street, 10-082 Olsztyn, Poland
| |
Collapse
|
9
|
Lim WY, Chan EWC, Phan CW, Wong CW. Potent melanogenesis inhibition by friedelin isolated from Hibiscus tiliaceus leaves. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Ultrasonic-Assisted Synthesis of Benzofuran Appended Oxadiazole Molecules as Tyrosinase Inhibitors: Mechanistic Approach through Enzyme Inhibition, Molecular Docking, Chemoinformatics, ADMET and Drug-Likeness Studies. Int J Mol Sci 2022; 23:ijms231810979. [PMID: 36142889 PMCID: PMC9500974 DOI: 10.3390/ijms231810979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Furan-oxadiazole structural hybrids belong to the most promising and biologically active classes of oxygen and nitrogen containing five member heterocycles which have expanded therapeutic scope and potential in the fields of pharmacology, medicinal chemistry and pharmaceutics. A novel series 5a-j of benzofuran-oxadiazole molecules incorporating S-alkylated amide linkage have been synthesized using ultrasonic irradiation and screened for bacterial tyrosinase inhibition activity. Most of the synthesized furan-oxadiazole structural motifs exhibited significant tyrosinase inhibition activity in the micromolar range, with one of the derivatives being more potent than the standard drug ascorbic acid. Among the tested compounds, the scaffold 5a displayed more tyrosinase inhibition efficacy IC50 (11 ± 0.25 μM) than the ascorbic acid IC50 (11.5 ± 0.1 μM). Compounds 5b, 5c and 5d efficiently inhibited bacterial tyrosinase with IC50 values in the range of 12.4 ± 0.0-15.5 ± 0.0 μM. The 2-fluorophenylacetamide containing furan-oxadiazole compound 5a may be considered as a potential lead for tyrosinase inhibition with lesser side effects as a skin whitening and malignant melanoma anticancer agent.
Collapse
|
11
|
Kumari A, kumar R, Sulabh G, Singh P, Kumar J, Singh VK, Ojha KK. In silico ADMET, molecular docking and molecular simulation-based study of glabridin’s natural and semisynthetic derivatives as potential tyrosinase inhibitors. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9000003 DOI: 10.1007/s13596-022-00640-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyper-pigmentation conditions may develop due to erroneous melanogenesis cascade which leads to excess melanin production. Recently, inhibition of tyrosinase is the main focus of investigation as it majorly contributes to melanin production. This inhibition property can be exploited in medicine, agriculture, and in cosmetics. Present study aims to find a natural and safe alternative molecule as tyrosinase inhibitor. In this study, human tyrosinase enzyme was modelled due to unavailability of its crystal structure to look into the degree of efficacy of glabridin and its 15 derivatives as tyrosinase inhibitor. Docking was performed by Autodock Vina at the catalytic core enzyme. Glabridin effects on melanoma cell lines was also elucidated by analysing cytotoxicity and effect on melanin production. Computational ADME analysis was done by SwissADME. Molecular dynamic simulation was also performed to further evaluate the interaction profile of these molecules and kojic acid (positive inhibitor) with respect to apo protein. Notably, four derivatives 5′-formylglabridin, glabridin dimer, 5′-prenyl glabridin and R-glabridin exhibited better binding affinity than glabridin. Glabridin effectively inhibited melanin production in a dose dependent manner. Among these, 5′-formylglabridin displayed highest binding affinity with docking score − 9.2 kcal/mol. Molecular properties and bioactivity analysis by Molinspiration web server and by SwissADME also presented these molecules as potential drug candidates. The study explores the understanding for the development of suitable tyrosinase inhibitor/s for the prevention of hyperpigmentation. However, a detailed in vivo study is required for glabridin derivatives to suggest these molecules as anti-melanogenic compound.
