1
|
Abul N, Yildiz Arslan S, Unver Y, Ozdemir H. Decolorization of Azo and Anthraquinone Dyes Using Recombinant Horseradish Peroxidase A2A Isoenzyme Produced by Komagataella phaffii. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05239-8. [PMID: 40317444 DOI: 10.1007/s12010-025-05239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Water pollution is a significant issue due to industrialization and population growth, and one of the main sources of wastewater is synthetic dyes. The textile sector is particularly affected by dyes like azo and anthraquinone dyes, which are difficult to degrade and produce toxic organic waste. Currently, synthetic dyes are processed through physical and chemical methods, which have financial and methodological disadvantages. Horseradish peroxidase (HRP) is a widely studied enzyme for purifying pollutants like dyes and phenols in wastewater. However, their high cost makes them a costly option. Recombinant protein production is suitable for the mass production of stable and resistant enzymes. In this study, the decolorization potential of recombinant HRP A2A (rHRP A2A) isoenzyme secreted by Komagataella phaffii and purified by affinity technique in a single step on Acid blue 113, Alizarin red, and Remazol brilliant blue R was presented for the first time, and the optimal conditions for the highest decolorization rate were determined. Fe2+ and Mn2+ metal ions increased enzyme activity by 158.62% and 79.54%, respectively. Color removal with 0.006 EU/mL rHRP A2A for Acid blue 113, Alizarin red, and Remazol brilliant blue R was observed at 71.27, 62.26, and 31.22%, respectively. ABTS served as a redox mediator, significantly increasing the rate of dye decolorization in a shorter period at the specified concentration.
Collapse
Affiliation(s)
- Nurgul Abul
- Department of Chemistry, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye.
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, Erzurum, Türkiye.
| | - Hasan Ozdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
2
|
Almaz Z, Agircelik FN. Enzymatic degradation of azo dyes methylene blue and congo red with peroxidase purified from cauliflower using affinity chromatography technique: Kinetic study, optimization and metal binding activity. J Biosci Bioeng 2023:S1389-1723(23)00144-5. [PMID: 37331844 DOI: 10.1016/j.jbiosc.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
The effective results of the enzymatic decolorization of industrial azo dyes found in wastewater, which cause serious health and environmental problems, with peroxidases have recently increased the interest in these enzyme sources. Redox-mediated decolorization of Methylene Blue and Congo Red azo dyes with cauliflower (Brassica oleracea var.botrytis L.) peroxidase (CPOD) purified in one step using 4-amino 3-bromo 2-methyl benzohydrazide molecule was investigated for the first time. The inhibition effect of this molecule, which is used as a ligand in affinity chromatography, on the CPOD enzyme was investigated. The Ki and IC50 values for this enzyme were calculated as 0.113 ± 0.012 mM and 0.196 ± 0.011 mM, respectively. With the affinity gel obtained by binding to the Sepharose-4B-l-tyrosine matrix of this molecule, which shows a reversible inhibition effect, the purification values of CPOD enzyme were determined as 562-fold with a specific activity of 50,250 U mg-1. The purity of the enzyme was checked by the SDS-PAGE technique and its molecular weight was determined. A single band at 44 kDa was observed for the CPOD enzyme. In dye decolorization studies, the effects of dye, enzyme, and hydrogen peroxide concentrations as well as time, pH, and temperature were investigated. The profiles of the optimum conditions for both dyes were similar, and the percentages of decolorization of Methylene Blue and Congo Red under these conditions were 89% and 83%, respectively, at the end of the 40 min reaction time. Again, when examining the effect of metal ions on enzyme activity, it was found that there was no significant negative change in CPOD.
Collapse
Affiliation(s)
- Zuleyha Almaz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Mus Alparslan University, 49250 Mus, Turkey.
