1
|
Behera BP, Mishra SR, Patra S, Mahapatra KK, Bhol CS, Panigrahi DP, Praharaj PP, Klionsky DJ, Bhutia SK. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00004-8. [PMID: 39880721 DOI: 10.1016/j.cytogfr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Aberrations emerging in mitochondrial homeostasis are restrained by mitophagy to control mitochondrial integrity, bioenergetics signaling, metabolism, oxidative stress, and apoptosis. The mitophagy-accompanied mitochondrial processes that occur in a dysregulated condition act as drivers for cancer occurrence. In addition, the enigmatic nature of mitophagy in cancer cells modulates the cellular proteome, creating challenges for therapeutic interventions. Several reports found the role of cellular signaling pathways in cancer to modulate mitophagy to mitigate stress, immune checkpoints, energy demand, and cell death. Thus, targeting mitophagy to hinder oncogenic intracellular signaling by promoting apoptosis, in hindsight, might have an edge against cancer. This review highlights the receptors and adaptors, and the involvement of many proteins in mitophagy and their role in oncogenesis. It also provides insight into using mitophagy as a potential target for therapeutic intervention in various cancer types.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
2
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
D'Amico AG, Maugeri G, Magrì B, Bucolo C, D'Agata V. Targeting the PINK1/Parkin pathway: A new perspective in the prevention and therapy of diabetic retinopathy. Exp Eye Res 2024; 247:110024. [PMID: 39117133 DOI: 10.1016/j.exer.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes characterized by neurovascular impairment of the retina. The dysregulation of the mitophagy process occurs before apoptotic cell death and the appearance of vascular damage. In particular, mitochondrial alterations happen during DR development, supporting the hypothesis that mitophagy is negatively correlated to disease progression. This process is mainly regulated by the PTEN-induced putative kinase protein 1 (PINK1)/Parkin pathway whose activation promotes mitophagy. In this review, we will summarize the evidence reported in the literature demonstrating the involvement of the PINK1/Parkin pathway in diabetic retinopathy-induced retinal degeneration.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy.
| |
Collapse
|
4
|
Khorsandi L, Heidari-Moghadam A, Younesi E, Javad Khodayar M, Asadi-Fard Y. Naringenin ameliorates cytotoxic effects of bisphenol A on mouse Sertoli cells by suppressing oxidative stress and modulating mitophagy: An experimental study. Int J Reprod Biomed 2023; 22:219-228. [PMID: 38868445 PMCID: PMC11165226 DOI: 10.18502/ijrm.v22i3.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
Background Bisphenol A (BPA), an endocrine-disrupting agent, is widely used as polycarbonate plastics for producing food containers. BPA exposure at environmentally relevant concentrations can cause reproductive disorders. Objective The effect of Naringenin (NG) on BPA-induced Sertoli cell toxicity and its mechanism was examined in the present study. Materials and Methods In this experimental-laboratory study, the mouse TM4 cells were treated to BPA (0.8 μM) or NG for 24 hr at concentrations of 10, 20, and 50 μg/ml. Cell viability, reactive oxygen species (ROS) production, malondialdehyde (MDA) content, antioxidant level, and mitochondrial membrane potential (MMP) were examined. The expression of mitophagy-related genes, including Parkin and PTEN-induced putative kinase 1 (Pink1), was also evaluated. Results BPA significantly lowered the viability of the Sertoli cells (p= 0.004). Pink1 and Parkin levels of the BPA group were significantly increased (p < 0.001), while the MMP was considerably decreased (p < 0.001). BPA raised MDA and ROS levels (p < 0.001) and reduced antioxidant biomarkers (p= 0.003). NG at the 20 and 50 μg/ml concentrations could significantly improve the viability and MMP of TM4 cells (p= 0.034). NG depending on concentration, could decrease Pink1 and Parkin at mRNA and protein levels compared to the BPA group (p = 0.024). NG enhanced antioxidant factors, while ROS and MDA levels were decreased in the BPA-exposed cells. Conclusion The beneficial impacts of NG on BPA-exposed Sertoli cells are related to the suppression of mitophagy and the reduction of oxidative stress.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Heidari-Moghadam