Collapse
|
12
|
Rupa SA, Moni MR, Patwary MAM, Mahmud MM, Haque MA, Uddin J, Abedin SMT. Synthesis of Novel Tritopic Hydrazone Ligands: Spectroscopy, Biological Activity, DFT, and Molecular Docking Studies. Molecules 2022; 27:1656. [PMID: 35268756 PMCID: PMC8911750 DOI: 10.3390/molecules27051656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Polytopic organic ligands with hydrazone moiety are at the forefront of new drug research among many others due to their unique and versatile functionality and ease of strategic ligand design. Quantum chemical calculations of these polyfunctional ligands can be carried out in silico to determine the thermodynamic parameters. In this study two new tritopic dihydrazide ligands, N’2, N’6-bis[(1E)-1-(thiophen-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L1) and N’2, N’6-bis[(1E)-1-(1H-pyrrol-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L2) were successfully prepared by the condensation reaction of pyridine-2,6-dicarboxylic hydrazide with 2-acetylthiophene and 2-acetylpyrrole. The FT-IR, 1H, and 13C NMR, as well as mass spectra of both L1 and L2, were recorded and analyzed. Quantum chemical calculations were performed at the DFT/B3LYP/cc-pvdz/6-311G+(d,p) level of theory to study the molecular geometry, vibrational frequencies, and thermodynamic properties including changes of ∆H, ∆S, and ∆G for both the ligands. The optimized vibrational frequency and (1H and 13C) NMR obtained by B3LYP/cc-pvdz/6-311G+(d,p) showed good agreement with experimental FT-IR and NMR data. Frontier molecular orbital (FMO) calculations were also conducted to find the HOMO, LUMO, and HOMO−LUMO gaps of the two synthesized compounds. To investigate the biological activities of the ligands, L1 and L2 were tested using in vitro bioassays against some Gram-negative and Gram-positive bacteria and fungus strains. In addition, molecular docking was used to study the molecular behavior of L1 and L2 against tyrosinase from Bacillus megaterium. The outcomes revealed that both L1 and L2 can suppress microbial growth of bacteria and fungi with variable potency. The antibacterial activity results demonstrated the compound L2 to be potentially effective against Bacillus megaterium with inhibition zones of 12 mm while the molecular docking study showed the binding energies for L1 and L2 to be −7.7 and −8.8 kcal mol−1, respectively, with tyrosinase from Bacillus megaterium.
Collapse
Affiliation(s)
- Sharmin Akther Rupa
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh; (S.A.R.); (M.R.M.)
| | - Md. Rassel Moni
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh; (S.A.R.); (M.R.M.)
| | | | - Md. Mayez Mahmud
- Faculty of Pharmaceutical Science, Tokushima University, Tokushima Shi 770-0026, Japan;
| | - Md. Aminul Haque
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh;
| | - Jamal Uddin
- Department of Natural Sciences, Center for Nanotechnology, Coppin State University, Baltimore, MD 21216, USA
| | | |
Collapse
|
13
|
Rizzi V, Gubitosa J, Fini P, Nuzzo S, Agostiano A, Cosma P. Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112309. [PMID: 34563935 DOI: 10.1016/j.jphotobiol.2021.112309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Due to their properties, snail slime-based products have been appreciated and used worldwide. So, as an alternative and innovative use of snail slime, it was adopted to induce gold nanoparticles' formation, conferring them interesting properties. By a simple, one-pot, and eco-friendly approach, 14 ± 6 nm wide hybrid gold nanoparticles, having an inorganic metallic core decorated by the slime's main components, were obtained. Among their several properties, their antioxidant and tyrosinase inhibition activity were investigated through the DPPH and ABTS and the tyrosinase assays, respectively. After assessing their non-cytotoxicity in our previous work, the results revealed positive responses, enabling their use as a potential novel multifunctional ingredient in cosmetics. Interestingly, the gold nanoparticle photostability, investigated by means of a solar simulator lamp, suggests using them in commercial cosmetic sunscreen products as a potential alternative to the commonly used inorganic sunscreen ingredients. The theoretical Sun Protection Factor was evaluated, obtaining values in the range 0-12. The proposed environmentally friendly and cost-effective protocol for nanoparticle synthesis, following the principles of Green Chemistry, opens a hugely attractive space toward the study of snail slime-based gold nanoparticles as a potential multipurpose platform in cosmetics.
Collapse
Affiliation(s)
- Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy.
| | - Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4 - 70126 Bari, Italy
| | - Sergio Nuzzo
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4 - 70126 Bari, Italy
| | - Angela Agostiano
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4 - 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy.
