1
|
Li D, Ye ZD, Li MX, Luo YY, Zhou CK, Mei QH, Xia CL, Huang S, Su JY. Maslinic Acid Ameliorates DSS-Induced Experimental Colitis by Suppressing Th Cell-Mediated Inflammation via AICD Induction. Phytother Res 2025. [PMID: 40242940 DOI: 10.1002/ptr.8479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/18/2025]
Abstract
Ulcerative colitis (UC) is a nonspecific chronic inflammatory disease that occurs in the gastrointestinal tract and is characterized by the breakdown of mucosal immunity. T helper (Th) cells paradigm disequilibrium is a critical for pathogenesis. Maslinic acid (MA), a naturally occurring pentacyclic triterpene isolated from olive pomace and Fructus crataegi, has a variety of applications in both medicine and food. This study investigated the molecular mechanism of the anti-inflammatory potential of MA in a colitis model and activated Th cells. A dextran sulfate sodium-induced experimental colitis model was established. Clinical symptoms were evaluated, and biological samples were collected to examine intestinal mucosal function, inflammation levels, and Th cell-mediated immune responses. The mechanism of the activation-induced cell death (AICD) effect regulated by MA was investigated in the anti-CD3ε/CD28-stimulated Th cell activation model using molecular biotechnology and transcriptome analysis. Key results:MA treatment protected intestinal mucosa, which manifested as reduced inflammatory cytokines, Th cell infiltration, and subset differentiation. Additionally, it was found to suppress Th cell proliferation and differentiation of subsets, regulate cell cycle distribution, and promote AICD by regulating the mitochondria-mediated intrinsic pathway in vitro. JAK-STAT and FcεRI pathways were probable essential pathways, and MAF might be a crucial potential targeting molecule in activated Th cells with MA treatment. This finding demonstrated that MA induced remission of the colitis-related inflammation, which may depend on the resolution of acute inflammation by reducing Th cell-mediated inflammation via AICD induction, emphasizing its promising potential in the treatment of UC.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhan-Dong Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Mu-Xia Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Ying-Yi Luo
- Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Can-Kun Zhou
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, People's Republic of China
| | - Qing-Hua Mei
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Cheng-Lai Xia
- Foshan Maternity & Child Healthcare Hospital, Foshan, People's Republic of China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ji-Yan Su
- Foshan Maternity & Child Healthcare Hospital, Foshan, People's Republic of China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Wang R, Yu H, Li A, Wang T, Wang Q, Qi H, Wang C, Zhang J. Maslinic acid prevented lipopolysaccharide-induced injury of IPEC-J2 cells through regulating PTEN-FAK signaling pathway. J Cell Physiol 2024; 239:e31446. [PMID: 39311471 DOI: 10.1002/jcp.31446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 12/18/2024]
Abstract
Intestinal epithelial injury is one of the typical symptoms associated with intestinal inflammation and diarrhea, and the repair of the intestinal epithelium intricately linked to cell migration. Here, we test the hypothesis that maslinic acid (MA) regulates porcine intestinal epithelial cell migration by inhibiting focal adhesion kinase (FAK)/AKT signaling pathway. In this experiment, the optimal concentration of MA (0.5 μg/mL) on IPEC-J2 cell viability was selected to investigate the effect under low-dose lipopolysaccharide (LPS) (1 μg/mL) conditions. Transcriptome sequencing and polymerase chain reaction array results revealed that MA could alleviate LPS-induced the gene expressions decreasing in focal adhesion signaling pathway. From the pathway map analysis and western blot analysis results, MA alleviated the LPS-induced decrease in FAK protein expression mainly by promoting FAK protein phosphorylation, which in turn alleviated the decrease in cell migration and formation of cytoskeleton protein Vinculin and F-actin, the above results were verified by FAK phosphorylation inhibitors Defactinib. The molecular docking and immunoprecipitation further verified that MA could bind to PTEN protein and significantly inhibit its interaction with FAK protein, blocking the function of PTEN to inhibit FAK phosphorylation finally shown to promote the level of FAK phosphorylation, meanwhile LPS inhibited FAK protein expression and its binding to PKC and PTEN proteins. Our study revealed the role of MA and LPS in FAK protein, and increased understanding of MA anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ting Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Qiyuan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Huiyu Qi
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jing Zhang
- College of Animal Sciences, Jilin University, Changchun, China
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
3
|
Sharma R, Banerjee S, Sharma R. Role of Mandukparni (Centella asiatica Linn Urban) in neurological disorders: Evidence from ethnopharmacology and clinical studies to network enrichment analysis. Neurochem Int 2024; 180:105865. [PMID: 39307460 DOI: 10.1016/j.neuint.2024.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Centella asiatica Linn Urban (C. asiatica), aka Mandukparni, is one of the flagship herbs used in traditional medicines to effectively manage neurological problems. Although this plant has a wealth of comprehensive preclinical pharmacological profiles, further clinical research and execution of its molecular mode of action are still required. We searched electronic databases (Google Scholar, SciFinder, MEDLINE, Scopus, EMBASE, Science Direct, and PubMed) using relevant key words to retrieve information pertaining to C. asiatica till June 2023 and performed network pharmacology to understand the mechanism related to their neurobiological roles. This study extensively analyses its pharmacological properties, nutritional profile, ethnomedical uses, safety, and mechanistic role in treating neurological and neurodegenerative disorders. Additionally, a network pharmacology study was performed which suggests that its phytomolecules are involved in different neuroactive ligand-receptor pathways, glial cell differentiation, gliogenesis, and astrocyte differentiation. Hopefully, this report will lead to a paradigm shift in medical practice, research, and the creation of phytopharmaceuticals derived from C. asiatica that target the central nervous system.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Subhadip Banerjee
- Medicinal Plant Innovation Centre, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Ramos-Barbero M, Pérez-Jiménez A, Serrano-Carmona S, Mokhtari K, Lupiáñez JA, Rufino-Palomares EE. The Efficacy of Intratissue Percutaneous Electrolysis (EPI ®) and Nutritional Factors for the Treatment of Induced Tendinopathy in Wistar Rats: Hepatic Intermediary Metabolism Effects. Int J Mol Sci 2024; 25:7315. [PMID: 39000426 PMCID: PMC11242821 DOI: 10.3390/ijms25137315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Achilles tendinopathy (TP) is characterized as the third most common disease of the musculoskeletal system, and occurs in three phases. There is currently no evidence of effective treatment for this medical condition. In this study, the modulatory effects of the minimally invasive technique intratissue percutaneous electrolysis (EPI) and combinations of EPI with four nutritional factors included in the diet, hydroxytyrosol (HT), maslinic acid (MA), glycine, and aspartate (AA), on hepatic intermediary metabolism was examined in Wistar rats with induced tendinopathy at various stages of TP. Results obtained showed that induced tendinopathy produced alterations in the liver intermediary metabolisms of the rats. Regarding carbohydrate metabolism, a reduction in the activity of pro-inflammatory enzymes in the later stages of TP was observed following treatment with EPI alone. Among the combined treatments using nutritional factors with EPI, HT+EPI and AA+EPI had the greatest effect on reducing inflammation in the late stages of TP. In terms of lipid metabolism, the HT+EPI and AA+EPI groups showed a decrease in lipogenesis. In protein metabolism, the HT+EPI group more effectively reduced the inflammatory effects of induced TP. Treatment with EPI combined with nutritional factors might help regulate intermediary metabolism in TP disease and reduce the inflammation process.