| | | |
Collapse
|
3
|
Rai A, Sirotiya V, Mourya M, Khan MJ, Ahirwar A, Sharma AK, Kawatra R, Marchand J, Schoefs B, Varjani S, Vinayak V. Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives. CHEMOSPHERE 2022; 305:135371. [PMID: 35724717 DOI: 10.1016/j.chemosphere.2022.135371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Discharge of untreated or partially treated toxic dyes containing wastewater from textile industries into water streams is hazardous for environment. The use of heavy metal(s) rich dyes, which are chemically active in azo and sulfur content(s) has been tremendously increasing in last two decades. Conventional physical and chemical treatment processes help to eliminate the dyes from textile wastewater but generates the secondary pollutants which create an additional environmental problem. Microalgae especially the diatoms are promising candidate for dye remediation from textile wastewater. Nanoporous diatoms frustules doped with nanocomposites increase the wastewater remediation efficiency due to their adsorption properties. On the other hand, microalgae with photosynthetic microbial fuel cell have shown significant results in being efficient, cost effective and suitable for large scale phycoremediation. This integrated system has also capability to enhance lipid and carotenoids biosynthesis in microalgae while simultaneously generating the bioelectricity. The present review highlights the textile industry wastewater treatment by live and dead diatoms as well as microalgae such as Chlorella, Scenedesmus, Desmodesmus sp. etc. This review engrosses applicability of diatoms and microalgae as an alternative way of conventional dye removal techniques with techno-economic aspects.
Collapse
Affiliation(s)
- Anshuman Rai
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Anil K Sharma
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Rajeev Kawatra
- Forensic Science Laboratory, Haryana, Madhuban, Karnal, 132037, India
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
4
|
Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. Polymers (Basel) 2022; 14:polym14132614. [PMID: 35808660 PMCID: PMC9269335 DOI: 10.3390/polym14132614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.
Collapse
|
5
|
ÇELEBİ M, ÖZDEMİR ZÖ, TOPUZOĞULLARI M. Microwave-assisted rapid conjugation of horseradish peroxidase-dextran aldehyde with Schiff base reaction and decolorization of Reactive Blue 19. Turk J Chem 2022; 46:903-909. [PMID: 37720622 PMCID: PMC10503971 DOI: 10.55730/1300-0527.3378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/16/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Microwave irradiation has become a routine technique in homogeneous and effective heating in organic synthesis. However, its application in enzyme-containing reactions is limited since it can cause denaturation of the enzyme. In this study, we have briefly investigated the effect of microwave heating on the conjugation reaction of horseradish peroxidase (HRP) with aldehyde derivative of dextran (D-CHO). The reaction was irradiated by microwave at 50 °C for 5 min. The conjugate was confirmed via GPC, in which the conjugates of HRP and D-CHO coexist with free unbound HRP molecules. Activity studies of HRP revealed that there is a small decrease in conjugate activity relative to the free enzyme after a short bioconjugation reaction with microwave irradiation. In decolorization studies of the textile dye Reactive Blue 19 (RB19), 99% of RB19 was decolorized through the free enzyme at 35 °C while the decolorization of the dye was 96% at 25-35 °C by the conjugate, which is a critical result showing clearly that the HRP conjugated via D-CHO is not denatured and still active after microwave-assisted reaction. This phenomenon is due to the multiple point conjugation of D-CHO on the surface of HRP and locking the 3D structure which may prevent changes in the secondary or tertiary structure of the enzyme. The results reveal that microwave irradiation can be used in production of covalently modified enzymes.
Collapse
Affiliation(s)
- Mithat ÇELEBİ
- Department of Polymer Materials Engineering, Yalova University, Yalova,
Turkey
| | - Zafer Ömer ÖZDEMİR
- Department of Analytical Chemistry, University of Health Sciences
Turkey, İstanbul,
Turkey
| | | |
Collapse
|
6
|
Yacon (Smallanthus sonchifolius) peel as a promising peroxidase source for the treatment of phenolic wastewater. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Perçin I, Aracagök YD, Idil N, Denizli A, Mattiasson B. Laccase bound to cryogel functionalized with phenylalanine for the decolorization of textile dyes. Turk J Chem 2021; 45:1353-1365. [PMID: 34849053 PMCID: PMC8596530 DOI: 10.3906/kim-2106-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 11/03/2022] Open
Abstract
In this study, amino acid functionalized poly(2-hydroxyethyl methacrylate-N-methacrylolyl-l-phenylalanine) [PHEMAPA] cryogel discs were prepared. In this respect, phenylalanine containing N-methacryloyl-(L)-phenylalanine methyl ester (MAPA) was polymerized with 2-hydroxyethyl methacrylate (HEMA) without requirement of any activation step. Laccase bound poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-phenylalanine) [Lac-PHEMAPA] cryogel discs were applied for decolorization of Reactive Blue-247 (RB-247). The ability of Lac-PHEMAPA cryogel discs on dye decolorization was found to be as 90% in 2 h and even more within 4h. The decolorization activities of 86% and 73% were observed at relatively low (4°C) and high (60°C) temperatures, respectively. The effect of dye concentration on dye decolorization and 100% decolorization activity was achieved in dye concentration between 50-300 ppm. Lac-PHEMAPA cryogel discs maintained 80% of its decolorization activity after six cycles. Consequently, the PHEMAPA cryogel discs are promising materials for immobilizing laccase. The Lac-PHEMAPA has a rapid dye decolorization in a broad range of temperature. The preparation is furthermore very stable and activity is preserved during storage.