| |
Collapse
|
14
|
Manzano-Nicolas J, Taboada-Rodriguez A, Teruel-Puche JA, Marin-Iniesta F, Garcia-Molina F, Garcia-Canovas F, Tudela-Serrano J, Munoz-Munoz J. Enzymatic oxidation of oleuropein and 3-hydroxytyrosol by laccase, peroxidase, and tyrosinase. J Food Biochem 2021; 45:e13803. [PMID: 34219246 DOI: 10.1111/jfbc.13803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
Abstract
The oxidation of oleuropein and 3-hydroxytyrosol by oxidases laccase, tyrosinase, and peroxidase has been studied. The use of a spectrophotometric method and another spectrophotometric chronometric method has made it possible to determine the kinetic parameters Vmax and KM for each enzyme. The highest binding affinity was shown by laccase. The antioxidant capacities of these two molecules have been characterized, finding a very similar primary antioxidant capacity between them. Docking studies revealed the optimal binding position, which was the same for the two molecules and was a catalytically active position. PRACTICAL APPLICATIONS: One of the biggest environmental problems in the food industry comes from olive oil mill wastewater with a quantity of approximately 30 million tons per year worldwide. In addition, olive pomace, the solid residue obtained from the olive oil production, is rich in hydroxytyrosol and oleuropein and the action of enzymatic oxidases can give rise to products in their reactions that can lead to polymerization. This polymerization can have beneficial effects because it can increase the antioxidant capacity with potential application on new functional foods or as feed ingredients. Tyrosinase, peroxidase, and laccase are the enzymes degrading these important polyphenols. The application of a spectrophotometric method for laccase and a chronometric method, for tyrosinase and peroxidase, allowed us to obtain the kinetic information of their reactions on hydroxytyrosol and oleuropein. The kinetic information obtained could advance in the understanding of the mechanism of these important industrial enzymes.
Collapse
Affiliation(s)
- Jesus Manzano-Nicolas
- Group of research Food Biotechnology-BTA, Department of Food Technology, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Amaury Taboada-Rodriguez
- Group of research Food Biotechnology-BTA, Department of Food Technology, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jose Antonio Teruel-Puche
- Group of Molecular Interactions in Membranes, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Fulgencio Marin-Iniesta
- Group of research Food Biotechnology-BTA, Department of Food Technology, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco Garcia-Molina
- GENZ-Group of research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jose Tudela-Serrano
- GENZ-Group of research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jose Munoz-Munoz
- Microbial Enzymology Group (MEG), Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
15
|
Baskaran R, Chauhan SS, Parthasarathi R, Mogili NS. In silico investigation and assessment of plausible novel tyrosinase inhibitory peptides from sesame seeds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Ko SC, Lee SH. Protocatechuic Aldehyde Inhibits α-MSH-Induced Melanogenesis in B16F10 Melanoma Cells via PKA/CREB-Associated MITF Downregulation. Int J Mol Sci 2021; 22:ijms22083861. [PMID: 33917915 PMCID: PMC8068260 DOI: 10.3390/ijms22083861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Protocatechuic aldehyde (PA) is a naturally occurring phenolic compound that is a potent inhibitor of mushroom tyrosinase. However, the molecular mechanisms of the anti-melanogenesis activity of PA have not yet been reported. The aim of the current study was to clarify the melanogenesis inhibitory effects of PA and its molecular mechanisms in murine melanoma cells (B16F10). We first predicted the 3D structure of tyrosinase and used a molecular docking algorithm to simulate binding between tyrosinase and PA. These molecular modeling studies calculated a binding energy of -527.42 kcal/mol and indicated that PA interacts with Cu400 and 401, Val283, and His263. Furthermore, PA significantly decreased α-MSH-induced intracellular tyrosinase activity and melanin content in a dose-dependent manner. PA also inhibited key melanogenic proteins such as tyrosinase, tyrosinase-related protein 1 (TRP-1), and TRP-2 in α-MSH-stimulated B16F10 cells. In addition, PA decreased MITF expression levels by inhibiting phosphorylation of cAMP response element-binding protein (CREB) and cAMP-dependent protein kinase A (PKA). These results demonstrate that PA can effectively suppress melanin synthesis in melanoma cells. Taken together, our results show that PA could serve as a potential inhibitor of melanogenesis, and hence could be explored as a possible skin-lightening agent.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering and Medical Science, Soonchunhyang University, Asan 31538, Korea
- Correspondence: ; Tel.: +82-41-530-4980; Fax: +82-41-530-3085
| |
Collapse
|
17
|
Muniraj I, Shameer S, Ramachandran P, Uthandi S. Bacillus aryabhattai TFG5-mediated synthesis of humic substances from coir pith wastes. Microb Cell Fact 2021; 20:48. [PMID: 33596930 PMCID: PMC7891170 DOI: 10.1186/s12934-021-01538-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/05/2023] Open
Abstract
