1
|
Guevar J, Voumard B, Bergman R, Precht C, Forterre F. Comparative biomechanical analysis of monocortical and bicortical polyaxial screw rod fixation in canine lumbar vertebral stabilization. Front Vet Sci 2025; 11:1434251. [PMID: 40012615 PMCID: PMC11862917 DOI: 10.3389/fvets.2024.1434251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
Objective This study aims to evaluate the biomechanical properties of polyaxial screws-rod fixation (PSR) in stabilizing a single vertebral motion unit (VMU) fracture model and to compare the effectiveness of different stabilization techniques such as monocortical and bicortical. Methods A total of 12 thoracolumbar vertebral column specimens were harvested from canine cadavers. These specimens were divided into two groups based on the stabilization technique applied: a monocortical group and a bicortical group. Each group underwent biomechanical testing to assess flexion/extension and lateral bending motions. The range of motion (ROM), neutral zone (NZ), and stiffness were measured for each lumbar VMU in three conditions: intact, fractured with unilateral stabilization, and fractured with bilateral stabilization. Results In the 3-column fracture model, PSR was unable to restore the ROM of an intact spine in flexion/extension. In lateral bending, only bilateral PSR successfully approached the ROM of the intact spine. Notably, PSR failures were observed in four specimens when applied as monocortical and unilateral stabilization. Conclusion The findings indicate that even bilateral PSR does not fully restore the intact spine's ROM in canine fracture models, highlighting the need for further research to optimize stabilization techniques. The current study demonstrates that a single 3-column lumbar fracture model VMU cannot be adequately stabilized using PSR in a canine model, suggesting potential limitations in both monocortical and bicortical approaches.
Collapse
Affiliation(s)
- Julien Guevar
- Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Benjamin Voumard
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Robert Bergman
- Synapse Veterinary Neurology, LLC, Charlotte, NC, United States
| | - Christina Precht
- Division of Small Animal Radiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Franck Forterre
- Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Meuser AH, Henyš P, Höch A, Gänsslen A, Hammer N. Evaluating the stability of external fixators following pelvic injury: A systematic review of biomechanical testing methods. J Mech Behav Biomed Mater 2024; 153:106488. [PMID: 38437754 DOI: 10.1016/j.jmbbm.2024.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION This systematic review aims to identify previously used techniques in biomechanics to assess pelvic instability following pelvic injury, focusing on external fixation constructs. METHODS A systematic literature search was conducted to include biomechanical studies and to exclude clinical trials. RESULTS Of an initial 4666 studies found, 38 met the inclusion criteria. 84% of the included studies were retrieved from PubMed, Scopus, and Web of Science. The studies analysed 106 postmortem specimens, 154 synthetic bones, and 103 computational models. Most specimens were male (97% synthetic, 70% postmortem specimens). Both the type of injury and the classification system employed varied across studies. About 82% of the injuries assessed were of type C. Two different fixators were tested for FFPII and type A injury, five for type B injury, and fifteen for type C injury. Large variability was observed for external fixation constructs concerning device type and configuration, pin size, and geometry. Biomechanical studies deployed various methods to assess injury displacement, deformation, stiffness, and motion. Thereby, loading protocols differed and inconsistent definitions of failure were determined. Measurement techniques applied in biomechanical test setups included strain gauges, force transducers, and motion tracking techniques. DISCUSSION AND CONCLUSION An ideal fixation method should be safe, stable, non-obstructive, and have low complication rates. Although biomechanical testing should ensure that the load applied during testing is representative of a physiological load, a high degree of variability was found in the current literature in both the loading and measurement equipment. The lack of a standardised test design for fixation constructs in pelvic injuries across the studies challenges comparisons between them. When interpreting the results of biomechanical studies, it seems crucial to consider the limitations in cross-study comparability, with implications on their applicability to the clinical setting.
