1
|
Kurniawan DC, Rohman MS, Witasari LD. Heterologous expression, characterization, and application of recombinant thermostable α-amylase from Geobacillus sp. DS3 for porous starch production. Biochem Biophys Rep 2024; 39:101784. [PMID: 39113813 PMCID: PMC11304703 DOI: 10.1016/j.bbrep.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Novel Geobacillus sp. DS3, isolated from the Sikidang Crater in Dieng, exhibits promising characteristics for industrial applications, particularly in thermostable α-amylase production. Recombinant technology was used to express thermostable α-amylase in E. coli BL21(DE3) to overcome high-temperature production challenges. The study aimed to express, purify, characterize, and explore potential applications of this novel enzyme. The enzyme was successfully expressed in E. coli BL21(DE3) at 18 °C for 20 h with 0.5 mM IPTG induction. Purification with Ni-NTA column yielded 69.23 % from the initial crude enzyme, with a 3.6-fold increase in specific activity. The enzyme has a molecular weight of ±70 kDa (±58 kDa enzyme+11 kDa SUMO protein). It exhibited activity over a wide temperature range (30-90 °C) and pH range (6-8), with optimal activity at 70 °C and pH 6 with great stability at 60 °C. Kinetic analysis revealed Km and Vmax values of 324.03 mg/ml and 36.5 U/mg, respectively, with dextrin as the preferred substrate without cofactor addition. As a metalloenzyme, it showed the best activity in the presence of Ca2+. The enzyme was used for porous starch production and successfully immobilized with chitosan, exhibiting improved thermal stability. After the fourth reuse, the immobilized enzyme maintained 62 % activity compared to the initial immobilization.
Collapse
Affiliation(s)
- Dina Clarissa Kurniawan
- Biotechnology Study Program, Faculty of Graduate School, Universitas Gadjah Mada, Jl. Teknika Utara, Kocoran, Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Muhammad Saifur Rohman
- Biotechnology Study Program, Faculty of Graduate School, Universitas Gadjah Mada, Jl. Teknika Utara, Kocoran, Sleman, D.I. Yogyakarta 55281, Indonesia
- Dept. of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Lucia Dhiantika Witasari
- Biotechnology Study Program, Faculty of Graduate School, Universitas Gadjah Mada, Jl. Teknika Utara, Kocoran, Sleman, D.I. Yogyakarta 55281, Indonesia
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Sleman, D.I. Yogyakarta 55281, Indonesia
| |
Collapse
|
2
|
Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN. Extracellular BSA-degrading SAPs in the rare pathogen Meyerozyma guilliermondii strain SO as potential virulence factors in candidiasis. Microb Pathog 2024; 193:106773. [PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Kiribayeva A, Silayev D, Akishev Z, Baltin K, Aktayeva S, Ramankulov Y, Khassenov B. An impact of N-glycosylation on biochemical properties of a recombinant α-amylase from Bacillus licheniformis. Heliyon 2024; 10:e28064. [PMID: 38515717 PMCID: PMC10956057 DOI: 10.1016/j.heliyon.2024.e28064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Amylases are enzymes that are known to hydrolyze starch. High efficiency of amylolytic enzymes allows them to compete in the industry with the technology of chemical hydrolysis of starch. A Bacillus licheniformis strain with high amylolytic activity was isolated from soil and designated as T5. The gene encoding α-amylase from B. licheniformis T5 was successfully expressed in both Escherichia coli (rAmyT5-E) and Pichia pastoris (as rAmyT5-P). According to the study, the recombinant α-amylases rAmyT5-E and rAmyT5-P exhibited the highest activity at pH 6.0 and temperatures of 70 and 80 °C, respectively. Over 80% of the rAmyT5-E enzyme activity was preserved following incubation within the pH range of 5-9; the same was true for rAmyT5-P after incubation at pH 6-9. N-glycosylation reduced the thermal and pH stability of the enzyme. The specific activity and catalytic efficiency of the recombinant AmyT5 α-amylase were also diminished by N-glycosylation.