Collapse
Affiliation(s)
- Marta Ramos-Barbero
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Science, University of Granada, 18071 Granada, Spain
| | | | - Khalida Mokhtari
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Ramos-Barbero M, Rufino-Palomares EE, Serrano-Carmona S, Hernández-Yera M, García-Salguero L, Lupiáñez JA, Pérez-Jiménez A. Effect of Nutraceutical Factors on Hepatic Intermediary Metabolism in Wistar Rats with Induced Tendinopathy. Int J Mol Sci 2024; 25:629. [PMID: 38203800 PMCID: PMC10779845 DOI: 10.3390/ijms25010629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Tendinopathy (TP) is a complex clinical syndrome characterized by local inflammation, pain in the affected area, and loss of performance, preceded by tendon injury. The disease develops in three phases: Inflammatory phase, proliferative phase, and remodeling phase. There are currently no proven treatments for early reversal of this type of injury. However, the metabolic pathways of the transition metabolism, which are necessary for the proper functioning of the organism, are known. These metabolic pathways can be modified by a number of external factors, such as nutritional supplements. In this study, the modulatory effect of four dietary supplements, maslinic acid (MA), hydroxytyrosol (HT), glycine, and aspartate (AA), on hepatic intermediary metabolism was observed in Wistar rats with induced tendinopathy at different stages of the disease. Induced tendinopathy in rats produces alterations in the liver intermediary metabolism. Nutraceutical treatments modify the intermediary metabolism in the different phases of tendinopathy, so AA treatment produced a decrease in carbohydrate metabolism. In lipid metabolism, MA and AA caused a decrease in lipogenesis at the tendinopathy and increased fatty acid oxidation. In protein metabolism, MA treatment increased GDH and AST activity; HT decreased ALT activity; and the AA treatment does not cause any alteration. Use of nutritional supplements of diet could help to regulate the intermediary metabolism in the TP.
Collapse
Affiliation(s)
- Marta Ramos-Barbero
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | | | - Manuel Hernández-Yera
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Cheng Y, Xia Q, Lu Z, Luan X, Fan L, Wang Z, Luo D. Maslinic acid attenuates UVB-induced oxidative damage in HFF-1 cells. J Cosmet Dermatol 2023. [PMID: 36943873 DOI: 10.1111/jocd.15730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Oxidative damage is one of the major mechanisms of ultraviolet B (UVB)-induced damage to the skin. Maslinic acid (MA) is a natural compound of pentacyclic triterpene acids. It has been proved to have anti-inflammatory and antioxidant properties. OBJECTIVE This study aimed to explore the effects of MA on oxidative damage in human foreskin fibroblast cells (HFF-1) and the potential molecular mechanisms. METHODS A specific dose of UVB radiation was used to induce oxidative damage in HFF-1. Based on this, we performed measurements of cell proliferation, reactive oxygen species (ROS) levels, antioxidant enzyme activity, inflammation-related mediators, and NF-κB nuclear localization with or without the addition of MA. RESULTS MA significantly promoted cell proliferation viability at 10 and 20 μM. The addition of MA 24 h before UVB irradiation was more effective at enhancing cell proliferation and also produced lower ROS levels compared to co-cultured fibroblasts and MA for 24 h after irradiation. However, there was no statistically significant difference between groups at concentrations of 10 and 20 μM. The pretreatment group with MA had elevated superoxide dismutase and catalase activities, decreased IL-6 generation, and lowered mRNA levels of IL-6, TNF-α and MMP3 in comparison with the UVB-irradiated group without additional MA. Meanwhile, the nuclear translocation of NF-κB and the degradation of IκB were inhibited by MA pretreatment. CONCLUSION Taken together, these findings suggest that MA may alleviate UVB-induced oxidative damage in HFF-1 by inhibiting the nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Yuxin Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qingyue Xia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiyu Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xingbao Luan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lipan Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhaopeng Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
7
|
Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154631. [PMID: 36621168 DOI: 10.1016/j.phymed.2022.154631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.
Collapse
Affiliation(s)
- Kai Xin Ooi
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Chin Long Poo
- Herbal Medicine Research Centre, Institute for Medical Research, Setia Alam, 40170, Selangor, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia; Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
8
|
Behl T, Rana T, Sehgal A, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Sachdeva M. Phytochemicals targeting nitric oxide signaling in neurodegenerative diseases. Nitric Oxide 2023; 130:1-11. [PMID: 36375788 DOI: 10.1016/j.niox.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Neurodegenerative diseases are a set of diseases in which slow and progressive neuronal loss occurs. Nitric oxide (NO) as a neurotransmitter performs key roles in the stimulation and blockade of various inflammatory processes. Although physiological NO is necessary for protection against a variety of pathogens, reactive oxygen species-mediated oxidative stress induces inflammatory cascades and apoptosis. Activation of glial cells particularly astrocytes and microglia induce overproduction of NO, resulting in neuroinflammation and neurodegenerative disorders. Hence, inhibiting the overproduction of NO is a beneficial therapeutic approach for numerous neuroinflammatory conditions. Several compounds have been explored for the management of neurodegenerative disorders, but they have minor symptomatic benefits and several adverse effects. Phytochemicals have currently gained more consideration owing to their ability to reduce the overproduction of NO in neurodegenerative disorders. Furthermore, phytochemicals are generally considered to be safe and beneficial. The mechanisms of NO generation and their implications in neurodegenerative disorders are explored in this review article, as well as several newly discovered phytochemicals that might have NO inhibitory activity. The current review could aid in the discovery of new anti-neuroinflammatory drugs that can suppress NO generation, particularly during neuroinflammatory and neurodegenerative conditions.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Monika Sachdeva
- Fatima College of Health Science, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
10
|
Banerjee J, Hasan SN, Samanta S, Giri B, Bag BG, Dash SK. Self-Assembled Maslinic Acid Attenuates Doxorobucin Induced Cytotoxicity via Nrf2 Signaling Pathway: An In Vitro and In Silico Study in Human Healthy Cells. Cell Biochem Biophys 2022; 80:563-578. [PMID: 35849306 DOI: 10.1007/s12013-022-01083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
The clinical applications of some well-known chemotherapeutic drugs for cancer treatment have been restricted nowadays owing to their adverse effects on many physiological systems. In this experimental study, maslinic acid (MA) isolated from Olea europaea (Olive) fruit extract was used to mitigate the cytotoxicity induced by Doxorubicin (DOX) in human healthy peripheral blood mononuclear cells (hPBMCs). Self-assembled maslinic acid (SA-MA) was obtained in ethanol-water mixture (35.5 mM: 4:1 v/v). The morphology of SA-MA was analyzed by various physicochemical characterization techniques, which revealed its micro-metric vesicular architecture as well as nano-vesicular appearances. In this study, treatment of hPBMCs with DOX has been found to generate severe intracellular oxidative stress, which was significantly mitigated after pre-treatment with SA-MA. Alteration of hPBMC morphologies after DOX treatment was also restored notably by pre-treatment with SA-MA. Furthermore, pentoxifylline (TNF-α inhibitor) and indomethacin (COX-2 inhibitor) were used to investigate the responsible pathway by which SA-MA protected hPBMCs from DOX-induced cellular stress. Restoration of hPBMC viability above 92% in both cases confirmed that SA-MA protected the cells by inhibiting inflammatory pathways generated by DOX treatment. Subsequently, in molecular docking study, it was also evaluated that MA could successfully bind with the pocket region of Keap1, while Nrf2 was capable of upregulating cytoprotecting genes.