Collapse
Affiliation(s)
- Annika Hela Meuser
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Petr Henyš
- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Andreas Höch
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
| | - Axel Gänsslen
- Clinic for Trauma Surgery, Orthopaedics and Hand Surgery, Wolfsburg Hospital, Wolfsburg, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Division of Biomechatronics, Fraunhofer IWU, Dresden, Germany.
| |
Collapse
|
3
|
Doulgeris J, Lin M, Lee W, Aghayev K, Papanastassiou ID, Tsai CT, Vrionis FD. Inter-Specimen Analysis of Diverse Finite Element Models of the Lumbar Spine. Bioengineering (Basel) 2023; 11:24. [PMID: 38247901 PMCID: PMC10813462 DOI: 10.3390/bioengineering11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Over the past few decades, there has been a growing popularity in utilizing finite element analysis to study the spine. However, most current studies tend to use one specimen for their models. This research aimed to validate multiple finite element models by comparing them with data from in vivo experiments and other existing finite element studies. Additionally, this study sought to analyze the data based on the gender and age of the specimens. For this study, eight lumbar spine (L2-L5) finite element models were developed. These models were then subjected to finite element analysis to simulate the six fundamental motions. CT scans were obtained from a total of eight individuals, four males and four females, ranging in age from forty-four (44) to seventy-three (73) years old. The CT scans were preprocessed and used to construct finite element models that accurately emulated the motions of flexion, extension, lateral bending, and axial rotation. Preloads and moments were applied to the models to replicate physiological loading conditions. This study focused on analyzing various parameters such as vertebral rotation, facet forces, and intradiscal pressure in all loading directions. The obtained data were then compared with the results of other finite element analyses and in vivo experimental measurements found in the existing literature to ensure their validity. This study successfully validated the intervertebral rotation, intradiscal pressure, and facet force results by comparing them with previous research findings. Notably, this study concluded that gender did not have a significant impact on the results. However, the results did highlight the importance of age as a critical variable when modeling the lumbar spine.
Collapse
Affiliation(s)
- James Doulgeris
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (J.D.); (W.L.)
| | - Maohua Lin
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - William Lee
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (J.D.); (W.L.)
| | - Kamran Aghayev
- Department of Neurosurgery, Esencan Hospital, Baglarcesme Mahallesi, Istanbul 34510, Turkey;
| | | | - Chi-Tay Tsai
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Frank D. Vrionis
- Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL 33486, USA
| |
Collapse
|
4
|
A 20-Year Review of Biomechanical Experimental Studies on Spine Implants Used for Percutaneous Surgical Repair of Vertebral Compression Fractures. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6015067. [PMID: 36187502 PMCID: PMC9519286 DOI: 10.1155/2022/6015067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022]
Abstract
A vertebral compression fracture (VCF) is an injury to a vertebra of the spine affecting the cortical walls and/or middle cancellous section. The most common risk factor for a VCF is osteoporosis, thus predisposing the elderly and postmenopausal women to this injury. Clinical consequences include loss of vertebral height, kyphotic deformity, altered stance, back pain, reduced mobility, reduced abdominal space, and reduced thoracic space, as well as early mortality. To restore vertebral mechanical stability, overall spine function, and patient quality of life, the original percutaneous surgical intervention has been vertebroplasty, whereby bone cement is injected into the affected vertebra. Because vertebroplasty cannot fully restore vertebral height, newer surgical techniques have been developed, such as kyphoplasty, stents, jacks, coils, and cubes. But, relatively few studies have experimentally assessed the biomechanical performance of these newer procedures. This article reviews over 20 years of scientific literature that has experimentally evaluated the biomechanics of percutaneous VCF repair methods. Specifically, this article describes the basic operating principles of the repair methods, the study protocols used to experimentally assess their biomechanical performance, and the actual biomechanical data measured, as well as giving a number of recommendations for future research directions.
