1
|
Krasniqi E, Boshnjaku A, Wagner KH, Wessner B. Association between Polymorphisms in Vitamin D Pathway-Related Genes, Vitamin D Status, Muscle Mass and Function: A Systematic Review. Nutrients 2021; 13:3109. [PMID: 34578986 PMCID: PMC8465200 DOI: 10.3390/nu13093109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
An association between vitamin D level and muscle-related traits has been frequently reported. Vitamin D level is dependent on various factors such as sunlight exposure and nutrition. But also on genetic factors. We, therefore, hypothesize that single nucleotide polymorphisms (SNPs) within the vitamin D pathway-related genes could contribute to muscle mass and function via an impact on vitamin D level. However, the integration of studies investigating these issues is still missing. Therefore, this review aimed to systematically identify and summarize the available evidence on the association between SNPs within vitamin D pathway-related genes and vitamin D status as well as various muscle traits in healthy adults. The review has been registered on PROSPERO and was conducted following PRISMA guidelines. In total, 77 studies investigating 497 SNPs in 13 different genes were included, with significant associations being reported for 59 different SNPs. Variations in GC, CYP2R1, VDR, and CYP24A1 genes were reported most frequently, whereby especially SNPs in the GC (rs2282679, rs4588, rs1155563, rs7041) and CYP2R1 genes (rs10741657, rs10766197, rs2060793) were confirmed to be associated with vitamin D level in more than 50% of the respective studies. Various muscle traits have been investigated only in relation to four different vitamin D receptor (VDR) polymorphisms (rs7975232, rs2228570, rs1544410, and rs731236). Interestingly, all of them showed only very low confirmation rates (6-17% of the studies). In conclusion, this systematic review presents one of the most comprehensive updates of the association of SNPs in vitamin D pathway-related genes with vitamin D status and muscle traits in healthy adults. It might be used for selecting candidate SNPs for further studies, but also for personalized strategies in identifying individuals at risk for vitamin D deficiency and eventually for determining a potential response to vitamin D supplementation.
Collapse
Affiliation(s)
- Ermira Krasniqi
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (E.K.); (K.-H.W.)
- Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria;
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Arben Boshnjaku
- Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria;
- Faculty of Medicine, University “Fehmi Agani” in Gjakova, Ismail Qemali n.n., 50000 Gjakovë, Kosovo
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (E.K.); (K.-H.W.)
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (E.K.); (K.-H.W.)
- Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria;
| |
Collapse
|
2
|
da Silva Lopes K, Abe SK. Polymorphisms Contributing to Calcium Status: A Systematic Review. Nutrients 2021; 13:2488. [PMID: 34444650 PMCID: PMC8398213 DOI: 10.3390/nu13082488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 01/28/2023] Open
Abstract
This systematic review assessed genotypes and changes in calcium homeostasis. A literature search was performed in EMBASE, Medline and CENTRAL on 7 August 2020 identifying 1012 references. Studies were included with any human population related to the topic of interest, and genetic variations in genes related to calcium metabolism were considered. Two reviewers independently screened references, extracted relevant data and assessed study quality using the Q-Genie tool. Forty-one studies investigating Single Nucleotide Polymorphisms (SNPs) in relation to calcium status were identified. Almost half of the included studies were of good study quality according to the Q-Genie tool. Seventeen studies were cross-sectional, 14 case-control, seven association and three were Mendelian randomization studies. Included studies were conducted in over 18 countries. Participants were mainly adults, while six studies included children and adolescents. Ethnicity was described in 31 studies and half of these included Caucasian participants. Twenty-six independent studies examined the association between calcium and polymorphism in the calcium-sensing receptor (CASR) gene. Five studies assessed the association between polymorphisms of the Vitamin D receptor (VDR) gene and changes in calcium levels or renal excretion. The remaining ten studies investigated calcium homeostasis and other gene polymorphisms such as the CYP24A1 SNP or CLDN14. This study identified several CASR, VDR and other gene SNPs associated with calcium status. However, to provide evidence to guide dietary recommendations, further research is needed to explore the association between common polymorphisms and calcium requirements.
Collapse
Affiliation(s)
| | - Sarah Krull Abe
- Center for Public Health Sciences, National Cancer Center, Division of Prevention, Tokyo 104-0045, Japan
| |
Collapse
|
3
|
Vahe C, Benomar K, Espiard S, Coppin L, Jannin A, Odou MF, Vantyghem MC. Diseases associated with calcium-sensing receptor. Orphanet J Rare Dis 2017; 12:19. [PMID: 28122587 PMCID: PMC5264458 DOI: 10.1186/s13023-017-0570-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
The calcium-sensing receptor (CaSR) plays a pivotal role in systemic calcium metabolism by regulating parathyroid hormone secretion and urinary calcium excretion. The diseases caused by an abnormality of the CaSR are genetically determined or are more rarely acquired. The genetic diseases consist of hyper- or hypocalcemia disorders. Hypercalcaemia disorders are related to inactivating mutations of the CASR gene either heterozygous (autosomal dominant familial benign hypercalcaemia, still named hypocalciuric hypercalcaemia syndrome type 1) or homozygous (severe neonatal hyperparathyroidism). The A986S, R990G and Q1011E variants of the CASR gene are associated with higher serum calcium levels than in the general population, hypercalciuria being also associated with the R990G variant. The differential diagnosis consists in the hypocalciuric hypercalcaemia syndrome, types 2 (involving GNA11 gene) and 3 (involving AP2S1 gene); hyperparathyroidism; abnormalities of vitamin D metabolism, involving CYP24A1 and SLC34A1 genes; and reduced GFR. Hypocalcemia disorders, which are more rare, are related to heterozygous activating mutations of the CASR gene (type 1), consisting of autosomal dominant hypocalcemia disorders, sometimes with a presentation of pseudo-Bartter’s syndrome. The differential diagnosis consists of the hypercalciuric hypocalcaemia syndrome type 2, involving GNA11 gene and other hypoparathyroidism aetiologies. The acquired diseases are related to the presence of anti-CaSR antibodies, which can cause hyper- or especially hypocalcemia disorders (for instance in APECED syndromes), determined by their functionality. Finally, the role of CaSR in digestive, respiratory, cardiovascular and neoplastic diseases is gradually coming to light, providing new therapeutic possibilities. Two types of CaSR modulators are known: CaSR agonists (or activators, still named calcimimetics) and calcilytic antagonists (or inhibitors of the CasR). CaSR agonists, such as cinacalcet, are indicated in secondary and primary hyperparathyroidism. Calcilytics have no efficacy in osteoporosis, but could be useful in the treatment of hypercalciuric hypocalcaemia syndromes.
Collapse
Affiliation(s)
- C Vahe
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - K Benomar
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - S Espiard
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - L Coppin
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie-Pathologie, Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - A Jannin
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - M F Odou
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie-Pathologie, Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - M C Vantyghem
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France. .,Equipe INSERM 1190 Prise en charge translationnelle du diabète, Lille Cedex, France. .,Institut EGID (European Genomic Institute for Diabetes), Lille Cedex, France.
| |
Collapse
|