Collapse
Affiliation(s)
- Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Sk Nurul Hasan
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India.
| |
Collapse
|
11
|
Fang M, Deng J, Zhou Q, Hu Z, Yang L. Maslinic acid protects against pressure-overload-induced cardiac hypertrophy by blocking METTL3-mediated m 6A methylation. Aging (Albany NY) 2022; 14:2548-2557. [PMID: 35347085 PMCID: PMC9004583 DOI: 10.18632/aging.203860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022]
Abstract
Coordinated response of the heart to physiological stressors (including stress overload, ischemia, hypothyroidism, and metabolic signals) is a hallmark of heart disease. However, effective treatment and its molecular targets are unknown. Although Maslinic Acid (MA) has been shown to inhibit inflammatory responses with strong anti-tumor, anti-bacterial, and antioxidant effects, information on its role and underlying mechanism in cardiac hypertrophy are scanty. The present study revealed that 10-103 μg/ml MA treatment significantly inhibited Ang-II induced hypertrophy in NMCMs and the dosage did not influence the cell viability of H9C2 and NCMCs. Moreover, the anti-hypertrophy effect of MA (30 mg/kg·day) was verified in the TAC-induced hypertrophy mouse model in vivo. Further analysis showed that MA administration decreased the total RNA m6A methylation and METTL3 levels in Ang-II treated NMCMs and TAC stressed hearts. Rescue experiments under adenovirus-mediated myocardial METTL3 overexpression confirmed that METTL3-mediated m6A methylation is essential in M-driven inhibition of myocardial hypertrophy. Collectively, MA exerts a significant anti-hypertrophy effect by regulating the modification of METTL3-mediated m6A methylation in vitro and in vivo. These findings may provide a platform for establishing a new target and strategy for cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Ming Fang
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Deng
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiangping Zhou
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengbang Hu
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lixia Yang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Maslinic Acid Protects against Streptozotocin-Induced Diabetic Retinopathy by Activating Nrf2 and Suppressing NF-κB. J Ophthalmol 2022; 2022:3044202. [PMID: 35265366 PMCID: PMC8901311 DOI: 10.1155/2022/3044202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
This study tested the protective effect of maslinic acid (MA) against diabetic retinopathy (DR) in rats with type 1 diabetes mellitus (T1DM) and investigated possible mechanisms of action. DM was introduced by streptozotocin (STZ) (65 mg/kg, i.p.). Control and STZ (T1DM) were divided into 2 subgroups, which received either the vehicle or MA (80 mg/kg). Serum, pancreases, and retinas were collected for further use. MA significantly reduced fasting glucose levels in the control and T1DM rats but enhanced fasting insulin levels and partially increased the size of the islets of Langerhans and the number of β-cells in T1DM rats. In addition, MA significantly improved the retina structure by preventing the reduction in the area between the inner and outer limiting membranes (ILM and OLM, respectively) and increasing the number of cells forming the ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer (ONL). Associated with these effects, MA significantly reduced the total levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), as well as the nuclear levels of NF-κB p65, mRNA levels of Bax, and protein levels of cleaved caspase-3 in the retinas of T1DM rats. However, MA significantly lowered levels of reactive oxygen species (ROS) and malondialdehyde (MDA) but significantly increased the nuclear levels of Nrf2, protein levels of Bcl2, and total levels of superoxide dismutase (SOD) and reduced glutathione (GSH) in the retinas of the control and T1DM rats. In conclusion, MA prevents DR by antioxidant potential mediated by the activation of Nrf2.
Collapse
|
13
|
Gao H, Wu H. Maslinic acid activates renal AMPK/SIRT1 signaling pathway and protects against diabetic nephropathy in mice. BMC Endocr Disord 2022; 22:25. [PMID: 35042497 PMCID: PMC8767743 DOI: 10.1186/s12902-022-00935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetic nephropathy has been a devastating complication. Clinically, there is an urgent need for nephroprotective agents to delay the onset of diabetic nephropathy and ameliorate its symptoms. Maslinic acid is a pentacyclic triterpene acid with protective effect on multiple organs against oxidative stress and inflammation. In this research, we hypothesized that maslinic acid protects renal function against diabetic nephropathy. METHODS C57BL/6 J male mice administrated with 50 mg/kg of Streptozocin (STZ) daily were used to establish diabetic mouse model (blood glucose levels > 300 mg/dL). Urinary levels of albumin, total proteins, and creatinine were analyzed by an automatic analyzer. H&E staining was used to evaluate renal damage. qRT-PCR and ELISA were performed to investigate the inflammation and oxidative stress in renal tissues. Western blot was used to assess the activation of AMPK signaling. RESULTS Maslinic acid treatment alleviated the loss of body weight and blood glucose in diabetic mice. Renal structure and function were protected by maslinic acid in diabetic mice. 20 mg/kg maslinic acid treatment for 8 weeks significantly alleviated the oxidative stress and inflammation in the kidney of diabetic rats. Maslinic acid treatment activated the renal AMPK/SIRT1 signaling pathway. CONCLUSION Maslinic acid ameliorates diabetic nephropathy and activates the renal AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Huijuan Gao
- Department of endocrinology, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Daqing, 163001, Heilongjiang Province, China
| | - Hong Wu
- Department of endocrinology, Daqing Longnan Hospital, Aiguo Road No. 35, Daqing, 163453, Heilongjiang Province, China.