Collapse
|
5
|
Boroda N, Pradhan S, Forsthoefel CW, Mardjetko SM, Bou Monsef J, Amirouche F. Motion capture evaluation of sagittal spino-pelvic biomechanics after lumbar spinal fusion. Spine Deform 2022; 10:473-478. [PMID: 34981456 DOI: 10.1007/s43390-021-00448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The spine and pelvis coexist as a dynamic linked system in which spinal and pelvic parameters are correlated. Investigation of this system can inform the understanding and treatment of spinal deformity. Here, we demonstrate the use of motion capture technology to measure spine biomechanical parameters using a novel testing apparatus. METHODS Three complete cadaveric spines with skull and pelvis were mounted into a biomechanical testing apparatus. Each lumbar vertebra was monitored by motion capture cameras as the spines underwent maximal anterior and posterior pelvic tilts about two sagittal axes at a controlled speed and applied force. These axes were defined as the sacral axis which passes transversely through the ilium and S1, and the acetabular axis which passes transversely through both acetabula. The experiments were repeated after L4-L5 fusion, and then, after both L4-L5 and T12-S1 fusion with pedicle screw instrumentation. Data were collected for total range of motion and for coupled translation at each functional spinal unit (FSU). RESULTS Total range of motion and coupled translation within functional spinal units (FSUs) was decreased after spinal fusion. The displacement of each individual FSU was captured and summarized along with the observed patterns under each experimental condition. CONCLUSION Lumbar fusion decreases spinal motion in the sagittal plane in both overall ROM and individual coupled translations of lumbar vertebrae. This was demonstrated using motion capture technology which is useful for quantifying the translations of individual FSUs in a multisegmental spinal model.
Collapse
Affiliation(s)
- Nickolas Boroda
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA
| | - Sonia Pradhan
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA
| | - Craig William Forsthoefel
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA
| | - Steven M Mardjetko
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA
| | - Jad Bou Monsef
- Department of Orthopaedic Surgery and Rehabilitation Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Farid Amirouche
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E270, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Zhang W, Sommer G, Niestrawska JA, Holzapfel GA, Nordsletten D. The effects of viscoelasticity on residual strain in aortic soft tissues. Acta Biomater 2022; 140:398-411. [PMID: 34823042 DOI: 10.1016/j.actbio.2021.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022]
Abstract
Residual stress is thought to play a critical role in modulating stress distributions in soft biological tissues and in maintaining the mechanobiological stress environment of cells. Residual stresses in arteries and other tissues are classically assessed through opening angle experiments, which demonstrate the continuous release of residual stresses over hours. These results are then assessed through nonlinear biomechanical models to provide estimates of the residual stresses in the intact state. Although well studied, these analyses typically focus on hyperelastic material models despite significant evidence of viscoelastic phenomena over both short and long timescales. In this work, we extended the state-of-the-art structural tensor model for arterial tissues from Holzapfel and Ogden for fractional viscoelasticity. Models were tuned to capture consistent levels of hysteresis observed in biaxial experiments, while also minimizing the fractional viscoelastic weighting and opening angles to correctly capture opening angle dynamics. Results suggest that a substantial portion of the human abdominal aorta is viscoelastic, but exhibits a low fractional order (i.e. more elastically). Additionally, a significantly larger opening angle in the fully unloaded state is necessary to produce comparable hysteresis in biaxial testing. As a consequence, conventional estimates of residual stress using hyperelastic approaches over-estimate their viscoelastic counterparts by a factor of 2. Thus, a viscoelastic approach, such as the one illustrated in this study, in combination with an additional source of rate-controlled viscoelastic data is necessary to accurately analyze the residual stress distribution in soft biological tissues. STATEMENT OF SIGNIFICANCE: Residual stress plays a crucial role in achieving a homeostatic stress environment in soft biological tissues. However, the analysis of residual stress typically focuses on hyperelastic material models despite evidence of viscoelastic behavior. This work is the first attempt at analyzing the effects of viscoelasticity on residual stress. The application of viscoelasticity was crucial for producing realistic opening dynamics in arteries. The overall residual stresses were estimated to be 50% less than those from using hyperelastic material models, while the opening angles were projected to be 25% more than those measured after 16 hours, suggesting underestimated residual strain. This study highlights the importance viscoelasticity in the analysis of residual stress even in weakly dissipative materials like the human aorta.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, North Campus Research Center, Building 20, 2800 Plymouth Rd, Ann Arbor 48109, USA.