Collapse
Affiliation(s)
- Assel Kiribayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Dmitriy Silayev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Zhiger Akishev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Saniya Aktayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
4
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Lai R, Lin M, Yan Y, Jiang S, Zhou Z, Wang J. Comparative Genomic Analysis of a Thermophilic Protease-Producing Strain Geobacillus stearothermophilus H6. Genes (Basel) 2023; 14:466. [PMID: 36833392 PMCID: PMC9956924 DOI: 10.3390/genes14020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The genus Geobacillus comprises thermophilic gram-positive bacteria which are widely distributed, and their ability to withstand high temperatures makes them suitable for various applications in biotechnology and industrial production. Geobacillus stearothermophilus H6 is an extremely thermophilic Geobacillus strain isolated from hyperthermophilic compost at 80 °C. Through whole-genome sequencing and genome annotation analysis of the strain, the gene functions of G. stearothermophilus H6 were predicted and the thermophilic enzyme in the strain was mined. The G. stearothermophilus H6 draft genome consisted of 3,054,993 bp, with a genome GC content of 51.66%, and it was predicted to contain 3750 coding genes. The analysis showed that strain H6 contained a variety of enzyme-coding genes, including protease, glycoside hydrolase, xylanase, amylase and lipase genes. A skimmed milk plate experiment showed that G. stearothermophilus H6 could produce extracellular protease that functioned at 60 °C, and the genome predictions included 18 secreted proteases with signal peptides. By analyzing the sequence of the strain genome, a protease gene gs-sp1 was successfully screened. The gene sequence was analyzed and heterologously expressed, and the protease was successfully expressed in Escherichia coli. These results could provide a theoretical basis for the development and application of industrial strains.
Collapse
Affiliation(s)
- Ruilin Lai
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Zhengfu Zhou
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Khaswal A, Chaturvedi N, Mishra SK, Kumar PR, Paul PK. Current status and applications of genus Geobacillus in the production of industrially important products-a review. Folia Microbiol (Praha) 2022; 67:389-404. [PMID: 35229277 DOI: 10.1007/s12223-022-00961-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
The genus Geobacillus is one of the most important genera which mainly comprises gram-positive thermophilic bacterial strains including obligate aerobes, denitrifiers and facultative anaerobes having capability of endospore formation as well. The genus Geobacillus is widely distributed in nature and mostly abundant in extreme locations such as cool soils, hot springs, hydrothermal vents, marine trenches, hay composts and dairy plants. Due to plasticity towards environmental adaptation, the Geobacillus sp. shows remarkable genome diversification and acquired many beneficial properties, which facilitates their exploitation for many biotechnological applications. Many thermophiles are of biotechnological importance and having considerable interest in commercial applications for the production of industrially important products. Recently, due to catabolic versatility especially in the degradation of hemicellulose and starch containing agricultural waste and rapid growth rates, these microorganisms show potential for the production of biofuels, thermostable enzymes and bioremediation. This review mainly summarizes the status of Geobacillus sp. including its notable properties, biotechnological studies and its potential application in the production of industrially important products.
Collapse
Affiliation(s)
- Ashutosh Khaswal
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| | - Neha Chaturvedi
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| | - Santosh Kumar Mishra
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India.
| | - Priya Ranjan Kumar
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| | - Prabir Kumar Paul
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| |
Collapse
|
7
|
Kikani BA, Singh SP. Amylases from thermophilic bacteria: structure and function relationship. Crit Rev Biotechnol 2021; 42:325-341. [PMID: 34420464 DOI: 10.1080/07388551.2021.1940089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amylases hydrolyze starch to diverse products including dextrins and progressively smaller polymers of glucose units. Thermally stable amylases account for nearly 25% of the enzyme market. This review highlights the structural attributes of the α-amylases from thermophilic bacteria. Heterologous expression of amylases in suitable hosts is discussed in detail. Further, specific value maximization approaches, such as protein engineering and immobilization of the amylases are discussed in order to improve its suitability for varied applications on a commercial scale. The review also takes into account of the immobilization of the amylases on nanomaterials to increase the stability and reusability of the enzymes. The function-based metagenomics would provide opportunities for searching amylases with novel characteristics. The review is expected to explore novel amylases for future potential applications.