| |
Collapse
|
14
|
Antão AR, Bangay G, Domínguez-Martín EM, Díaz-Lanza AM, Ríjo P. Plectranthus ecklonii Benth: A Comprehensive Review Into its Phytochemistry and Exerted Biological Activities. Front Pharmacol 2021; 12:768268. [PMID: 34916943 PMCID: PMC8670309 DOI: 10.3389/fphar.2021.768268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Ethnopharmacological Relevance: Plectranthus genus (Lamiaceae family) contain several species with acknowledged ethnopharmacological uses, such as, for gastrointestinal and respiratory-related problems, due to their anti-inflammatory, antibacterial and antifungal properties. The bioactivity of isolated medicinal compounds from this genus justifies the increased interest in recent times for species of Plectranthus, placing them in the spotlight for natural product drug development. Aim of the study: To the best of our knowledge, this is the first review on the biological activities of Plectranthus ecklonii Benth. As such, the aim of this review was three-fold: 1) to summarize the chemical compounds isolated from P. ecklonii; 2) to collate the biological activities and mechanisms of action of these compounds from in vitro studies; and 3) to evaluate the documented uses and potential applications of this species, in order to postulate on the direction of pharmaceutical uses of this species. Materials and methods: An extensive database retrieval was performed using the electronic databases Web of Science, PubMed, Google Scholar and ScienceDirect. The search criteria consisted of the keywords "Plectranthus ecklonii", "Plectranthus ecklonii + review", "Plectranthus ecklonii + diterpenes" or "Plectranthus ecklonii + abietanes", "ecklonii + parviflorone D", searched individually and as combinations. Eligibility criteria were set out and titles in English, Portuguese and Spanish were reviewed, with all references included dating from 1970 to 2021. A total of 169 papers were selected and included. Chemical structures were drawn using ChemDraw 20.0, CID numbers were searched in PubChem and the PRISMA diagram was created using PowerPoint 2012. Results: To date, a total of 28 compounds have been isolated from P. ecklonii, including diterpenes, triterpenes, flavonoids, and hydroxycinnamic acids. Most focused on the antimicrobial action of its constituents, although compounds have demonstrated other bioactivities, namely antioxidant, anti-inflammatory and antitumor. The most recent studies emphasize the diterpenoids, particularly parviflorone D, with the help of nanotechnology. Conclusions: The widespread ethnobotanical and traditional uses of P. ecklonii can be scientifically justified by a range of biological activities, demonstrated by isolated secondary metabolites. These bioactivities showcase the potential of this species in the development of economically important active pharmaceutical ingredients, particularly in anticancer therapy.
Collapse
Affiliation(s)
- Ana Ribeirinha Antão
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Gabrielle Bangay
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Eva María Domínguez-Martín
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Ana María Díaz-Lanza
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Patrícia Ríjo
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
15
|
Deng J, Wang H, Mu X, He X, Zhao F, Meng Q. Advances in Research on the Preparation and Biological Activity of Maslinic Acid. Mini Rev Med Chem 2021; 21:79-89. [PMID: 32703128 DOI: 10.2174/1389557520666200722134208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/26/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Maslinic acid, a pentacyclic triterpene acid, is mainly isolated from olives. Maslinic acid and its derivatives exhibit a broad range of biological properties, such as anti-inflammatory, anticancer, anti-diabetic, antimicrobial, neuroprotective and hepatoprotective activities. In this minireview, the progress of research on maslinic acid with regard to its bioactivities, extraction, semisynthetic preparation and patents is reported. The relationships between the structure and the activity of maslinic acid and its derivatives are also discussed.
Collapse
Affiliation(s)
- Jianqiang Deng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Xiaodong Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Xiuting He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| |
Collapse
|
16
|
Ooi BK, Phang SW, Yong PVC, Chellappan DK, Dua K, Khaw KY, Goh BH, Pusparajah P, Yap WH. In vitro evaluation of the involvement of Nrf2 in maslinic acid-mediated anti-inflammatory effects in atheroma pathogenesis. Life Sci 2021; 278:119658. [PMID: 34048809 DOI: 10.1016/j.lfs.2021.119658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
AIMS Maslinic acid (MA) is a naturally occurring pentacyclic triterpene known to exert cardioprotective effects. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) for MA-mediated anti-inflammatory effects in atheroma pathogenesis in vitro, including evaluation of tumor necrosis factor-alpha (TNF-α)-induced monocyte recruitment, oxidized low-density lipoprotein (oxLDL)-induced scavenger receptors expression, and nuclear factor-kappa B (NF-ĸB) activity in human umbilical vein endothelial cells (HUVECS) and human acute monocytic leukemia cell line (THP-1) macrophages. MATERIALS AND METHODS An in vitro monocyte recruitment model utilizing THP-1 and HUVECs was developed to evaluate TNF-α-induced monocyte adhesion and trans-endothelial migration. To study the role of Nrf2 for MA-mediated anti-inflammatory effects, Nrf2 inhibitor ML385 was used as the pharmacological inhibitor. The expression of Nrf2, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 36 (CD36), and scavenger receptor type A (SR-A) in HUVECs and THP-1 macrophages were investigated using RT-qPCR and Western blotting. The NF-κB activity was determined using NF-κB (p65) Transcription Factor Assay Kit. KEY FINDINGS The results showed opposing effects of MA on Nrf2 expression in HUVECs and THP-1 macrophages. MA suppressed TNF-α-induced Nrf2 expression in HUVECs, but enhanced its expression in THP-1 macrophages. Combined effects of MA and ML385 suppressed MCP-1, VCAM-1, and SR-A expressions. Intriguingly, at the protein level, ML385 selectively inhibited SR-A but enhanced CD36 expression. Meanwhile, ML385 further enhanced MA-mediated inhibition of NF-κB activity in HUVECs. This effect, however, was not observed in THP-1 macrophages. SIGNIFICANCE MA attenuated foam cell formation by suppressing VCAM-1, MCP-1, and SR-A expression, as well as NF-κB activity, possibly through Nrf2 inhibition. The involvement of Nrf2 for MA-mediated anti-inflammatory effects however differs between HUVECs and macrophages. Future investigations are warranted for a detailed evaluation of the contributing roles of Nrf2 in foam cells formation.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Su Wen Phang
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia.