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, AT, Austria
| | - Justyna A Niestrawska
- Gottfried Schatz Research Center, Division of Macroscopic and Clinical Anatomy, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, AT, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, NO, Norway
| | - David Nordsletten
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK; Departments of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
7
|
Auerswald M, Messer-Hannemann P, Sellenschloh K, Wahlefeld J, Püschel K, Araujo SH, Morlock MM, Schulz AP, Huber G. Lag-Screw Osteosynthesis in Thoracolumbar Pincer Fractures. Global Spine J 2021; 11:1089-1098. [PMID: 32744071 PMCID: PMC8351070 DOI: 10.1177/2192568220941443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
STUDY DESIGN Biomechanical. OBJECTIVE This study evaluates the biomechanical properties of lag-screws used in vertebral pincer fractures at the thoracolumbar junction. METHODS Pincer fractures were created in 18 bisegmental human specimens. The specimens were assigned to three groups depending on their treatment perspective, either bolted, with the thread positioned in the cortical or cancellous bone, or control. The specimens were mounted in a servo-hydraulic testing machine and loaded with a 500 N follower load. They were consecutively tested in 3 different conditions: intact, fractured, and bolted/control. For each condition 10 cycles in extension/flexion, torsion, and lateral bending were applied. After each tested condition, a computed tomography (CT) scan was performed. Finally, an extension/flexion fatigue loading was applied to all specimens. RESULTS Biomechanical results revealed a nonsignificant increase in stiffness in extension/flexion of the fractured specimens compared with the intact ones. For lateral bending and torsion, the stiffness was significantly lower. Compared with the fractured specimens, no changes in stiffness due to bolting were discovered. CT scans showed an increasing fracture gap during axial loading both in extension/flexion, torsion, and lateral bending in the control specimens. In bolted specimens, the anterior fragment was approximated, and the fracture gap nullified. This refers to both the cortical and the cancellous thread positions. CONCLUSION The results of this study concerning the effect of lag-screws on pincer fractures appear promising. Though there was little effect on stiffness, CT scans reveal a bony contact in the bolted specimens, which is a requirement for bony healing.
Collapse
Affiliation(s)
- Marc Auerswald
- BG Trauma Hospital Hamburg, Hamburg, Germany,TUHH Hamburg University of Technology, Hamburg, Germany,Marc Auerswald, BG Trauma Hospital Hamburg, Bergedorfer Straße 10, 21033 Hamburg, Germany.
| | | | | | | | - Klaus Püschel
- University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | | | | | - Gerd Huber
- TUHH Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
8
|
Kerr HL, Gee A, Fernandes RJR, Kanawati AJ, Jin W, Gurr KR, Bailey CS, Zdero R, Rasoulinejad P. Biomechanical comparison of 3 types of transdiscal fixation implants for fixing high-grade L5/S1 spine spondylolisthesis. Spine J 2021; 21:1587-1593. [PMID: 33933707 DOI: 10.1016/j.spinee.2021.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT There are several options for the stabilization of high-grade lumbosacral spondylolisthesis including transdiscal screws, the Bohlman technique (transdiscal fibular strut) and the modified Bohlman technique (transdiscal titanium mesh cage). The choice of an optimum construct remains controversial; therefore, we endeavoured to study and compare the biomechanical performance of these 3 techniques. PURPOSE The aim of this study was to compare 3 types of transdiscal fixation biomechanically in an in vitro porcine lumbar-sacral spine model. STUDY DESIGN/SETTING Porcine cadaveric biomechanical study. METHODS 18 complete lumbar-sacral porcine spines were split into 3 repair groups, transdiscal screws (TS), Bohlman technique, and a modified Bohlman technique (MBT). Range of motion (L3 - S1) was measured in an intact and repaired state for flexion, extension, left/right lateral bending, and left/right torsion. To recreate a high-grade lumbosacral spondylolisthesis a bilateral L5/S1 facetectomy, removing the intervertebral disc completely, and the L5 body was displaced 50%-60% over the sacral promontory. Results were analyzed and compared to intact baseline measurements. Standard quasi-static moments (5 Nm) were applied in all modes. RESULTS All range of motion (ROM) were in reference to intact baseline values. TS had the lowest ROM in all modes (p=.006-.495). Statistical difference was found only in extension for TS vs. BT (p=.011) and TS vs. MBT (p=.014). No bone or implant failures occurred. CONCLUSION TS provided the lowest ROM in all modes of loading compared to Bohlman technique and MBT. Our study indicates that TS results in the most biomechanically stable construct. CLINICAL SIGNIFICANCE Knowledge of the biomechanical attributes of various constructs could aid physicians in choosing a surgical construct for their patients.