Background Humic substances (HS) form the largest proportion among all the constituents of soil organic matter and are a key component of the terrestrial ecosystem. HS plays a multifunctional role in the environment by controlling the biogeochemical carbon cycle, providing nutrients and bio-stimulants for plant growth, and interacting with inorganic and organic pollutants. The rate of formation of HS in soils determines its productivity and carbon sequestration capacity. Enhancement of HS synthesis in the soil through the microbial route not only increases CO2 sequestration but also mitigates the greenhouse gas emissions in the environment. Result In this study, we attempted to understand the mechanism of formation and enhancement of HS from coir pith wastes using the tyrosinase produced by Bacillus aryabhattai TFG5. The bacterium TFG5 isolated from the termite garden produced the tyrosinase (1.34 U mL−1) and laccase (2.1 U mL−1) at 48 h and 60 h of fermentation, respectively. The extracellular tyrosinase from B. aryabhattai TFG5 was designated as TyrB. Homology modeling of TyrB revealed a structure with a predicted molecular mass of 35.23 kDa and two copper ions in the active center with its conserved residues required for the tyrosinase activity. TyrB efficiently transformed and polymerized standard phenols, such as p-cresol, p-hydroxyl benzoic acid, Levo DOPA, and 2,6 DMP, besides transforming free phenols in coir pith wash water (CWW). Additionally, UV–Vis and FT-IR spectra of the degradation products of the coir pith treated with TyrB revealed the formation of HS within 3 days of incubation. Furthermore, the E472/664 ratio of the degradation products revealed a higher degree of condensation of the aromatic carbons and the presence of more aliphatic structures in the HS. Conclusion The results confirmed the influence of TyrB for the effective synthesis of HS from coir pith wastes. The results of the present study also confirm the recently accepted theory of humification proposed by the International Humic Substances Society.
Collapse
Affiliation(s)
- Iniyakumar Muniraj
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Syed Shameer
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Priyadharshini Ramachandran
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
18
|
Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Evaluating the Performance of a Non-Bonded Cu 2+ Model Including Jahn-Teller Effect into the Binding of Tyrosinase Inhibitors. Int J Mol Sci 2020; 21:ijms21134783. [PMID: 32640730 PMCID: PMC7369908 DOI: 10.3390/ijms21134783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Tyrosinase (TYR) is a metalloenzyme classified as a type-3 copper protein, which is involved in the synthesis of melanin through a catalytic process beginning with the conversion of the amino acid l-Tyrosine (l-Tyr) to l-3,4-dihydroxyphenylalanine (l-DOPA). It plays an important role in the mechanism of melanogenesis in various organisms including mammals, plants, and fungi. Herein, we used a combination of computational molecular modeling techniques including molecular dynamic (MD) simulations and the linear interaction energy (LIE) model to evaluate the binding free energy of a set of analogs of kojic acid (KA) in complex with TYR. For the MD simulations, we used a dummy model including the description of the Jahn–Teller effect for Cu2+ ions in the active site of this enzyme. Our results show that the LIE model predicts the TYR binding affinities of the inhibitor in close agreement to experimental results. Overall, we demonstrate that the classical model provides a suitable description of the main interactions between analogs of KA and Cu2+ ions in the active site of TYR.
Collapse
|
20
|
Motwani MS, Khan K, Pai A, Joshi R. Efficacy of a collagen hydrolysate and antioxidants-containing nutraceutical on metrics of skin health in Indian women. J Cosmet Dermatol 2020; 19:3371-3382. [PMID: 32424986 DOI: 10.1111/jocd.13404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The skin's aging process involves a decreased biosynthesis of extracellular matrix proteins (predominantly collagen) compounded by damage from environmental and intrinsic stressors. The Indian population is susceptible to skin damage given its geography and increasing urbanization or a genetic disposition. Previous studies have investigated nutrients such as collagen peptides, vitamins and phytonutrient-rich botanical extracts for their individual benefits on skin. AIMS This study examined the collective effect of a proprietary blend of these nutrients (in Nutrova Collagen+Antioxidants; NCA) on skin parameters, which has not been previously studied, especially in an Indian context. PATIENTS/METHODS 34 healthy, Indian women (mean age = 39.5 years) were given a placebo daily for 30 days to establish a baseline, followed by NCA for two intervals of 30 days. 3D image reconstruction allowed the analysis of skin topography and blemishes. Instrumental measurements also included skin firmness, elasticity, hydration, and transepidermal water loss. Clinical evaluation was used to grade blemishes, wrinkles and periorbital hyperpigmentation. RESULTS Based on instrumental evaluation, NCA significantly reduced wrinkle width, open pores, skin roughness, and the colour of hyperpigmented blemishes, while improving skin hydration, firmness and barrier function from baseline to Day 30 and Day 60. NCA also increased elasticity at Day 30. Clinical evaluation showed that periorbital hyperpigmentation and wrinkles reduced significantly. CONCLUSION NCA is effective for improving overall skin health in Indian women. These results show that targeted nutrient supplementation can improve skin health and further research over extended durations is merited.