Collapse
Affiliation(s)
- Işık Perçin
- Department of Biology, Molecular Biology Division, Faculty of Science, Hacettepe University, Ankara Turkey
| | - Yusuf Doruk Aracagök
- Department of Biology, Biotechnology Division, Faculty of Science, Hacettepe University, Ankara Turkey
| | - Neslihan Idil
- Department of Biology, Biotechnology Division, Faculty of Science, Hacettepe University, Ankara Turkey
| | - Adil Denizli
- Department of Chemistry, Biochemistry Division, Faculty of Science, Hacettepe University, Ankara Turkey
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, Lund Sweden
| |
Collapse
|
8
|
Pi Q, Zhu Z, Tang L. Transformation of Reactive Blue 19 by a recombinant peroxidase DyP. Bioprocess Biosyst Eng 2021; 45:425-429. [PMID: 34739595 DOI: 10.1007/s00449-021-02660-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Wastewater containing recalcitrant dyes causes environmental problems. A new superfamily of heme-containing peroxidases, dye-decolorizing peroxidases (DyPs), has been found to decolorize different kinds of dyes, especial anthraquinone dyes efficiently. However, the mechanism of dyes degradation by DyPs has not been fully understood and the toxicity of dye degradation intermediates by DyPs catalysis to microbes is unclear. In this study, a purified recombinant Thermobifida fusca DyP (TfuDyP) in E. coli BL21(DE3) was used to treat Reactive Blue 19 (RB19), an anthraquinone dye. The reaction intermediates analyzed by ultra performance liquid chromatography/mass spectroscopy (UPLC-MS) indicated the initial site of TfuDyP attack on RB19. In addition, it was found that both RB19 and its incomplete degradation products inhibited the growth of Bacillus subtilis. These findings provided a novel understanding of DyPs catalysis to anthraquinone dyes.
Collapse
Affiliation(s)
- Qian Pi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Zhubing Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Lei Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
9
|
Praveen S, Gokulan R, Pushpa TB, Jegan J. Techno-economic feasibility of biochar as biosorbent for basic dye sequestration. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Oztekin A, Almaz Z, Onlu S. Production and purification of peroxidases from callus cultures of white and red cabbage for enzymatic decolourization of reactive blue 19 and acid blue 25 dyes. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1906659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Aykut Oztekin
- Department of Medical Services and Techniques, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Zuleyha Almaz
- Molecular Biology and Genetics Department, Faculty of Science and Literature, Mus Alparslan University, Mus, Turkey
| | - Seyma Onlu
- Molecular Biology and Genetics Department, Faculty of Science and Literature, Mus Alparslan University, Mus, Turkey
| |
Collapse
|
11
|
Alam R, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Watanabe T, Kim S. Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124176. [PMID: 33131941 DOI: 10.1016/j.jhazmat.2020.124176] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Biodegradation and metabolic pathways of three anthraquinone dyes, Reactive Blue 4 (RB4), Remazol Brilliant Blue - R (RBBR), and Acid Blue 129 (AB129) by Trametes hirsuta D7 fungus immobilized in light expanded clay aggregate (LECA) were investigated. Morphological characteristics observed with scanning electron microscope (SEM) showed successful immobilization of the fungus in LECA. Based on UV absorbance measurement, immobilized T. hirsuta D7 effectively degraded 90%, 95%, and 96% of RB4, RBBR and AB129, respectively. Metabolites were identified with high-resolution mass spectrometry (HRMS) and degradation pathway of the dyes by T. hirsuta D7 was proposed. Toxicity assay on human dermal fibroblast (HDF) showed that anthraquinone dyes exhibits significant toxicity of 35%, 40%, and 34% reduction of cell viability by RB4, RBBR, and AB129, respectively. Fungal treatment resulted in an abatement of the toxicity and cell viability was increased up to 94%. The data clearly showed the effectiveness of immobilized T. hirsuta D7 in LECA on detoxification of anthraquinone dyes. This study provides potential and fundamental understanding of wastewater treatment using the newly isolated fungus T. hirsuta D7.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia.