Collapse
Affiliation(s)
- Hui-Ling Kerr
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada; Dept. of Surgery (Div. of Orthopaedic Surgery), Western University, London, N6A 3K7, Canada; Dept. of Trauma and Orthopaedics, Gloucestershire Hospitals NHS Foundation Trust, GL53 7AN, Gloucestershire, UK
| | - Aaron Gee
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada.
| | - Renan J R Fernandes
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada; Dept. of Surgery (Div. of Orthopaedic Surgery), Western University, London, N6A 3K7, Canada
| | - Andrew J Kanawati
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada; Dept. of Surgery (Div. of Orthopaedic Surgery), Western University, London, N6A 3K7, Canada; Westmead Hospital, Sydney, New South Wales, NSW 2145, Australia
| | - Winston Jin
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada
| | - Kevin R Gurr
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada; Dept. of Surgery (Div. of Orthopaedic Surgery), Western University, London, N6A 3K7, Canada
| | - Christopher S Bailey
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada; Dept. of Surgery (Div. of Orthopaedic Surgery), Western University, London, N6A 3K7, Canada
| | - Radovan Zdero
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada; Dept. of Surgery (Div. of Orthopaedic Surgery), Western University, London, N6A 3K7, Canada; Dept. of Mechanical and Materials Engineering, Western University, London, N6A 3K7, Canada
| | - Parham Rasoulinejad
- London Health Science Centre, Victoria Hospital, London, N6A 5W9, Canada; Dept. of Surgery (Div. of Orthopaedic Surgery), Western University, London, N6A 3K7, Canada
| |
Collapse
|
9
|
Statistics in experimental studies on the human spine: Theoretical basics and review of applications. J Mech Behav Biomed Mater 2020; 110:103862. [DOI: 10.1016/j.jmbbm.2020.103862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022]
|
10
|
Le Quang H, Schmoelz W, Lindtner RA, Schwendinger P, Blauth M, Krappinger D. Biomechanical comparison of fixation techniques for transverse acetabular fractures - Single-leg stance vs. sit-to-stand loading. Injury 2020; 51:2158-2164. [PMID: 32646647 DOI: 10.1016/j.injury.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To biomechanically compare five different fixation techniques for transverse acetabular fractures using both the single-leg stance (SLS) and the sit-to-stand (STS) loading protocols and to directly compare fracture gap motion (FGM) and relative interfragmentary rotation (RIFR). METHODS Transtectal transverse acetabular fractures were created on fourth-generation composite hemipelves in a reproducible manner. Five different fixation techniques were biomechanically assessed using both an SLS and STS loading protocol: anterior plate (AP) only, posterior plate (PP) only, anterior plate plus posterior column screw (AP+PCS), posterior plate plus anterior column screw (PP+ACS) and anterior plus posterior plate (AP+PP). After preconditioning, the specimens were loaded from 50 to 750 N with a ramp of 100 N/s. FGM and RIFR under loads of 750 N were measured using an optical 3D measurement system. RESULTS In the three groups of fixation techniques addressing both columns, STS loading resulted in higher mean FGM and in RIFR than SLS loading. No construct failure was observed. In the single plate groups (AP only and PP only), STS loading resulted in failure of all specimens before reaching loads of 750 N, while no failure occurred after SLS loading. No significant differences in FGM and RIFR were found between the double plate (AP+PP) and the single plate plus column screw (AP+PCS and PP+ACS) techniques. CONCLUSION SLS loading appeared to overestimate the strength of acetabular fracture fixation constructs and STS loading may be more appropriate to provide clinically relevant biomechanical data. Internal fixation of a single column might not provide adequate stability for transverse fractures, while strength of single plate plus column screw fixation and double plate fixation was comparable.