- Department of Anatomical Sciences, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Younesi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yousef Asadi-Fard
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
5
|
Wei S, Leng B, Yan G. Targeting autophagy process in center nervous trauma. Front Neurosci 2023; 17:1128087. [PMID: 36950126 PMCID: PMC10025323 DOI: 10.3389/fnins.2023.1128087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The central nervous system (CNS) is the primary regulator of physiological activity, and when CNS is compromised, its physical functions are affected. Spinal cord injury (SCI) and traumatic brain injury (TBI) are common trauma in CNS that are difficult to recover from, with a higher global disability and mortality rate. Autophagy is familiar to almost all researchers due to its role in regulating the degradation and recycling of cellular defective or incorrect proteins and toxic components, maintaining body balance and regulating cell health and function. Emerging evidence suggests it has a broad and long-lasting impact on pathophysiological process such as oxidative stress, inflammation, apoptosis, and angiogenesis, involving the alteration of autophagy marker expression and function recovery. Changes in autophagy level are considered a potential therapeutic strategy and have shown promising results in preclinical studies for neuroprotection following traumatic brain injury. However, the relationship between upward or downward autophagy and functional recovery following SCI or TBI is debatable. This article reviews the regulation and role of autophagy in repairing CNS trauma and the intervention effects of autophagy-targeted therapeutic agents to find more and better treatment options for SCI and TBI patients.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Genquan Yan,
| |
Collapse
|
6
|
Xie J, Cui Y, Chen X, Yu H, Chen J, Huang T, He M, Zhang L, Meng Q. VDAC1 regulates mitophagy in NLRP3 inflammasome activation in retinal capillary endothelial cells under high-glucose conditions. Exp Eye Res 2021; 209:108640. [PMID: 34058229 DOI: 10.1016/j.exer.2021.108640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/14/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Diabetic retinopathy (DR) has been considered to involve mitochondrial alterations and be related to the nucleotide-binding oligomerization domain-like receptors 3 (NLRP3) inflammasome activation. The voltage-dependent anion channel 1 (VDAC1) protein is one of the key proteins that regulates the metabolic and energetic functions of the mitochondria. To explore the involvement of VDAC1 in mitophagy regulation of NLRP3 inflammasome activation under high-glucose (HG) conditions, this study examined expressions of VDAC1, mitochondrial function and mitophagy-related proteins, and NLRP3 inflammasome-related proteins in human retinal capillary endothelial cells (HRCECs) cultured with 30 mM of glucose in the presence or absence of mitophagy inhibitor (Mdivi-1) using Western blot. Mitochondrial membrane potential and mitochondrial reactive oxygen species (mtROS) were detected using flow cytometry. GFP-tagged pAdTrack-VDAC1 adenovirus was used to overexpress VDAC1. Cell biological behaviors, including proliferation, migration, tubule formation, and apoptosis, were also observed. Our results showed that when compared to the normal glucose and high mannitol groups, increased amounts of mitochondrial fragments, reduced mitochondrial membrane potential, increased expression of mitochondrial fission protein Drp 1, decreased expression of mitochondrial fusion protein Mfn 2, accumulation of mtROS, and activation of the NLRP3 inflammasome were observed in the HG group. Meanwhile, HG markedly reduced the protein expressions of PINK1, Parkin and VDAC1. Inhibition of mitophagy reduced PINK1 expression, enhanced NLRP3 expression, but failed to alter VDAC1. VDAC1 overexpression promoted PINK1 expression, inhibited NLRP3 activation and changed the cell biological behaviors under HG conditions. These findings demonstrate that VDAC1-mediated mitophagy plays a crucial role in regulating NLRP3 inflammasome activation in retinal capillary endothelial cells under HG conditions, suggesting that VDAC1 may be a potential target for preventing or treating DR.