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu 41566, Republic of Korea.
| |
Collapse
|
12
|
Klanovicz N, Warken A, Paliga L, Camargo AF, Scapini T, Buffon JG, Fongaro G, Teixeira ACSC, Treichel H. One-step procedure for peroxidase concentration, dye separation, and color removal by aqueous two-phase system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9097-9106. [PMID: 33131040 DOI: 10.1007/s11356-020-11412-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The aim of our study is to develop a one-step procedure to remove and degrade dyes from wastewater using a low-cost and efficient system based on aqueous two-phase system (ATPS), a well-known technique used to concentrate and recover enzymes. We investigated the catalytic proprieties of rice bran peroxidase (RBP) and found that this homemade enzyme can remain bound to its substrate for up to 5 days in controlled environments, without denaturing and while maintaining stable oxidation reduction potential (ORP) and pH. This biomolecule showed affinity for the ATPS technique prepared with polyethylene glycol and salt, which improved the relative activity up to 170%. The red dye separation in ATPS top phase was achieved in 3 min, in the RBP presence, with 100% of efficiency, and color removal of 87% was obtained in 24 h of enzymatic reaction. The process has promise to be scaled up to 10-fold and to reuse the reagents from the bottom phase of the ATPS.
Collapse
Affiliation(s)
- Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, Brazil
| | - Andressa Warken
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, Brazil
| | - Letícia Paliga
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, Brazil
| | - Jaqueline Garda Buffon
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Gislaine Fongaro
- Laboratory of Virology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
13
|
Melo MN, Pereira FM, Rocha MA, Ribeiro JG, Diz FM, Monteiro WF, Ligabue RA, Severino P, Fricks AT. Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: A comparative study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Farag AAM, Hussien MSA, Roushdy N. Photoelectrical and Photodegradation Characteristics Using Zirconyl Oxychloride as an Efficient Catalyst in Various Forms: A Comparison Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. A. M. Farag
- Department of Physics, Thin-film Laboratory, Physics Department, Faculty of EducationAin Shams University, Roxy Cairo 11757 Egypt
| | - Mai S. A. Hussien
- Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA)Faculty of EducationDepartment of Chemistry, Faculty of EducationAin Shams University, Roxy Cairo,n 11757 Egypt
| | - N. Roushdy
- Department of Electronic Materials, Advanced Technology and New Material InstituteCity for Scientific Research and Technological Applications New Borg El Arab City 21934 Alexandria Egypt
| |
Collapse
|
15
|
Nguyen LT, Ho WF, Yang KL. Copper-tripeptides (cuzymes) with peroxidase-mimetic activity. RSC Adv 2020; 10:17408-17415. [PMID: 35515638 PMCID: PMC9053452 DOI: 10.1039/d0ra02472d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
Peroxidases are enzymes that use hydrogen peroxide to oxidize substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ATBS). In this study, we showed that copper-tripeptide complexes ("cuzymes") also exhibited peroxidase-like activities. Different cuzymes could be formed by using various tripeptide ligands, such as GGG, GGH or HGG. However, the peroxidase-like activity of cuzymes depends on the sequence of the tripeptide (Cu-GGG > Cu-HGG > Cu-GGH). When ABTS was used as the substrate, the activity of Cu-GGG was 326 ± 1.5 U mg-1 which was 2.5 times higher than that of horseradish peroxidase (HRP). Copper-tripeptide complexes were also used to degrade trypan blue dye. By using 0.2 mM Cu-GGG and 0.2% H2O2, 200 μM trypan blue could be degraded in 15 min at 50 °C. The degradation reaction followed second-order kinetics; the reaction rate was proportional to both H2O2 concentration and the copper-tripeptide concentration, but it was independent of the trypan blue concentration. Because copper-tripeptides catalyzed the oxidation reactions involving H2O2 effectively, they may have potential applications in biochemical assays and environmental remediation.