Collapse
Affiliation(s)
- Huy Le Quang
- Department of Trauma Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Werner Schmoelz
- Department of Trauma Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Richard A Lindtner
- Department of Trauma Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Peter Schwendinger
- Department of Trauma Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Michael Blauth
- Department of Trauma Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Dietmar Krappinger
- Department of Trauma Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| |
Collapse
|
11
|
Bohl MA, McBryan S, Newcomb AGUS, Lehrman JN, Kelly BP, Nakaji P, Chang SW, Uribe JS, Turner JD, Kakarla UK. Range of Motion Testing of a Novel 3D-Printed Synthetic Spine Model. Global Spine J 2020; 10:419-424. [PMID: 32435561 PMCID: PMC7222693 DOI: 10.1177/2192568219858981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
STUDY DESIGN Biomechanical model study. OBJECTIVE The Barrow Biomimetic Spine (BBS) project is a resident-driven effort to manufacture a synthetic spine model with high biomechanical fidelity to human tissue. The purpose of this study was to investigate the performance of the current generation of BBS models on biomechanical testing of range of motion (ROM) and axial compression and to compare the performance of these models to historical cadaveric data acquired using the same testing protocol. METHODS Six synthetic spine models comprising L3-5 segments were manufactured with variable soft-tissue densities and print orientations. Models underwent torque loading to a maximum of 7.5 N m. Torques were applied to the models in flexion-extension, lateral bending, axial rotation, and axial compression. Results were compared with historic cadaveric control data. RESULTS Each model demonstrated steadily decreasing ROM on flexion-extension testing with increasing density of the intervertebral discs and surrounding ligamentous structures. Vertically printed models demonstrated markedly less ROM than equivalent models printed horizontally at both L3-4 (5.0° vs 14.0°) and L4-5 (3.9° vs 15.2°). Models D and E demonstrated ROM values that bracketed the cadaveric controls at equivalent torque loads (7.5 N m). CONCLUSIONS This study identified relevant variables that affect synthetic spine model ROM and compressibility, confirmed that the models perform predictably with changes in these print variables, and identified a set of model parameters that result in a synthetic model with overall ROM that approximates that of a cadaveric model. Future studies can be undertaken to refine model performance and determine intermodel variability.
Collapse
Affiliation(s)
- Michael A. Bohl
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sarah McBryan
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anna G. U. S. Newcomb
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Jennifer N. Lehrman
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Brian P. Kelly
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Steve W. Chang
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Juan S. Uribe
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Jay D. Turner
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - U. Kumar Kakarla
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA,U. Kumar Kakarla, c/o Neuroscience Publications, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
12
|
Capilnasiu A, Bilston L, Sinkus R, Nordsletten D. Nonlinear viscoelastic constitutive model for bovine liver tissue. Biomech Model Mechanobiol 2020; 19:1641-1662. [PMID: 32040652 PMCID: PMC7502455 DOI: 10.1007/s10237-020-01297-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022]
Abstract
Soft tissue mechanical characterisation is important in many areas of medical research. Examples span from surgery training, device design and testing, sudden injury and disease diagnosis. The liver is of particular interest, as it is the most commonly injured organ in frontal and side motor vehicle crashes, and also assessed for inflammation and fibrosis in chronic liver diseases. Hence, an extensive rheological characterisation of liver tissue would contribute to advancements in these areas, which are dependent upon underlying biomechanical models. The aim of this paper is to define a liver constitutive equation that is able to characterise the nonlinear viscoelastic behaviour of liver tissue under a range of deformations and frequencies. The tissue response to large amplitude oscillatory shear (1–50%) under varying preloads (1–20%) and frequencies (0.5–2 Hz) is modelled using viscoelastic-adapted forms of the Mooney–Rivlin, Ogden and exponential models. These models are fit to the data using classical or modified objective norms. The results show that all three models are suitable for capturing the initial nonlinear regime, with the latter two being capable of capturing, simultaneously, the whole deformation range tested. The work presented here provides a comprehensive analysis across several material models and norms, leading to an identifiable constitutive equation that describes the nonlinear viscoelastic behaviour of the liver.