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
17
|
Subedi L, Gaire BP, Kim SY, Parveen A. Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy. Int J Mol Sci 2021; 22:ijms22094771. [PMID: 33946349 PMCID: PMC8124914 DOI: 10.3390/ijms22094771] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.
Collapse
|
18
|
In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput Biol Med 2020; 124:103936. [PMID: 32738628 PMCID: PMC7386496 DOI: 10.1016/j.compbiomed.2020.103936] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/25/2023]
Abstract
Virtual screening of phytochemicals was performed through molecular docking, simulations, in silico ADMET and drug-likeness prediction to identify the potential hits that can inhibit the effects of SARS-CoV-2. Considering the published literature on medicinal importance, 154 phytochemicals with analogous structure from limonoids and triterpenoids were selected to search potential inhibitors for the five therapeutic protein targets of SARS-CoV-2, i.e., 3CLpro (main protease), PLpro (papain-like protease), SGp-RBD (spike glycoprotein-receptor binding domain), RdRp (RNA dependent RNA polymerase) and ACE2 (angiotensin-converting enzyme 2). The in silico computational results revealed that the phytochemicals such as glycyrrhizic acid, limonin, 7-deacetyl-7-benzoylgedunin, maslinic acid, corosolic acid, obacunone and ursolic acid were found to be effective against the target proteins of SARS-CoV-2. The protein-ligand interaction study revealed that these phytochemicals bind with the amino acid residues at the active site of the target proteins. Therefore, the core structure of these potential hits can be used for further lead optimization to design drugs for SARS-CoV-2. Also, the medicinal plants containing these phytochemicals like licorice, neem, tulsi, citrus and olives can be used to formulate suitable therapeutic approaches in traditional medicines. 154 limonoids and triterpenoids were screened computationally to search potential inhibitors for COVID-19. Phytochemicals were screened by molecular docking, in silico ADMET and drug-likeness prediction. Docking studies of phytochemicals were performed with five therapeutic protein targets of SARS-CoV-2. 7 potential phytochemicals were proposed as potential hits against the SARS-CoV-2. Proposed phytochemicals are found mainly in neem, tulsi, citrus, licorice and olives.
Collapse
|
19
|
Maslinic Acid Ameliorates Inflammation via the Downregulation of NF-κB and STAT-1. Antioxidants (Basel) 2020; 9:antiox9020106. [PMID: 31991739 PMCID: PMC7070941 DOI: 10.3390/antiox9020106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/03/2023] Open
Abstract
Maslinic acid (MA), a natural compound of the triterpenoid group derived from olive, prevents the generation of pro-inflammatory cytokines and oxidative stress. In human umbilical vein endothelial cells (HUVECs) treated with lipopolysaccharide (LPS), we characterized the effects of MA on the regulation of heme oxygenase (HO)-1, cyclooxygenase (COX-)2, and inducible nitric oxide synthase (iNOS). MA was tested in the lung tissues of LPS-treated mice, to determine its effect on levels of iNOS expression and representative inflammatory mediators such as interleukin (IL)-1α and tumor necrosis factor (TNF)-α. We show that MA induced the expression of HO-1, reduced LPS-induced NF-κB-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, resulting in the downregulation of STAT-1 phosphorylation. Furthermore, our data show that MA induced the nuclear translocation of Nrf2, increased the binding of Nrf2 to ARE, and decreased IL-1α production in LPS-treated HUVECs. The MA-induced reduction in iNOS/NO expression was reversed by RNAi suppression of HO-1. In mice treated with LPS, MA significantly downregulated levels of iNOS in lung tissue and TNF-α in the bronchoalveolar lavage fluid. Taken together, our findings indicate that MA exerts a critical anti-inflammatory effect by modulating iNOS via the downregulation of NF-κB and p-STAT-1. Thus, we propose that MA may be an ideal substance to treat inflammatory diseases.
Collapse
|
20
|
Serbian I, Siewert B, Al-Harrasi A, Csuk R. 2-O-(2-chlorobenzoyl) maslinic acid triggers apoptosis in A2780 human ovarian carcinoma cells. Eur J Med Chem 2019; 180:457-464. [DOI: 10.1016/j.ejmech.2019.07.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023]
|
21
|
Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules 2019; 24:E2751. [PMID: 31362424 PMCID: PMC6695944 DOI: 10.3390/molecules24152751] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Non-communicable diseases (NCDs) such as cancer, diabetes, and chronic respiratory and cardiovascular diseases continue to be threatening and deadly to human kind. Resistance to and side effects of known drugs for treatment further increase the threat, while at the same time leaving scientists to search for alternative sources from nature, especially from plants. Pentacyclic triterpenoids (PT) from medicinal plants have been identified as one class of secondary metabolites that could play a critical role in the treatment and management of several NCDs. One of such PT is ursolic acid (UA, 3 β-hydroxy-urs-12-en-28-oic acid), which possesses important biological effects, including anti-inflammatory, anticancer, antidiabetic, antioxidant and antibacterial effects, but its bioavailability and solubility limits its clinical application. Mimusops caffra, Ilex paraguarieni, and Glechoma hederacea, have been reported as major sources of UA. The chemistry of UA has been studied extensively based on the literature, with modifications mostly having been made at positions C-3 (hydroxyl), C12-C13 (double bonds) and C-28 (carboxylic acid), leading to several UA derivatives (esters, amides, oxadiazole quinolone, etc.) with enhanced potency, bioavailability and water solubility. This article comprehensively reviews the information that has become available over the last decade with respect to the sources, chemistry, biological potency and clinical trials of UA and its derivatives as potential therapeutic agents, with a focus on addressing NCDs.
Collapse
Affiliation(s)
- Sithenkosi Mlala
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Mavuto Gondwe
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
22
|
Wei Q, Zhang B, Li P, Wen X, Yang J. Maslinic Acid Inhibits Colon Tumorigenesis by the AMPK-mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4259-4272. [PMID: 30913881 DOI: 10.1021/acs.jafc.9b00170] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maslinic acid (MA), a natural triterpenoid abundant in olives, has a variety of bioactivities. However, its effects and mechanisms on colorectal cancer (CRC) still need to be explored. This research evaluated the effects of MA on CRC progression from the aspect of the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. MA inhibited the proliferation and migration of HCT116 and SW480 cells while inducing apoptosis in these cells. Furthermore, it could activate AMPK and negatively regulate the mTOR pathway. Knockdown of AMPK abolished its inhibitory effect on cell proliferation and migration and blocked the MA-induced apoptosis, revealing that AMPK was associated with the anticancer activity of MA. In addition, MA significantly suppressed the tumorigenesis and regulated the AMPK-mTOR pathway in azoxymethane/dextran sulfate sodium mice and xenograft tumor mice. This study demonstrated that the regulation of AMPK-mTOR signaling could potentially contribute to the beneficial effects of MA, including the prevention of CRC.