Collapse
Affiliation(s)
- Le Truc Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Wing Fat Ho
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| |
Collapse
|
16
|
Nunes Costa F, Alex Mayer D, Valério A, de Souza Lima J, de Oliveira D, Ulson de Souza AA. Non-isothermal kinetic modelling of potassium indigo-trisulfonate dye discolouration by Horseradish peroxidase. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1754806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Flávia Nunes Costa
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Diego Alex Mayer
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Janaina de Souza Lima
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
17
|
Šekuljica NŽ, Jovanović JR, Jakovetić Tanasković SM, Ognjanović ND, Gazikalović IV, Knežević‐Jugović ZD, Mijin DŽ. Immobilization of horseradish peroxidase onto Purolite®
A109
and its anthraquinone dye biodegradation and detoxification potential. Biotechnol Prog 2020; 36:e2991. [DOI: 10.1002/btpr.2991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Nataša Ž. Šekuljica
- Innovation Center, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | | | | | | - Ivana V. Gazikalović
- Innovation Center, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | | - Dušan Ž. Mijin
- Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
18
|
Routoula E, Patwardhan SV. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:647-664. [PMID: 31913605 DOI: 10.1021/acs.est.9b03737] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Up to 84 000 tons of dye can be lost in water, and 90 million tons of water are attributed annually to dye production and their application, mainly in the textile and leather industry, making the dyestuff industry responsible for up to 20% of the industrial water pollution. The majority of dyes industrially used today are aromatic compounds with complex, reinforced structures, with anthraquinone dyes being the second largest produced in terms of volume. Despite the progress on decolorization and degradation of azo dyes, very little attention has been given to anthraquinone dyes. Anthraquinone dyes pose a serious environmental problem as their reinforced structure makes them difficult to degrade naturally. Existing methods of decolorization might be effective but are neither efficient nor practical due to extended time, space, and cost requirements. Attention should be given to the emerging routes for dye decolorization via the enzymatic action of oxidoreductases, which have already a strong presence in various other bioremediation applications. This review will discusses the presence of anthraquinone dyes in the effluents and ways for their remediation from dyehouse effluents, focusing on enzymatic processes.
Collapse
Affiliation(s)
- Eleni Routoula
- Department of Chemical and Biological Engineering , University of Sheffield Mappin Street , Sheffield , United Kingdom , S1 3JD
| | - Siddharth V Patwardhan
- Department of Chemical and Biological Engineering , University of Sheffield Mappin Street , Sheffield , United Kingdom , S1 3JD
| |
Collapse
|
19
|
Xu KZ, Wang HR, Wang YJ, Xia J, Ma H, Cai YJ, Liao XR, Guan ZB. Enhancement in catalytic activity of CotA-laccase from Bacillus pumilus W3 via site-directed mutagenesis. J Biosci Bioeng 2019; 129:405-411. [PMID: 31672431 DOI: 10.1016/j.jbiosc.2019.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/29/2022]
Abstract
CotA-laccases are potential enzymes that are widely used in decolorization of dyes and degradation of toxic substances. In this study, a novel CotA-laccase gene from Bacillus pumilus W3 was applied for rational design. After a series of site-directed genetic mutations, the mutant S208G/F227A showed a 5.1-fold higher catalytic efficiency (kcat/Km) than the wild-type CotA-laccase did. The optimal pH of S208G/F227A was 3.5 with ABTS as substrate. The residual activity of mutant S208G/F227A was more than 80% after incubated for 10 h at pH 7-11. Mutant S208G/F227A showed optimal temperature at 80°C with ABTS as substrate. The thermal stability of mutant laccase S208G/F227A was lower than that of wild-type CotA-laccase. This study showed that Gly208 and Ala227 play key roles in catalytic efficiency and it is possible to improve catalytic efficiency of CotA-laccase through site-directed mutagenesis.
Collapse
Affiliation(s)
- Kai-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Hao-Ran Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Ya-Jing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jing Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Hui Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yu-Jie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
20
|
Biochemical characterization of a novel azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. Int J Biol Macromol 2019; 140:1037-1046. [PMID: 31449862 DOI: 10.1016/j.ijbiomac.2019.08.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
Azo dyes are the most widely applied chemical dyes that have also raised great concerns for environmental contamination and human health issues. There has been a growing interest in discovering bioremediation methods to degrade azo dyes for environmental and economic purposes. Azoreductases are key enzymes evolved in nature capable of degrading azo dyes. The current work reports the identification, expression, and properties of a novel azoreductase (AzoRed2) from Streptomyces sp. S27 which shows an excellent stability against pH change and organic solvents. To overcome the requirements of coenzyme while degrading azo dyes, we introduced a coenzyme regeneration enzyme, Bacillus subtilis glucose 1-dehydrogenase (BsGDH), to construct a recycling system in living cells. The whole-cell biocatalyst containing AzoRed2 and BsGDH was used to degrade a representative azo dye methyl red. The degradation rate of methyl red was up to 99% in 120 min with high substrate concentration (250 μM) and no external coenzyme added. The degradation rate was still 98% in the third batch trial. To sum up, a novel azoreductase with good properties was found, which was applied to construct whole-cell biocatalyst. Both the enzymes and whole-cell biocatalysts are good candidates for the industrial wastewater treatment and environmental restoration.