Collapse
Affiliation(s)
| | - Kaynat Khan
- Axys Nutrition Products Pvt. Ltd., Mumbai, India
| | - Akshay Pai
- Axys Nutrition Products Pvt. Ltd., Mumbai, India
| | - Rajiv Joshi
- CLAIMS Pvt. Ltd., Mumbai, India.,P. D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| |
Collapse
|
21
|
Polatoğlu İ, Karataş D. Modeling of molecular interaction between catechol and tyrosinase by DFT. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Placines C, Castañeda-Loaiza V, João Rodrigues M, G. Pereira C, Stefanucci A, Mollica A, Zengin G, Llorent-Martínez EJ, Castilho PC, Custódio L. Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. PLANTS (BASEL, SWITZERLAND) 2020; 9:E142. [PMID: 31979182 PMCID: PMC7076647 DOI: 10.3390/plants9020142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Cakile maritima Scop. (sea rocket) is an edible halophyte plant with several ethnomedicinal uses. This work reports the chemical profile and bioactivities of food grade extracts from sea rocket organs. Toxicity was determined on mammalian cells, and phenolic profiling and the quantitation of the main metabolites were made by high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Enzymatic inhibition was determined towards acetyl- and butyrylcholinesterase (AChE, BuChE), α-glucosidase, α-amylase, and tyrosinase. Docking studies were performed to tyrosinase, on the major metabolites, and samples were tested for antioxidant properties. Extracts were not toxic, were constituted mainly by flavonoids, and some compounds (roseoside and oleuropein) are here described for the first time in the species. The aerial organs' ethanol extract had relevant activity towards 2,2-diphenyl-1-picrylhydrazyl [DPPH, half maximal inhibitory concentration (IC50) = 0.59 mg/mL], and ferric-reducing activity power (FRAP, IC50 = 0.99 mg/mL). All samples were more active towards AChE than on BuChE. The ethanol fruits' extract inhibited α-glucosidase [2.19 mmol of equivalent of acarbose (ACAE)/g]. Samples were active against tyrosinase, especially the aerial organs' ethanol extracts [25.9 mg of equivalent of kojic acid (KAE)/g]. Quercetin and kaempferol glycosides fit well into the enzymatic pocket of tyrosinase. Our results suggest sea rocket as a candidate to be further explored as a source of bioactive products.
Collapse
Affiliation(s)
- Chloé Placines
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Viana Castañeda-Loaiza
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Catarina G. Pereira
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Azzurra Stefanucci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (A.M.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (A.M.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250 Konya, Turkey;
| | - Eulogio J. Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain;
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| |
Collapse
|
23
|
Gubitosa J, Rizzi V, Fini P, Del Sole R, Lopedota A, Laquintana V, Denora N, Agostiano A, Cosma P. Multifunctional green synthetized gold nanoparticles/chitosan/ellagic acid self-assembly: Antioxidant, sun filter and tyrosinase-inhibitor properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110170. [DOI: 10.1016/j.msec.2019.110170] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/02/2023]
|
24
|
Gaikwad D, Jadhav N. Development of stable emulsified formulations of Terminalia arjuna for topical application: evaluation of antioxidant activity of final product and molecular docking study. Drug Dev Ind Pharm 2019; 45:1740-1750. [DOI: 10.1080/03639045.2019.1656732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dinanath Gaikwad
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| |
Collapse
|
25
|
Karakaya G, Türe A, Ercan A, Öncül S, Aytemir MD. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg Chem 2019; 88:102950. [PMID: 31075740 DOI: 10.1016/j.bioorg.2019.102950] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
Tyrosinase inhibitors have become increasingly important as whitening agents and for the treatment of pigmentary disorders. In this study, the synthesis of kojic acid derivatives having 2-substituted-3-hydroxy-6-hyroxymethyl/chloromethyl/methyl/morpholinomethylpiperidinyl- methyl/pyrrolidinylmethyl-4H-pyran-4-one structure (compounds 1-30) with inhibitory effects on tyrosinase enzyme were described. One-pot Mannich reaction was carried out by using kojic acid/chlorokojic acid/allomaltol and substituted benzylpiperazine derivatives in presence of formaline. Subsequently, cyclic amine (morpholine, piperidine and pyrrolidine) derivatives of the 6th-position of chlorokojic acid were obtained with nucleophilic substitutions in basic medium. The structures of new compounds were identified by FT-IR, 1H- and 13C NMR, ESI-MS and elemental analysis data. The potential mushroom tyrosinase inhibitory activity of the compounds were evaluated by the spectrophotometric method using l-DOPA as