Collapse
Affiliation(s)
- Qing Wei
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Biying Zhang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Ping Li
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Jie Yang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| |
Collapse
|
23
|
Ampofo E, Berg JJ, Menger MD, Laschke MW. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression. Sci Rep 2019; 9:6119. [PMID: 30992483 PMCID: PMC6467883 DOI: 10.1038/s41598-019-42465-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced inflammation is associated with enhanced leukocyte rolling, adhesion and transmigration within the microcirculation. These steps are mediated by hypoxia-triggered signaling pathways, which upregulate adhesion molecule expression on endothelial cells and pericytes. We analyzed whether these cellular events are affected by maslinic acid (MA). Mitochondrial activity and viability of MA-exposed endothelial cells and pericytes were assessed by water-soluble tetrazolium (WST)-1 and lactate dehydrogenase (LDH) assays as well as Annexin V/propidium iodide (PI) stainings. Effects of MA on hypoxia and reoxygenation-induced expression of E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 were determined by flow cytometry. The subcellular localization of the NFκB subunit p65 was analyzed by immunofluorescence and Western blot. I/R-induced leukocytic inflammation was studied in MA- and vehicle-treated mouse dorsal skinfold chambers by intravital fluorescence microscopy and immunohistochemistry. MA did not affect viability, but suppressed the mitochondrial activity of endothelial cells. Furthermore, MA reduced adhesion molecule expression on endothelial cells and pericytes due to an inhibitory action on NFκB signaling. Numbers of adherent and transmigrated leukocytes were lower in post-ischemic tissue of MA-treated mice when compared to vehicle-treated controls. In addition, MA affected reactive oxygen species (ROS) formation, resulting in a diminished oxidative DNA damage. Hence, MA represents an attractive compound for the establishment of novel therapeutic approaches against I/R-induced inflammation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - Julian J Berg
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| |
Collapse
|
24
|
Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019; 24:molecules24061109. [PMID: 30897820 PMCID: PMC6471914 DOI: 10.3390/molecules24061109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples ('Golden Delicious', 'Red Delicious', 'Granny Smith' and 'Royal Gala'). Total phenolic and flavonoid contents were measured by spectrophotometric assays. The quali-quantitative fingerprint of secondary metabolites including triterpene acid was obtained by LC-DAD-(ESI)-MS and LC-(APCI)-MS, respectively. Based on the two LC-MS datasets, multivariate analysis was used to compare the composition of ancient fruit varieties with those of four commercial apples. Significant differences related mainly to the pattern of triterpene acids were found. Pomolic, euscaphyc, maslinic and ursolic acids are the most abundant triterpene in ancient varieties pulps and peels, while ursolic and oleanolic acids were prevalent in the commercial fruits. Also, the content of the phenolic compounds phloretin-2-O-xyloglucoside and quercetin-3-O-arabinoside was greater in ancient apple varieties. The antioxidant (radical scavenging, reducing power, metal chelating and phosphomolybdenum assays) and enzyme inhibitory effects (against cholinesterase, tyrosinase, amylase and glucosidase) of the samples were investigated in vitro. Antioxidant assays showed that the peels were more active than pulps. However, all the samples exhibited similar enzyme inhibitory effects. Ancient Friuli Venezia Giulia apple cultivars can be a source of chlorogenic acid and various triterpene acids, which are known for their potential anti-inflammatory activity and beneficial effects on lipid and glucose metabolism. Our results make these ancient varieties suitable for the development of new nutraceutical ingredients.
Collapse
|
25
|
Baba K, Hiramatsu R, Suradej B, Tanigaki R, Koeda S, Waku T, Kataoka T. Asiatic Acid, Corosolic Acid, and Maslinic Acid Interfere with Intracellular Trafficking and N-Linked Glycosylation of Intercellular Adhesion Molecule-1. Biol Pharm Bull 2018; 41:1757-1768. [DOI: 10.1248/bpb.b18-00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology
| | - Reiko Hiramatsu
- Department of Applied Biology, Kyoto Institute of Technology
| | | | - Riho Tanigaki
- Department of Applied Biology, Kyoto Institute of Technology
| | - Sayaka Koeda
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| |
Collapse
|
26
|
Yap WH, Ooi BK, Ahmed N, Lim YM. Maslinic acid modulates secreted phospholipase A2-IIA (sPLA2-IIA)-mediated inflammatory effects in macrophage foam cells formation. J Biosci 2018; 43:277-285. [PMID: 29872016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Secretory phospholipase A2-IIA (sPLA2-IIA) is one of the key enzymes causing lipoprotein modification and vascular inflammation. Maslinic acid is a pentacyclic triterpene which has potential cardioprotective and anti-inflammatory properties. Recent research showed that maslinic acid interacts with sPLA2-IIA and inhibits sPLA2-IIA-mediated monocyte differentiation and migration. This study elucidates the potential of maslinic acid in modulating sPLA2-IIA-mediated inflammatory effects in THP-1 macrophages. We showed that maslinic acid inhibits sPLA2-IIA-mediated LDL modification and suppressed foam cell formation. Further analysis revealed that sPLA2-IIA only induced modest LDL oxidation and that inhibitory effect of maslinic acid on sPLA2-IIA-mediated foam cells formation occurred independently of its anti-oxidative properties. Interestingly, maslinic acid was also found to significantly reduce lipid accumulation observed in macrophages treated with sPLA2-IIA only. Flow cytometry analysis demonstrated that the effect observed in maslinic acid might be contributed in part by suppressing sPLA2-IIA-induced endocytic activity, thereby inhibiting LDL uptake. The study further showed that maslinic acid suppresses sPLA2-IIA-induced up-regulation of PGE2 levels while having no effects on COX-2 activity. Other pro-inflammatory mediators TNF-a and IL-6 were not induced in sPLA2-IIA-treated THP-1 macrophages. The findings of this study showed that maslinic acid inhibit inflammatory effects induced by sPLA2-IIA, including foam cells formation and PGE2 production.