Collapse
|
21
|
Microstructural Evaluation and Highly Efficient Photocatalytic Degradation Characteristic of Nanostructured Mg65Ni20Y15−xLax (X = 1, 2, 3) Alloys. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01209-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Anastopoulos I, Margiotoudis I, Massas I. The use of olive tree pruning waste compost to sequestrate methylene blue dye from aqueous solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:831-838. [PMID: 29775099 DOI: 10.1080/15226514.2018.1438353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Considering that quality water supplies are diminishing and climate disorder affects water cycle, wastewaters should be decontaminated for reuse either by the same establishment or in agriculture for the growth of industrial plants. In that context, much research work has been focused on the development of low cost biosorbents. In this study, the effect of composting on the adsorption capacity of olive tree pruning waste (OTPW) biomass for methylene blue (MB) removal from aqueous solutions was examined. Composting procedure may improve the sorption properties of the raw organic materials, is economical and easy to apply. MB adsorption on both OTPW and composted olive tree pruning waste (COTPW) biomasses was found to be fast. The maximum monolayer adsorption capacity obtained from Langmuir isotherm was estimated to be 129.87 and 250.00 mg/g for OTPW and COTPW, respectively, indicating that composting procedure greatly improved the adsorptive properties of OTPW. The raise of temperature from 25°C to 60°C decreased the efficiency of OTPW for MB removal whereas the adsorption capacity of COTPW was not affected at high temperatures. Moreover, COTPW showed constant adsorption over the 2-8 solution pH range.
Collapse
Affiliation(s)
- Ioannis Anastopoulos
- a Laboratory of Soils and Agricultural Chemistry , Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens , Athens , Greece
- b Department of Agrobiotechnology , Agricultural Research Institute , Nicosia , Cyprus
| | - Ilias Margiotoudis
- a Laboratory of Soils and Agricultural Chemistry , Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens , Athens , Greece
| | - Ioannis Massas
- a Laboratory of Soils and Agricultural Chemistry , Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens , Athens , Greece
| |
Collapse
|
23
|
Zabłocka-Godlewska E, Przystaś W, Grabińska-Sota E. Possibilities of Obtaining from Highly Polluted Environments: New Bacterial Strains with a Significant Decolorization Potential of Different Synthetic Dyes. WATER, AIR, AND SOIL POLLUTION 2018; 229:176. [PMID: 29861514 PMCID: PMC5962626 DOI: 10.1007/s11270-018-3829-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/09/2018] [Indexed: 05/27/2023]
Abstract
The aim of this study was the isolation of bacterial strains which have the ability to decolorize synthetic dyes belonging to different chemical groups. The samples for bacterial isolation were collected from aqueous environments-two activated sludges and polluted local river. At the first stage of screening (performed on the solid media supplemented with two dyes-azo Evans blue or triphenylmethane brilliant green), 67 bacterial strains were isolated capable to decolorize the used dyes. In the further study, six dyes with different chemical structures were used: fluorone dyes (Bengal rose, erythrosine), triphenylmethane dyes (brilliant green, crystal violet), azo dyes (Evans blue, Congo red). Initial concentration of each of these chemicals in samples was 0.1 g/l. Obtained results showed that only 31 isolates were able to decolorize all six used dyes (with different efficiencies). Among them, 11 strains were isolated from the river (55% of isolates from this site) and 20 from activated sludges collected from two different treatment plants (15 from the first water treatment plant and 5 from the second which were 42 and 43% of isolated cultures respectively). The decolorizing microorganisms are mostly isolated from different industrial sewages (e.g., textile industry), but results of the study showed that water from polluted river as well as municipal wastewaters may be a precious source for isolation of bacterial strains with the wide spectrum and high decolorization potential. In general, there were no statistically significant differences between decolorization abilities of strains isolated from different sites. The group of dyes that was removed with the highest yield was triphenylmethanes (75.6%), followed by fluorones (70.0%) and azo group (60.9%). The analysis of decolorization efficiency of the individual dyes revealed the best removal results in case of triphenylmethane brilliant green (average removal 85.7%), followed by fluorone erythrosine (average removal 78.9%), triphenylmethane crystal violet (average removal 65.5%), azo Evans blue (average removal 64.4%), fluorone Bengal rose (average removal 61.0%), and azo Congo red (average removal 57.4%). Obtained results revealed that the dye susceptibility to decolorization depends on the characteristic chemical structure of given dye groups but more important is chemical structure of strictly given dye within the group.