Collapse
Affiliation(s)
- Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
8
|
Lim SJ, Oslan SN. Native to designed: microbial -amylases for industrial applications. PeerJ 2021; 9:e11315. [PMID: 34046253 PMCID: PMC8139272 DOI: 10.7717/peerj.11315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work. Survey methodology and objectives A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries. Conclusions Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Soy S, Nigam VK, Sharma SR. Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Snehi Soy
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Vinod Kumar Nigam
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shubha Rani Sharma
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
10
|
Structure Prediction of a Thermostable SR74 α-Amylase from Geobacillus stearothermophilus Expressed in CTG-Clade Yeast Meyerozyma guilliermondii Strain SO. Catalysts 2020. [DOI: 10.3390/catal10091059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-amylase which catalyzes the hydrolysis of α-1,4-glycosidic bonds in starch have frequently been cloned into various microbial workhorses to yield a higher recombinant titer. A thermostable SR74 α-amylase from Geobacillus stearothermophilus was found to have a huge potential in detergent industries due to its thermostability properties. The gene was cloned into a CTG-clade yeast Meyerozyma guilliermondii strain SO. However, the CUG ambiguity present in the strain SO has possibly altered the amino acid residues in SR74 amylase wild type (WT) encoded by CUG the codon from the leucine to serine. From the multiple sequence alignment, six mutations were found in recombinant SR74 α-amylase (rc). Their effects on SR74 α-amylase structure and function remain unknown. Herein, we predicted the structures of the SR74 amylases (WT and rc) using the template 6ag0.1.A (PDB ID: 6ag0). We sought to decipher the possible effects of CUG ambiguity in strain SO via in silico analysis. They are structurally identical, and the metal triad (CaI–CaIII) might contribute to the thermostability while CaIV was attributed to substrate specificity. Since the pairwise root mean square deviation (RMSD) between the WT and rc SR74 α-amylase was lower than the template, we suggest that the biochemical properties of rc SR74 α-amylase were better deduced from its WT, especially its thermostability.
Collapse
|
11
|
ÖZCAN D, SİPAHİOĞLU HM. Simultaneous production of alpha and beta amylase enzymes using separate gene bearing recombinant vectors in the same Escherichia coli cells. Turk J Biol 2020; 44:201-207. [PMID: 32922127 PMCID: PMC7478135 DOI: 10.3906/biy-2001-71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The present study describes the simultaneous expression of thermostable industrial alpha (α) and beta (β) amylase enzymes that have been used widely in starch industry. Genomic DNA of Bacillus stearothermophilus DSM 22 strain for α amylase and, Thermoanaerobacterium (Clostridium) thermosulfurogenes DSM 2229 strain for β amylase were used as gene sources. Both genes were ligated into pETDuet-1 expression vector separately and resulting recombinant vectors were transformed into Escherichia coli BL21 competent cells by electroporation. The cells were first transformed by pETDuet-1/ αAmy recombinant plasmid, then the competent cells carrying this plasmid were prepared for the transformation of pETDuet-1/ βAmy plasmid. Enzymatic activities of bacterial colonies were detected on LB agar staining with iodide. Both enzymes were more produced by IPTG induction in BL21 cells and were purified using Ni-NTA agarose column. SDS-PAGE and western blot analyses showed that the molecular weight of purified α and β amylase to be approximately 60 kDa and 55kDa, respectively. The concentration of the purified α and β amylase were calculated as 4.59 μg/mL and 3.17 μg/mL with IPTG as an inducer in LB medium. The present study proposes a novel and efficient method for the production of thermostable α and β amylases at the same E coli cells containing separate engineered plasmid vectors.
Collapse
Affiliation(s)
- Dilek ÖZCAN
- Department of Plant Protection, Faculty of Agriculture, Van Yüzüncü Yıl University, VanTurkey
| | - Hikmet Murat SİPAHİOĞLU
- Department of Plant Protection, Faculty of Agriculture, Malatya Turgut Özal University, MalatyaTurkey
| |
Collapse
|
12
|
Irla M, Drejer EB, Brautaset T, Hakvåg S. Establishment of a functional system for recombinant production of secreted proteins at 50 °C in the thermophilic Bacillus methanolicus. Microb Cell Fact 2020; 19:151. [PMID: 32723337 PMCID: PMC7389648 DOI: 10.1186/s12934-020-01409-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The suitability of bacteria as microbial cell factories is dependent on several factors such as price of feedstock, product range, production yield and ease of downstream processing. The facultative methylotroph Bacillus methanolicus is gaining interest as a thermophilic cell factory for production of value-added products from methanol. The aim of this study was to expand the capabilities of B. methanolicus as a microbial cell factory by establishing a system for secretion of recombinant proteins. RESULTS Native and heterologous signal peptides were tested for secretion of α-amylases and proteases, and we have established the use of the thermostable superfolder green fluorescent protein (sfGFP) as a valuable reporter protein in B. methanolicus. We demonstrated functional production and secretion of recombinant proteases, α-amylases and sfGFP in B. methanolicus MGA3 at 50 °C and showed that the choice of signal peptide for optimal secretion efficiency varies between proteins. In addition, we showed that heterologous production and secretion of α-amylase from Geobacillus stearothermophilus enables B. methanolicus to grow in minimal medium with starch as the sole carbon source. An in silico signal peptide library consisting of 169 predicted peptides from B. methanolicus was generated and will be useful for future studies, but was not experimentally investigated any further here. CONCLUSION A functional system for recombinant production of secreted proteins at 50 °C has been established in the thermophilic B. methanolicus. In addition, an in silico signal peptide library has been generated, that together with the tools and knowledge presented in this work will be useful for further development of B. methanolicus as a host for recombinant protein production and secretion at 50 °C.