Collapse
Affiliation(s)
- Jie Xie
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Cui
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangting Chen
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Chen
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tian Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengxia He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Qianli Meng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
7
|
Li S, Zhang J, Liu C, Wang Q, Yan J, Hui L, Jia Q, Shan H, Tao L, Zhang M. The Role of Mitophagy in Regulating Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617256. [PMID: 34113420 PMCID: PMC8154277 DOI: 10.1155/2021/6617256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are multifaceted organelles that serve to power critical cellular functions, including act as power generators of the cell, buffer cytosolic calcium overload, production of reactive oxygen species, and modulating cell survival. The structure and the cellular location of mitochondria are critical for their function and depend on highly regulated activities such as mitochondrial quality control (MQC) mechanisms. The MQC is regulated by several sets of processes: mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy, and other mitochondrial proteostasis mechanisms such as mitochondrial unfolded protein response (mtUPR) or mitochondrial-derived vesicles (MDVs). These processes are important for the maintenance of mitochondrial homeostasis, and alterations in the mitochondrial function and signaling are known to contribute to the dysregulation of cell death pathways. Recent studies have uncovered regulatory mechanisms that control the activity of the key components for mitophagy. In this review, we discuss how mitophagy is controlled and how mitophagy impinges on health and disease through regulating cell death.
Collapse
Affiliation(s)
- Sunao Li
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Jiaxin Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Chao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Hui
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Qiufang Jia
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Jayatunga DPW, Hone E, Bharadwaj P, Garg M, Verdile G, Guillemin GJ, Martins RN. Targeting Mitophagy in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1273-1297. [PMID: 33285629 DOI: 10.3233/jad-191258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform many essential cellular functions including energy production, calcium homeostasis, transduction of metabolic and stress signals, and mediating cell survival and death. Maintaining viable populations of mitochondria is therefore critical for normal cell function. The selective disposal of damaged mitochondria, by a pathway known as mitophagy, plays a key role in preserving mitochondrial integrity and quality. Mitophagy reduces the formation of reactive oxygen species and is considered as a protective cellular process. Mitochondrial dysfunction and deficits of mitophagy have important roles in aging and especially in neurodegenerative disorders such as Alzheimer's disease (AD). Targeting mitophagy pathways has been suggested to have potential therapeutic effects against AD. In this review, we aim to briefly discuss the emerging concepts on mitophagy, molecular regulation of the mitophagy process, current mitophagy detection methods, and mitophagy dysfunction in AD. Finally, we will also briefly examine the stimulation of mitophagy as an approach for attenuating neurodegeneration in AD.
Collapse
Affiliation(s)
- Dona P W Jayatunga
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Manohar Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gilles J Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
9
|
A A MA, Ameenudeen S, Kumar A, Hemalatha S, Ahmed N, Ali N, AlAsmari AF, Aashique M, Waseem M. Emerging Role of Mitophagy in Inflammatory Diseases: Cellular and Molecular Episodes. Curr Pharm Des 2020; 26:485-491. [PMID: 31914907 DOI: 10.2174/1381612826666200107144810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
Mitochondria are the crucial regulators for the major source of ATP for different cellular events. Due to damage episodes, mitochondria have been established for a plethora ofalarming signals of stress that lead to cellular deterioration, thereby causing programmed cell death. Defects in mitochondria play a key role in arbitrating pathophysiological machinery with recent evince delineating a constructive role in mitophagy mediated mitochondrial injury. Mitophagy has been known for the eradication of damaged mitochondria via the autophagy process. Mitophagy has been investigated as an evolutionarily conserved mechanism for mitochondrial quality control and homeostasis. Impaired mitophagy has been critically linked with the pathogenesis of inflammatory diseases. Nevertheless, the exact mechanism is not quite revealed, and it is still debatable. The purpose of this review was to investigate the possible role of mitophagy and its associated mechanism in inflammation-mediated diseases at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Mohamed Adil A A
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India.,SSE, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shabnam Ameenudeen
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Ashok Kumar
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - S Hemalatha
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Neesar Ahmed
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Aashique
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Mohammad Waseem
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| |
Collapse
|
10
|