Collapse
Affiliation(s)
- Ewa Zabłocka-Godlewska
- Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Biotechnology Center, The Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Wioletta Przystaś
- Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Biotechnology Center, The Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Elżbieta Grabińska-Sota
- Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| |
Collapse
|
24
|
Paz A, Carballo J, Pérez MJ, Domínguez JM. Biological treatment of model dyes and textile wastewaters. CHEMOSPHERE 2017; 181:168-177. [PMID: 28437742 DOI: 10.1016/j.chemosphere.2017.04.046] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 05/27/2023]
Abstract
Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries.
Collapse
Affiliation(s)
- Alicia Paz
- Chemical Engineering Department, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain; Laboratory of Agro-food Biotechnology, CITI-University of Vigo, Tecnópole, Technological Park of Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Julia Carballo
- Microbiology, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain
| | - María José Pérez
- Microbiology, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain
| | - José Manuel Domínguez
- Chemical Engineering Department, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain; Laboratory of Agro-food Biotechnology, CITI-University of Vigo, Tecnópole, Technological Park of Galicia, San Cibrao das Viñas, Ourense, Spain.
| |
Collapse
|
25
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 188:137-143. [PMID: 27978441 DOI: 10.1016/j.jenvman.2016.12.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
Abstract
In the present study, horseradish peroxidase (HRP), in-house isolated crude cocktail enzyme, from Armoracia rusticana was cross-linked using a new type of cross-linking agent, i.e., ethylene glycol-bis [succinic acid N-hydroxysuccinimide, (EG-NHS)], which is mild in nature as compared to the glutaraldehyde (GA). The HRP-immobilized cross-linked enzyme aggregates (HRP-CLEAs) were developed using a wider range of EG-NHS and notably no adverse effect was observed. In a comparative evaluation, in the case of EG-NHS, a high-level stability in the residual activity was recorded, whereas a sharp decrease was observed in the case of glutaraldehyde. Following initial cross-linker evaluation, the HRP-CLEAs were tested to investigate their bio-catalytic efficacy for bioremediation purposes using a newly developed packed bed reactor system (PBRS). A maximal of 94.26% degradation of textile-based methyl orange dye was recorded within the shortest time frame, following 91.73% degradation of basic red 9, 84.35% degradation of indigo, 81.47% degradation of Rhodamin B, and 73.6% degradation of Rhodamine 6G, respectively, under the same working environment. Notably, the HRP-CLEAs retained almost 60% of its original activity after methyl orange dye degradation in seven consecutive cycles using PBRS. Furthermore, after HRP-CLEAs-mediated treatment in the PBRS, a significant toxicity reduction in the dye samples was recorded as compared to their pristine counterparts. In conclusion, the results suggest that the newly developed HRP-CLEAs have a great potential for industrial exploitation, to tackle numerous industrial dye-based emergent pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hafiz M N Iqbal
- ENCIT - Science, Engineering and Technology School, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
26
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1352-1360. [PMID: 27720596 DOI: 10.1016/j.scitotenv.2016.09.215] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/08/2023]
Abstract
In this study, horseradish peroxidase (HRP) was immobilized onto chitosan beads by entrapment method and employed for the degradation of textile dyes. Stable and firm quality chitosan beads developed with 2.5% chitosan concentration exhibited maximum immobilization yield (~92.54±2.53%). The pH optimum of chitosan-immobilized HRP (CTS-HRP) was marginally displaced towards alkaline region (pH7.5) than that of F-HRP which displayed its optimum activity at pH7.0. The free HRP (F-HRP) and CTS-HRP enzyme presented their maximum catalytic activities at 30°C and 70°C, respectively. Relative activities of F-HRP and CTS-HRP were decreased following pre-incubation above 30°C and 50°C, respectively and after 120min at 70°C, the F-HRP, and CTS-HRP retained 19.3±1.3 and 48.3±2.4% activities, accordingly. The CTS-HRP exhibited remarkably better