Collapse
Affiliation(s)
- Marta Irla
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eivind B Drejer
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sigrid Hakvåg
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
13
|
Burhanoğlu T, Sürmeli Y, Şanlı-Mohamed G. Identification and characterization of novel thermostable α-amylase from Geobacillus sp. GS33. Int J Biol Macromol 2020; 164:578-585. [PMID: 32693140 DOI: 10.1016/j.ijbiomac.2020.07.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/29/2023]
Abstract
In this study, the heterologous expression and biochemical characterization of a thermostable α-amylase from Geobacillus sp. GS33 was investigated. The recombinant α-amylase was overexpressed in Escherichia coli BL21 (λDE) and purified via anion exchange and size-exclusion chromatography. The purified α-amylase had a molecular weight of about 60 kDa, and was active in a broad range of pH 3-10 and temperature (40-90 °C) with maximum activity at pH 7-8 and 60 °C. The enzyme retained 50% residual activity at 65 °C, but only 20% at 85 °C after 16 h. At pH 9 and pH 7, the residual activity at 65 °C was 50% and 30%, respectively. The enzyme was remarkably activated by Co2+, Ca2+, Mg2+, PMSF, DTT, and Triton X-100, but partially inhibited by Cu2+, methanol, hexane, ethanol, acetone, SDS, and Tween 20. A molecular phylogeny analysis showed that the enzyme's amino acid sequence had the closest connection with an α-amylase from Geobacillus thermoleovorans subsp. stromboliensis nov. 3D-structure-based amino acid sequence alignments revealed that the three catalytic residues (D217, E246, D314) and the four Ca2+ ion coordination residues (N143, E177, D186, H221) were conserved in α-amylase from Geobacillus sp. GS33. The temperature stability and neutral pH optimum suggest that the enzyme may be useful for industrial applications.
Collapse
Affiliation(s)
- Tülin Burhanoğlu
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430 İzmir, Turkey; Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430 İzmir, Turkey; Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430 İzmir, Turkey; Department of Chemistry, İzmir Institute of Technology, 35430 İzmir, Turkey.
| |
Collapse
|
14
|
Zhang B, Cavallaro AS, Mody KT, Zhang J, Deringer JR, Brown WC, Mahony TJ, Yu C, Mitter N. Nanoparticle-Based Delivery of Anaplasma marginale Membrane Proteins; VirB9-1 and VirB10 Produced in the Pichia pastoris Expression System. NANOMATERIALS 2016; 6:nano6110201. [PMID: 28335329 PMCID: PMC5245741 DOI: 10.3390/nano6110201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 01/24/2023]
Abstract
Bovine anaplasmosis or cattle-tick fever is a tick-borne haemolytic disease caused by the rickettsial haemoparasite Anaplasma marginale in tropical and subtropical areas of the world. While difficult to express, the proteins VirB9-1 and VirB10 are immunogenic components of the outer membrane type IV secretion system that have been identified as candidate antigens for vaccines targeting of A. marginale. Soluble VirB9-1 and VirB10 were successfully expressed using Pichia pastoris. When formulated with the self-adjuvanting silica vesicles, SV-100 (diameter: 50 nm, and pore entrance size: 6 nm), 200 µg of VirB9-1 and VirB10 were adsorbed per milligram of nanoparticle. The VirB9-1 and VirB10, SV-100 formulations were shown to induce higher antibody responses in mice compared to the QuilA formulations. Moreover, intracellular staining of selected cytokines demonstrated that both VirB9-1 and VirB10 formulations induced cell-mediated immune responses in mice. Importantly, the SV-100 VirB9-1 and VirB10 complexes were shown to specifically stimulate bovine T-cell linages derived from calves immunised with A. marginale outer membrane fractions, suggesting formulations will be useful for bovine immunisation and protection studies. Overall this study demonstrates the potential of self-adjuvanting silica vesicle formulations to address current deficiencies in vaccine delivery applications.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Agriculture and Fisheries, Agri-Science Queensland, Animal Science, St Lucia, QLD 4072, Australia.
| | - Antonio S Cavallaro
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - James R Deringer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | - Wendy C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
15
|
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 2016; 234:139-157. [DOI: 10.1016/j.jbiotec.2016.07.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|