Collapse
Affiliation(s)
- Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | | | | | | |
Collapse
|
27
|
Yap WH, Ooi BK, Ahmed N, Lim YM. Maslinic acid modulates secreted phospholipase A2-IIA (sPLA2-IIA)-mediated inflammatory effects in macrophage foam cells formation. J Biosci 2018. [DOI: 10.1007/s12038-018-9745-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Maslinic acid promotes autophagy by disrupting the interaction between Bcl2 and Beclin1 in rat pheochromocytoma PC12 cells. Oncotarget 2017; 8:74527-74538. [PMID: 29088805 PMCID: PMC5650360 DOI: 10.18632/oncotarget.20210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/24/2017] [Indexed: 12/23/2022] Open
Abstract
Maslinic acid (2α, 3β-dihydroxyolean-12-en-28-oic acid, MA) was isolated from natural plants and showed anti-cancer activity in rat Pheochromocytoma PC12 cells in our previous studies. We now discover that MA disrupts the interaction between Bcl2 and autophagy scaffold protein Beclin1 in the above cell line, leading to the up-regulation of autophagy. We investigated the effect of MA on the interaction between Bcl2 and Beclin1 by biochemical and biophysical methods in combination with autophagy characterization in the above cell line. Our results suggest that MA may serve as an autophagy activator by directly blocking the Bcl2-Beclin1 interaction to release free Beclin1 required for the recruitment of autophagy positive regulators, implying MA may exert its anti-cancer activity by regulating autophagy.
Collapse
|
29
|
Fukumitsu S, Kinoshita T, Villareal MO, Aida K, Hino A, Isoda H. Maslinic acid improves quality of life by alleviating joint knee pain in the elderly: results from a community-based pilot study. J Clin Biochem Nutr 2017; 61:67-73. [PMID: 28751812 PMCID: PMC5525013 DOI: 10.3164/jcbn.16-119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
Chronic knee joint pain is common in the elderly and associated with poor quality of life. This study, an open-label clinical trial, aimed to examine how the intake on a daily basis of maslinic acid-containing product (30 mg maslinic acid) on 29 elderly residents (mean 70.7 ± 10.1 years) of Nakajima Island, Ehime, Japan. Study participants consumed 10 g jelly containing maslinic acid daily for 16 weeks and at 0 (baseline), 4, 8, 12 and 16 weeks, assessed for health-related quality of life (Short Form-8) and knee pain score (Japanese Knee Osteoarthritis Measure). After 16 weeks, the physical quality of life, more specifically, the level of Bodily Pain and Physical Component Summary, but not mental quality of life, was significantly improved by maslinic acid intake. Furthermore, maslinic acid intake significantly decreased the Japanese Knee Osteoarthritis Measure at week 8 and tended to decrease Visual Analogue Scale score at weeks 4 and 16. These results suggest that consumption of maslinic acid has a protective effect against chronic knee pain in elderly residents in a community where knee pain causes high quality of life burden.
Collapse
Affiliation(s)
- Satoshi Fukumitsu
- Nippon Flour Mills Co., Ltd., Innovation Center, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan.,Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tetsu Kinoshita
- Institute of Community Life Sciences Co., Ltd., Social Epidemiology Institute, Matsuyama, Ehime 791-1102, Japan
| | - Myra O Villareal
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuhiko Aida
- Nippon Flour Mills Co., Ltd., Innovation Center, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Akihiro Hino
- Nippon Flour Mills Co., Ltd., Innovation Center, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Hiroko Isoda
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
30
|
Facile preparation of a symmetric hexavalent oleanolic acid/per- O -methylated α -cyclodextrin conjugate with two conformations in solution and unambiguous NMR analysis. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Liehr M, Mereu A, Pastor JJ, Quintela JC, Staats S, Rimbach G, Ipharraguerre IR. Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota. PLoS One 2017; 12:e0174239. [PMID: 28346507 PMCID: PMC5367713 DOI: 10.1371/journal.pone.0174239] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 01/16/2023] Open
Abstract
Subclinical chronic inflammation (SCI) is associated with impaired animal growth. Previous work has demonstrated that olive-derived plant bioactives exhibit anti-inflammatory properties that could possibly counteract the growth-depressing effects of SCI. To test this hypothesis and define the underlying mechanism, we conducted a 30-day study in which piglets fed an olive-oil bioactive extract (OBE) and their control counterparts (C+) were injected repeatedly during the last 10 days of the study with increasing doses of Escherichia coli lipopolysaccharides (LPS) to induce SCI. A third group of piglets remained untreated throughout the study and served as a negative control (C-). In C+ pigs, SCI increased the circulating concentration of interleukin 1 beta (p < 0.001) and decreased feed ingestion (p < 0.05) and weight gain (p < 0.05). These responses were not observed in OBE animals. Although intestinal inflammation and colonic microbial ecology was not altered by treatments, OBE enhanced ileal mRNA abundance of tight and adherens junctional proteins (p < 0.05) and plasma recovery of mannitol (p < 0.05) compared with C+ and C-. In line with these findings, OBE improved transepithelial electrical resistance (p < 0.01) in TNF-α-challenged Caco-2/TC-7 cells, and repressed the production of inflammatory cytokines (p < 0.05) in LPS-stimulated macrophages. In summary, this work demonstrates that OBE attenuates the suppressing effect of SCI on animal growth through a mechanism that appears to involve improvements in intestinal integrity unrelated to alterations in gut microbial ecology and function.