Sfera A, Gradini R, Cummings M, Diaz E, Price AI, Osorio C. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Front Neurol 2018; 9:1062. [PMID: 30564191 PMCID: PMC6288235 DOI: 10.3389/fneur.2018.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease, the most common form of dementia, is marked by progressive cognitive and functional impairment believed to reflect synaptic and neuronal loss. Recent preclinical data suggests that lipopolysaccharide (LPS)-activated microglia may contribute to the elimination of viable neurons and synapses by promoting a neurotoxic astrocytic phenotype, defined as A1. The innate immune cells, including microglia and astrocytes, can either facilitate or inhibit neuroinflammation in response to peripherally applied inflammatory stimuli, such as LPS. Depending on previous antigen encounters, these cells can assume activated (trained) or silenced (tolerized) phenotypes, augmenting or lowering inflammation. Iron, reactive oxygen species (ROS), and LPS, the cell wall component of gram-negative bacteria, are microglial activators, but only the latter can trigger immune tolerization. In Alzheimer's disease, tolerization may be impaired as elevated LPS levels, reported in this condition, fail to lower neuroinflammation. Iron is closely linked to immunity as it plays a key role in immune cells proliferation and maturation, but it is also indispensable to pathogens and malignancies which compete for its capture. Danger signals, including LPS, induce intracellular iron sequestration in innate immune cells to withhold it from pathogens. However, excess cytosolic iron increases the risk of inflammasomes' activation, microglial training and neuroinflammation. Moreover, it was suggested that free iron can awaken the dormant central nervous system (CNS) LPS-shedding microbes, engendering prolonged neuroinflammation that may override immune tolerization, triggering autoimmunity. In this review, we focus on iron-related innate immune pathology in Alzheimer's disease and discuss potential immunotherapeutic agents for microglial de-escalation along with possible delivery vehicles for these compounds.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States.,Patton State Hospital, San Bernardino, CA, United States
| | - Roberto Gradini
- Department of Pathology, La Sapienza University of Rome, Rome, Italy
| | | | - Eddie Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Amy I Price
- Evidence Based Medicine, University of Oxford, Oxford, United Kingdom
| | - Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
11
|
Bednarczyk M, Zmarzły N, Grabarek B, Mazurek U, Muc-Wierzgoń M. Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget 2018; 9:34413-34428. [PMID: 30344951 PMCID: PMC6188136 DOI: 10.18632/oncotarget.26126] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved mechanism of self-digestion that removes damaged organelles and proteins from cells. Depending on the way the protein is delivered to the lysosome, four basic types of autophagy can be distinguished: macroautophagy, selective autophagy, chaperone-mediated autophagy and microautophagy. Macroautophagy involves formation of autophagosomes and is controlled by specific autophagy-related genes. The steps in macroautophagy are initiation, phagophore elongation, autophagosome maturation, autophagosome fusion with the lysosome, and proteolytic degradation of the contents. Selective autophagy is macroautophagy of a specific cellular component. This work focuses on mitophagy (selective autophagy of abnormal and damaged mitochondria), in which the main participating protein is PINK1 (phosphatase and tensin homolog-induced putative kinase 1). In chaperone-mediated autophagy, the substrate is bound to a heat shock protein 70 chaperone before it is delivered to the lysosome. The least characterized type of autophagy is microautophagy, which is the degradation of very small molecules without participation of an autophagosome. Autophagy can promote or inhibit tumor development, depending on the severity of the disease, the type of cancer, and the age of the patient. This paper describes the molecular basis of the different types of autophagy and their importance in cancer pathogenesis.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Internal Diseases, School of Public Health in Bytom, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases, School of Public Health in Bytom, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| |
Collapse
|
12
|
Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED. Synaptic Mitochondria are More Susceptible to Traumatic Brain Injury-induced Oxidative Damage and Respiratory Dysfunction than Non-synaptic Mitochondria. Neuroscience 2018; 386:265-283. [PMID: 29960045 DOI: 10.1016/j.neuroscience.2018.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations. Synaptic mitochondria are reported to be more vulnerable to injury; however, this is the first study to characterize the temporal profile of synaptic and non-synaptic mitochondria following TBI, including investigation of respiratory dysfunction and oxidative damage to mitochondrial proteins between 3 and 120 h following injury. These results indicate that synaptic mitochondria are indeed the more vulnerable population, showing both more rapid and severe impairments than non-synaptic mitochondria. By 24 h, synaptic respiration is significantly impaired compared to synaptic sham, whereas non-synaptic respiration does not decline significantly until 48 h. Decreases in respiration are associated with increases in oxidative damage to synaptic and non-synaptic mitochondrial proteins at 48 h and 72 h, respectively. These results indicate that the therapeutic window for mitochondria-targeted pharmacological neuroprotectants to prevent respiratory dysfunction is shorter for the more vulnerable synaptic mitochondria than for the non-synaptic population.