Collapse
Affiliation(s)
- Adela Capilnasiu
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Lynne Bilston
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Ralph Sinkus
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Inserm U1148, LVTS, University Paris Diderot, University Paris 13, 75018, Paris, France
| | - David Nordsletten
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
13
|
Bohl MA, McBryan S, Nakaji P, Chang SW, Turner JD, Kakarla UK. Development and first clinical use of a novel anatomical and biomechanical testing platform for scoliosis. JOURNAL OF SPINE SURGERY (HONG KONG) 2019; 5:329-336. [PMID: 31663044 PMCID: PMC6787359 DOI: 10.21037/jss.2019.09.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have demonstrated that, by using various three-dimensional (3D) printing technologies, synthetic spine models can be manufactured to mimic a human spine in its gross and radiographic anatomy and the biomechanical performance of bony and ligamentous tissue. These manufacturing processes have not, however, been used in combination to create a long-segment, biomimetic model of a patient with scoliosis. The purpose of this study was to describe the development of a biomimetic scoliosis model and early clinical experience using this model as a surgical planning and education platform. METHODS Synthetic spine models were printed to mimic the anatomy and biomechanical performance of 2 adult patients with scoliosis. Preoperatively, the models were surgically corrected by the attending surgeon of each patient. Patients then underwent surgical correction of their spinal deformities. Correction of the models was compared to the surgical correction in the patients. RESULTS Patient 1 had a preoperative coronal Cobb angle of 40° from L1 to S1, as did the patient's synthetic spine model. The patient's spine model was corrected to 17.6°, and the patient achieved a correction of 17.3°. Patient 2 had a preoperative mid-thoracic Cobb angle of 88° and an upper thoracic Cobb angle of 43°. Preoperatively, the patient's spine model was corrected to 19.5° and 9.2° for the mid-thoracic and upper thoracic curves, respectively. Immediately after surgery, the patient's mid-thoracic and upper thoracic Cobb angles measured 18.7° and 9.5°, respectively. In both cases, the use of the spine models preoperatively changed the attending surgeon's operative plan. CONCLUSIONS A novel synthetic spine model for corrective scoliosis procedures is presented, along with early clinical experience using this model as a surgical planning platform. This model has tremendous potential not only as a surgical planning platform but also as an adjunct to patient consent, surgical education, and biomechanical research.
Collapse
Affiliation(s)
- Michael A Bohl
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sarah McBryan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Steve W Chang
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jay D Turner
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - U Kumar Kakarla
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
14
|
Bernardo A. The Changing Face of Technologically Integrated Neurosurgery: Today's High-Tech Operating Room. World Neurosurg 2018; 106:1001-1014. [PMID: 28985655 DOI: 10.1016/j.wneu.2017.06.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Over the last decade, surgical technology in planning, mapping, optics, robotics, devices, and minimally invasive techniques has changed the face of modern neurosurgery. We explore the current advances in clinical technology across all neurosurgical subspecialties, examine how clinical practice is being shaped by this technology, and suggest what the operating room of tomorrow may look like.
Collapse
Affiliation(s)
- Antonio Bernardo
- Department of Neurological Surgery, Skull Base Laboratory, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
15
|
What Can Standard in Vitro Biomechanical Testing Tell Us about Adjacent Segment Disease? World Neurosurg 2016; 89:710-2. [DOI: 10.1016/j.wneu.2015.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|