Collapse
Affiliation(s)
- Martin Liehr
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | | | | | - Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Ignacio Rodolfo Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- Lucta S.A., Montornés del Vallés, Barcelona, Spain
- * E-mail:
| |
Collapse
|
32
|
Sandjo LP, Nascimento MVPDS, da Silva LAL, Munhoz ACM, Pollo LAE, Biavatti MW, Ngadjui BT, Opatz T, Fröde TS. ESI-MS 2 and Anti-inflammatory Studies of Cyclopropanic Triterpenes. UPLC-ESI-MS and MS 2 Search of Related Metabolites from Donella ubanguiensis. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:27-41. [PMID: 27976470 DOI: 10.1002/pca.2640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/24/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Triterpenes are one of the largest secondary metabolites groups spread in the plant kingdom with various skeletons. These metabolites have showed various bioactivities including anti-inflammatory activity. OBJECTIVE The study aims to explore the mass spectrometry fragmentation of donellanic acids A-C (DA A-C), three compounds identified from Donella ubanguiensis; in addition, the fragmentation behaviour of these metabolites will serve as a fingerprint to search and characterise triterpenes congeners in fruits, bark and wood crude extracts of D. ubanguiensis. This work was prompted by the anti-inflammatory activity on leukocyte migration, exudate concentrations and myeloperoxidase activity obtained for DA A-B. METHODOLOGY The bioactivity was performed on mouse model of pleurisy induced by carrageenan and the parameters were analysed by veterinarian automated cell counter and colorimetric assays. While the tandem mass analyses of DA A-C were carried out by a direct infusion ESI-QTOF-MS/MS, the extracts were studied by UPLC-ESI-QTOF-MS and UPLC-ESI-QTOF-MS/MS. RESULTS DA A displayed interesting anti-inflammatory activity by inhibiting leukocyte migration, exudate concentrations and myeloperoxidase activity (p < 0.05) while DA B was weakly active (p > 0.05). Moreover, the diagnostic of the MS2 behaviour of DA A-C in conjunction with the chromatograms and the obtained MS2 data of the crude extract led to the characterisation of three cyclopropane triterpenes (T1-T3) and six saponins (T4-T9) from the fruits, the bark, and the wood extracts. CONCLUSIONS Donella species deserve more investigation since metabolites related to the anti-inflammatory compound (DA A) could be identified. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Louis P Sandjo
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, 88040-970, SC, Brazil
| | - Marcus V P Dos Santos Nascimento
- Department of Clinical Analysis, Centre of Health Sciences, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, 88040-970, SC, Brazil
| | - Layzon A L da Silva
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, 88040-970, SC, Brazil
| | - Antonio C M Munhoz
- Department of Clinical Analysis, Centre of Health Sciences, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, 88040-970, SC, Brazil
| | - Luiz A E Pollo
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, 88040-970, SC, Brazil
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, 88040-970, SC, Brazil
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Tania S Fröde
- Department of Clinical Analysis, Centre of Health Sciences, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, 88040-970, SC, Brazil
| |
Collapse
|
33
|
Doss HM, Ganesan R, Rasool M. Trikatu, an herbal compound ameliorates rheumatoid arthritis by the suppression of inflammatory immune responses in rats with adjuvant-induced arthritis and on cultured fibroblast like synoviocytes via the inhibition of the NFκB signaling pathway. Chem Biol Interact 2016; 258:175-86. [DOI: 10.1016/j.cbi.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/24/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
|
34
|
15d-PGJ2-Loaded Solid Lipid Nanoparticles: Physicochemical Characterization and Evaluation of Pharmacological Effects on Inflammation. PLoS One 2016; 11:e0161796. [PMID: 27575486 PMCID: PMC5004889 DOI: 10.1371/journal.pone.0161796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, has physiological properties including pronounced anti-inflammatory activity, though it binds strongly to serum albumin. The use of solid lipid nanoparticles (SLN) can improve therapeutic properties increasing drug efficiency and availability. 15d-PGJ2-SLN was therefore developed and investigated in terms of its immunomodulatory potential. 15d-PGJ2-SLN and unloaded SLN were physicochemically characterized and experiments in vivo were performed. Animals were pretreated with 15d-PGJ2-SLN at concentrations of 3, 10 or 30 μg·kg-1 before inflammatory stimulus with carrageenan (Cg), lipopolysaccharide (LPS) or mBSA (immune response). Interleukins (IL-1β, IL-10 and IL-17) levels were also evaluated in exudates. The 15d-PGJ2-SLN system showed good colloidal parameters and encapsulation efficiency of 96%. The results showed that the formulation was stable for up to 120 days with low hemolytic effects. The 15d-PGJ2-SLN formulation was able to reduce neutrophil migration in three inflammation models tested using low concentrations of 15d-PGJ2. Additionally, 15d-PGJ2-SLN increased IL-10 levels and reduced IL-1β as well as IL-17 in peritoneal fluid. The new 15d-PGJ2-SLN formulation highlights perspectives of a potent anti-inflammatory system using low concentrations of 15d-PGJ2.
Collapse
|
35
|
Šmejkal K, Malaník M, Zhaparkulova K, Sakipova Z, Ibragimova L, Ibadullaeva G, Žemlička M. Kazakh Ziziphora Species as Sources of Bioactive Substances. Molecules 2016; 21:molecules21070826. [PMID: 27347924 PMCID: PMC6274025 DOI: 10.3390/molecules21070826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 01/19/2023] Open
Abstract
Ziziphora species represent the prototypical example of the Lamiaceae family. The phytochemicals present in Ziziphora include monoterpenic essential oils, triterpenes and phenolic substances belonging to the flavonoids. In Kazakh traditional medicine, Ziziphora species possess several medicinal uses. In particular, Z. bungeana Lam. and Z. clinopodioides Lam. are used for the treatment of illnesses related to the cardiovascular system or to combat different infections. Unfortunately, the majority of the information about the complex Ziziphora species is only available in Russian and Chinese language, therefore, we decided gather all available information on Kazakhstan Ziziphora, namely its content compounds, medicinal uses and published patents, to draw the attention of scientists to this very interesting plant with high medicinal potential.
Collapse
Affiliation(s)
- Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno 61242, Czech Republic.
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno 61242, Czech Republic.
| | - Karlygash Zhaparkulova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Zuriyadda Sakipova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Liliya Ibragimova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Galya Ibadullaeva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Milan Žemlička
- Department of Pharmacognosy and Botany, The University of Veterinary Medicine and Pharmacy in Košice, Košice 04181, Slovakia.
| |
Collapse
|
36
|
Effects of maslinic acid on the proliferation and apoptosis of A549 lung cancer cells. Mol Med Rep 2015; 13:117-22. [PMID: 26572558 PMCID: PMC4686082 DOI: 10.3892/mmr.2015.4552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 10/27/2015] [Indexed: 01/16/2023] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid that is present in numerous dietary plants. Although certain studies have demonstrated that MA has anti-cancer properties in different cell types, the effect of MA on lung cancer cell proliferation and apoptosis and the potential underlying mechanisms remain to be elucidated. In the present study, A549 lung cancer cells were treated with different doses of MA and it was found that MA significantly inhibited A549 cell growth in a dose-dependent manner. In addition, Annexin V/propidium iodide flow cytometric analysis demonstrated that MA induced apoptosis of A549 cells. The present study also confirmed that MA induced apoptosis by observing morphological alterations. In addition, the effect of MA treatment on the levels of apoptosis-associated proteins was examined. The results demonstrated that MA treatment suppressed the expression of caspase-3, -8 and -9, and increased the expression of cleaved caspase-3, -8 and -9 in a dose-dependent manner. The level of inhibitors of apoptosis (IAPs) and Smac, which are possible upstream factors of caspase proteins, were also examined. It was found that MA treatment increased the protein expression of Smac and decreased the protein levels of c-IAP1, c-IAP2, X-linked inhibitor of apoptosis protein (XIAP) and Survivin in a dose-dependent manner. These results suggested that MA inhibited proliferation and induced apoptosis of A549 cells through regulation of caspase cleavage as well as Smac, c-IAP1, c-IAP2, XIAP and Survivin.
Collapse
|