a substrate and kojic acid as the control agent. The potential inhibitory activity was also investigated in silico using molecular docking simulation method. Tyrosinase inhibitory action was significantly more efficacious for several compounds (IC50: 86.2-362.1 µM) than kojic acid (IC50: 418.2). Compound 3 bearing 3,4-dichlorobenzyl piperazine moiety was proven to have the highest inhibitory activity. The results of docking studies showed that according to the predicted conformation of compound 3 in the enzyme binding site, hydroxymethyl group provides a metal complex with copper ions and enzyme. Thus, this interaction explain the high inhibitory activities of the compounds 1, 3 and 4 possessing hydroxymethyl substituent supporting the mushroom assay results with docking studies. In accordance with the results, it is suggested that Mannich bases of kojic acid bearing substituted benzyl piperazine groups (compounds 1, 3, 4, 11, 13, 14, 23, 24, 28, and 29) could be promising antityrosinase agents. Additionally, considering the relationship between tyrosinase inhibitory activity results and molecular docking, a new tyrosinase inhibition mechanism can be proposed.
Collapse
Affiliation(s)
- Gülşah Karakaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Aslı Türe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Ayşe Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Öncül
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mutlu Dilsiz Aytemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
26
|
Wagle A, Seong SH, Jung HA, Choi JS. Identifying an isoflavone from the root of Pueraria lobata as a potent tyrosinase inhibitor. Food Chem 2018; 276:383-389. [PMID: 30409609 DOI: 10.1016/j.foodchem.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023]
Abstract
Traditionally, the root of Pueraria lobata are widely used as a functional food. It was observed that a 70% ethanol extract showed a dose-dependent inhibition towards mushroom tyrosinase. Among the different isolated compounds, calycosin demonstrated potent inhibitory activity against substrates l-tyrosine and l-DOPA, with IC50 of 1.45 ± 0.03 and 7.02 ± 0.46 µM, respectively. Conversely, formononetin and daidzein exhibit weak inhibition. Moreover, kinetic studies revealed calycosin to be a competitive inhibitor for both substrates. Additionally, molecular docking simulation showed that the hydroxyl groups at C-3' and C-7 positions interacted with the catalytic site and peripheral residues, demonstrating a higher affinity toward mushroom tyrosinase. Accordingly, our results suggest that, rather than a mono-substituted hydroxyl or methoxyl group, the presence of a hydroxyl group at C-3' and a methoxyl group at C-4' position of the isoflavone skeleton plays an essential role in the manifestation of anti-browning activity in food products.
Collapse
Affiliation(s)
- Aditi Wagle
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
27
|
Chatatikun M, Yamauchi T, Yamasaki K, Aiba S, Chiabchalard A. Anti melanogenic effect of Croton roxburghii and Croton sublyratus leaves in α-MSH stimulated B16F10 cells. J Tradit Complement Med 2018; 9:66-72. [PMID: 30671368 PMCID: PMC6335448 DOI: 10.1016/j.jtcme.2017.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/07/2023] Open
Abstract
Croton roxburghii and Croton sublyratus have been used as skin treatments in traditional medicine. The objective of the present study was to investigate the antimelanogenic effect of ethanol extracts of Croton roxburghii (CRE) and Croton sublyratus (CSE) leaves on cellular melanin content and cellular tyrosinase activity as mediated by the action of microthalmia transcription factor (MITF) and melanogenic enzymes. Croton roxburghii and Croton sublyratus leaves were extracted by petroleum ether, dichloromethane and absolute ethanol, sequentially. The ethanolic crude extracts were examined for antimelanogenic activity by their ability to decrease melanin content and cellular tyrosinase activity in alpha-melanocyte-stimulating hormone-stimulated B16F10 melanoma cells. In addition, the extracts were evaluated to determine a plausible mechanism of melanogenesis suppression through determining the activation of MITF transcription factor and melanogenic proteins (tyrosinase, tyrosinase-related protein 1 or TRP-1 and tyrosinase-related protein 2 or TRP-2) at the transcriptional and translation levels in α-MSH-induced B16F10 cells. Upon treatment with CRE and CSE, the cells showed significant decreases in melanin content and cellular tyrosinase activity. CRE and CSE also suppressed MITF, tyrosinase, TRP-1 and TRP-2 at the transcription and translation levels in α-MSH-stimulated melanin biosynthesis in B16F10 cells. Our finding shows that CRE and CSE inhibit melanin content and cellular tyrosinase activity through suppressing MITF and melanogenic enzymes. CRE and CSE may be useful to combine with skin whitening agents for cosmetic uses.