Collapse
Affiliation(s)
- Rachel L Hill
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Indrapal N Singh
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Juan A Wang
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Edward D Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States.
| |
Collapse
|
13
|
Song Y, Wu ZC, Ding W, Bei Y, Lin ZY. NF-κB in mitochondria regulates PC12 cell apoptosis following lipopolysaccharide-induced injury. J Zhejiang Univ Sci B 2018. [DOI: 10.1631/jzus.b1700488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Zhang L, Wang H. Autophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. Front Mol Neurosci 2018; 11:190. [PMID: 29922127 PMCID: PMC5996030 DOI: 10.3389/fnmol.2018.00190] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most devastating forms of brain injury. Many pathological mechanisms such as oxidative stress, apoptosis and inflammation all contribute to the secondary brain damage and poor outcomes of TBI. Current therapies are often ineffective and poorly tolerated, which drive the explore of new therapeutic targets for TBI. Autophagy is a highly conserved intracellular mechanism during evolution. It plays an important role in elimination abnormal intracellular proteins or organelles to maintain cell stability. Besides, autophagy has been researched in various models including TBI. Previous studies have deciphered that regulation of autophagy by different molecules and pathways could exhibit anti-oxidative stress, anti-apoptosis and anti-inflammation effects in TBI. Hence, autophagy is a promising target for further therapeutic development in TBI. The present review provides an overview of current knowledge about the mechanism of autophagy, the frequently used methods to monitor autophagy, the functions of autophagy in TBI as well as its potential molecular mechanisms based on the pharmacological regulation of autophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Wu M, Liu X, Chi X, Zhang L, Xiong W, Chiang SMV, Zhou D, Li J. Mitophagy in Refractory Temporal Lobe Epilepsy Patients with Hippocampal Sclerosis. Cell Mol Neurobiol 2018; 38:479-486. [PMID: 28405902 PMCID: PMC11481960 DOI: 10.1007/s10571-017-0492-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/07/2017] [Indexed: 02/05/2023]
Abstract
This study aimed to determine if there is an association between mitophagy and refractory temporal lobe epilepsy (rTLE) with hippocampal sclerosis. During epilepsy surgery, we collected tissue samples from the hippocampi and temporal lobe cortexes of rTLE patients with hippocampal sclerosis (as diagnosed by a pathologist). Transmission electron microscopy (TEM) was used to study the ultrastructural features of the tissue. To probe for mitophagy, we used fluorescent immunolabeling to determine if mitochondrial and autophagosomal markers colocalized. Fourteen samples were examined. TEM results showed that early autophagosomes were present and mitochondria were impaired to different degrees in hippocampi. Immunofluorescent labeling showed colocalization of the autophagosome marker LC3B with the mitochondrial marker TOMM20 in hippocampi and temporal lobe cortexes, indicating the presence of mitophagy. Mitochondrial and autophagosomal marker colocalization was lower in hippocampus than in temporal lobe cortex (P < 0.001). Accumulation of autophagosomes and mitophagy activation are implicated in rTLE with hippocampal sclerosis. Aberrant accumulation of damaged mitochondria, especially in the hippocampus, can be attributed to defects in mitophagy, which may participate in epileptogenesis.