resistance towards heavy metal induced activity inhibition. The effect of potential inhibitors on the activity of F-HRP and CTS-HRP was investigated and found that CTS-HRP was significantly less vulnerable to the denaturation caused by urea, ethylenediaminetetraacetic acid (EDTA), cysteine, 1, 4-dithiothreitol and Triton X-100. Moreover, the CTS-assisted entrapped-HRP was also employed for the decolorization of four different textile dyes i.e. Remazol Brilliant Blue R (RBBR), Reactive Black 5 (RB5), Congo Red (CR) and Crystal Violet (CV). The CTS-HRP showed considerable decolorization efficacy in six consecutive batch operations. Results suggest that CTS-HRP is an attractive choice for use as industrial biocatalyst in larger scale bioremediation of textile dyes and effluents.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Skariyachan S, Prasanna A, Manjunath SP, Karanth SS, Nazre A. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:121. [PMID: 26818015 DOI: 10.1007/s10661-016-5125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. is one of the edible mushrooms currently gaining attention as environmental restorer. The present study explores the potential of P. ostreatus (Jacq.: Fr.) P. Kumm. in degradation of textile dyes and effluents. The mushroom cultivation was carried out using paddy bed as substrate. The fully grown mushroom fruit bodies were used as a bioremediation agent against two industrially important azo dyes such as nylon blue and cotton yellow and few effluents collected from various textile industries in Karnataka, India. The ideal growth parameters such as temperature, pH, and dye concentrations for effective degradation were carried out. One of the main enzymes, laccase, responsible for biodegradation, was partially characterized. The degradation was found to be ideal at pH 3.0 and temperature at 26-28 °C. This study demonstrated a percentage degradation of 78.10, 90.81, 82.5, and 64.88 for dye samples such as nylon blue (50 ppm), cotton yellow (350 ppm), KSIC effluents, and Ramanagar effluents at 28 °C within 15th days respectively in comparison with other temperature conditions. Similarly, a percentage degradation of 35.99, 33.33, 76.13 and 25.8 for nylon blue (50 ppm), cotton yellow (350 ppm), Karnataka Silk Industries Corporation (KSIC) effluents and Ramnagar effluents were observed at pH 3.0 within 15 days, respectively (p < 0.05). Thus, the current study concluded that the utilization of P. ostreatus (Jacq.: Fr.) P. Kumm. at ideal environmental conditions is a cost-effective and eco-friendly approach for the degradation of various azo dyes and textile effluents which are harmful to the ecosystem.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560078, India.
- Visvesvaraya Technological University, Belagavi, Karnataka, India.
| | - Apoorva Prasanna
- Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Sirisha P Manjunath
- Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Soujanya S Karanth
- Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Ambika Nazre
- Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| |
Collapse
|
28
|
Immobilization of horseradish peroxidase onto kaolin. Bioprocess Biosyst Eng 2016; 39:461-72. [PMID: 26747440 DOI: 10.1007/s00449-015-1529-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Kaolin showed as a very perspective carrier for the enzyme immobilization and it was used for the adsorption of horseradish peroxidase (HRP). The effects of the enzyme concentration and pH on the immobilization efficiency were studied in the reaction with pyrogallol and anthraquinone dye C.I. Acid Violet 109 (AV 109). In addition, Fourier transform infrared spectroscopy, scanning electron microscopy and analysis by Brunauer-Emmett-Teller were performed for kaolin, thermally activated kaolin and the immobilized enzyme. It has been shown that 0.1 IU of HRP-kaolin decolorized 87 % of dye solution, under the optimal conditions (pH 5.0, temperature 24 °C, dye concentration 40 mg/L and 0.2 mM of H2O2) within 40 min. The immobilized HRP decolorization follows the Ping Pong Bi-Bi mechanism with dead-end inhibition by the dye. The biocatalyst retained 35 ± 0.9 % of the initial activity after seven cycles of reuse in the decolorization reaction of AV 109 under optimal conditions in a batch reactor. The obtained kinetic parameters and reusability study confirmed improvement in performances of k-HRP compared to free, indicating that k-HRP has a great potential for environmental purposes.
Collapse
|