Collapse
Affiliation(s)
- Moragot Chatatikun
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Anchalee Chiabchalard
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, Saura-Sanmartin A, Berna J, Garcia-Canovas F, Rodriguez-Lopez JN. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase. PLoS One 2017; 12:e0187845. [PMID: 29136639 PMCID: PMC5685642 DOI: 10.1371/journal.pone.0187845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022] Open
Abstract
Deoxyarbutin, a potent inhibitor of tyrosinase, could act as substrate of the enzyme. Oxytyrosinase is able to hydroxylate deoxyarbutin and finishes the catalytic cycle by oxidizing the formed o-diphenol to quinone, while the enzyme becomes deoxytyrosinase, which evolves to oxytyrosinase in the presence of oxygen. This compound is the only one described that does not release o-diphenol after the hydroxylation step. Oxytyrosinase hydroxylates the deoxyarbutin in ortho position of the phenolic hydroxyl group by means of an aromatic electrophilic substitution. As the oxygen orbitals and the copper atoms are not coplanar, but in axial/equatorial position, the concerted oxidation/reduction cannot occur and the release of a copper atom to bind again in coplanar position, enabling the oxidation/reduction or release of the o-diphenol from the active site to the medium. In the case of deoxyarbutin, the o-diphenol formed is repulsed by the water due to its hydrophobicity, and so can bind correctly and be oxidized to a quinone before being released. Deoxyarbutin has been characterized with: [Formula: see text] = 1.95 ± 0.06 s-1 and [Formula: see text] = 33 ± 4 μM. Computational simulations of the interaction of β-arbutin, deoxyarbutin and their o-diphenol products with tyrosinase show how these ligands bind at the copper centre of tyrosinase. The presence of an energy barrier in the release of the o-diphenol product of deoxyarbutin, which is not present in the case of β-arbutin, together with the differences in polarity and, consequently differences in their interaction with water help understand the differences in the kinetic behaviour of both compounds. Therefore, it is proposed that the release of the o-diphenol product of deoxyarbutin from the active site might be slower than in the case of β-arbutin, contributing to its oxidation to a quinone before being released from the protein into the water phase.
Collapse
Affiliation(s)
- Antonio Garcia-Jimenez
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Antonio Teruel-Puche
- Group of Molecular Interactions in Membranes, Department of Biochemistry and Molecular Biology-A, University of Murcia, Espinardo, Murcia, Spain
| | - Pedro Antonio Garcia-Ruiz
- Group of Chemistry of Carbohydrates, Industrial Polymers and Additives, Department of Organic Chemistry, Faculty of Veterinary, University of Murcia, Espinardo, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Group of Synthetic Organic Chemistry, Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Espinardo, Murcia, Spain
| | - Jose Berna
- Group of Synthetic Organic Chemistry, Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
- * E-mail:
| | - José Neptuno Rodriguez-Lopez
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| |
Collapse
|
29
|
da Silva AP, Silva NDF, Andrade EHA, Gratieri T, Setzer WN, Maia JGS, da Silva JKR. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS One 2017; 12:e0175598. [PMID: 28459864 PMCID: PMC5411033 DOI: 10.1371/journal.pone.0175598] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
The essential oils (EOs) of the aerial parts of Lippia origanoides (LiOr), collected in different localities of the Amazon region, were obtained by hydrodistillation and analyzed by GC and CG-MS. Principle component analysis (PCA) based on chemical composition grouped the oils in four chemotypes rich in mono- and sesquiterpenoids. Group I was characterized by 1,8-cineole and α-terpineol (LiOr-1 and LiOr-4) and group II by thymol (LiOr-2). The oil LiOr-3 showed β-caryophyllene, α-phellandrene and β-phellandrene as predominant and LiOr-5 was rich in (E)-nerolidol and β-caryophyllene. All samples were evaluated for antioxidant activity and inhibition of tyrosinase in vitro and in silico. The highest antioxidant activity by the DPPH free radical method was observed in LiOr-2 and LiOr-5 oils (132.1 and 82.7 mg TE∙mL-1, respectively). The tyrosinase inhibition potential was performed using L-tyrosine and L-DOPA as substrates and all samples were more effective in the first step of oxidation. The inhibition by samples LiOr-2 and LiOr-4 were 84.7% and 62.6%, respectively. The samples LiOr-1, LiOr-4 and LiOr-5 displayed an interaction with copper (II) ion with bathochromic shift around 15 nm. In order to elucidate the mechanism of inhibition of the main compounds, a molecular docking study was carried out. All compounds displayed an interaction between an oxygen and Cu or histidine residues with distances less than 4 Å. The best docking energies were observed with thymol and (E)-nerolidol (-79.8 kcal.mol-1), which suggested H-bonding interactions with Met281 and His263 (thymol) and His259, His263 ((E)-nerolidol).