Collapse
Affiliation(s)
- Mengqian Wu
- Neurology Department, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, 610041, China
| | - Xinyu Liu
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaosa Chi
- Neurology Department, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, 610041, China
| | - Le Zhang
- Neurology Department, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, 610041, China
| | - Weixi Xiong
- Neurology Department, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, 610041, China
| | | | - Dong Zhou
- Neurology Department, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, 610041, China.
| | - Jinmei Li
- Neurology Department, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, 610041, China.
| |
Collapse
|
16
|
Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis 2018; 9:105. [PMID: 29367621 PMCID: PMC5833650 DOI: 10.1038/s41419-017-0127-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Premature senescence is a key process in the progression of diabetic nephropathy (DN). Premature senescence of renal tubular epithelial cells (RTEC) in DN may result from the accumulation of damaged mitochondria. Mitophagy is the principal process that eliminates damaged mitochondria through PTEN-induced putative kinase 1 (PINK1)-mediated recruitment of optineurin (OPTN) to mitochondria. We aimed to examine the involvement of OPTN in mitophagy regulation of cellular senescence in RTEC in the context of DN. In vitro, the expression of senescence markers P16, P21, DcR2, SA-β-gal, SAHF, and insufficient mitophagic degradation marker (mitochondrial P62) in mouse RTECs increased after culture in 30 mM high-glucose (HG) conditions for 48 h. Mitochondrial fission/mitophagy inhibitor Mdivi-1 significantly enhanced RTEC senescence under HG conditions, whereas autophagy/mitophagy agonist Torin1 inhibited cell senescence. MitoTempo inhibited HG-induced mitochondrial reactive oxygen species and cell senescence with or without Mdivi-1. The expression of PINK1 and OPTN, two regulatory factors for mitophagosome formation, decreased significantly after HG stimulation. Overexpression of PINK1 did not enhance mitophagosome formation under HG conditions. OPTN silencing significantly inhibited HG-induced mitophagosome formation, and overexpression of OPTN relieved cellular senescence through promoting mitophagy. In clinical specimens, renal OPTN expression was gradually decreased with increased tubulointerstitial injury scores. OPTN-positive renal tubular cells did not express senescence marker P16. OPTN expression also negatively correlated with serum creatinine levels, and positively correlated with eGFR. Thus, OPTN-mediated mitophagy plays a crucial regulatory role in HG-induced RTEC senescence in DN. OPTN may, therefore, be a potential antisenescence factor in DN.
Collapse
|
17
|
Wu Q, Gao C, Wang H, Zhang X, Li Q, Gu Z, Shi X, Cui Y, Wang T, Chen X, Wang X, Luo C, Tao L. Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. Int J Biochem Cell Biol 2018; 94:44-55. [DOI: 10.1016/j.biocel.2017.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
|
18
|
Protein quality control at the mitochondrion. Essays Biochem 2017; 60:213-225. [PMID: 27744337 DOI: 10.1042/ebc20160009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are essential constituents of a eukaryotic cell by supplying ATP and contributing to many mayor metabolic processes. As endosymbiotic organelles, they represent a cellular subcompartment exhibiting many autonomous functions, most importantly containing a complete endogenous machinery responsible for protein expression, folding and degradation. This article summarizes the biochemical processes and the enzymatic components that are responsible for maintaining mitochondrial protein homoeostasis. As mitochondria lack a large part of the required genetic information, most proteins are synthesized in the cytosol and imported into the organelle. After reaching their destination, polypeptides must fold and assemble into active proteins. Under pathological conditions, mitochondrial proteins become misfolded or damaged and need to be repaired with the help of molecular chaperones or eventually removed by specific proteases. Failure of these protein quality control mechanisms results in loss of mitochondrial function and structural integrity. Recently, novel mechanisms have been identified that support mitochondrial quality on the organellar level. A mitochondrial unfolded protein response allows the adaptation of chaperone and protease activities. Terminally damaged mitochondria may be removed by a variation of autophagy, termed mitophagy. An understanding of the role of protein quality control in mitochondria is highly relevant for many human pathologies, in particular neurodegenerative diseases.
Collapse
|