Collapse
Affiliation(s)
- Alessandra P. da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Natália de F. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Tais Gratieri
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, United States of America
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| |
Collapse
|
30
|
Kim DC, Kim S, Hwang KS, Kim CH. p-Coumaric Acid Potently Down-regulates Zebrafish Embryo Pigmentation: Comparison ofin vivoAssay and Computational Molecular Modeling with Phenylthiourea. ACTA ACUST UNITED AC 2017. [DOI: 10.15616/bsl.2017.23.1.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dong-Chan Kim
- Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon 39528, Korea
| | - Seonlin Kim
- Department of Novel Drug Design Laboratory, Neuronex, Goryeong 40152, Korea
| | - Kyu-Seok Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
31
|
Application of computational methods for anticancer drug discovery, design, and optimization. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:411-423. [PMID: 29421286 PMCID: PMC7110968 DOI: 10.1016/j.bmhimx.2016.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/17/2016] [Indexed: 02/05/2023] Open
Abstract
Developing a novel drug is a complex, risky, expensive and time-consuming venture. It is estimated that the conventional drug discovery process ending with a new medicine ready for the market can take up to 15 years and more than a billion USD. Fortunately, this scenario has recently changed with the arrival of new approaches. Many novel technologies and methodologies have been developed to increase the efficiency of the drug discovery process, and computational methodologies have become a crucial component of many drug discovery programs. From hit identification to lead optimization, techniques such as ligand- or structure-based virtual screening are widely used in many discovery efforts. It is the case for designing potential anticancer drugs and drug candidates, where these computational approaches have had a major impact over the years and have provided fruitful insights into the field of cancer. In this paper, we review the concept of rational design presenting some of the most representative examples of molecules identified by means of it. Key principles are illustrated through case studies including specifically successful achievements in the field of anticancer drug design to demonstrate that research advances, with the aid of in silico drug design, have the potential to create novel anticancer drugs.
Collapse
|
32
|
Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. Application of computational methods for anticancer drug discovery, design, and optimization. ACTA ACUST UNITED AC 2016. [PMCID: PMC7154613 DOI: 10.1016/j.bmhime.2017.11.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing a novel drug is a complex, risky, expensive and time-consuming venture. It is estimated that the conventional drug discovery process ending with a new medicine ready for the market can take up to 15 years and more than a billion USD. Fortunately, this scenario has recently changed with the arrival of new approaches. Many novel technologies and methodologies have been developed to increase the efficiency of the drug discovery process, and computational methodologies have become a crucial component of many drug discovery programs. From hit identification to lead optimization, techniques such as ligand- or structure-based virtual screening are widely used in many discovery efforts. It is the case for designing potential anticancer drugs and drug candidates, where these computational approaches have had a major impact over the years and have provided fruitful insights into the field of cancer. In this paper, we review the concept of rational design presenting some of the most representative examples of molecules identified by means of it. Key principles are illustrated through case studies including specifically successful achievements in the field of anticancer drug design to demonstrate that research advances, with the aid of in silico drug design, have the potential to create novel anticancer drugs.
Collapse
Affiliation(s)
- Diego Prada-Gracia
- Department of Pharmacological Sciences, Icahn Medical Institute Building, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sara Huerta-Yépez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Liliana M. Moreno-Vargas
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Corresponding author.
| |
Collapse
|