1
|
Lei X, Peng Y, Li Y, Chen Q, Shen Z, Yin W, Lemiasheuski V, Xu S, He J. Effects of selenium nanoparticles produced by Lactobacillus acidophilus HN23 on lipid deposition in WRL68 cells. Bioorg Chem 2024; 145:107165. [PMID: 38367427 DOI: 10.1016/j.bioorg.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.
Collapse
Affiliation(s)
- Xianglan Lei
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China
| | - Yuxuan Peng
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China; Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Yan Li
- International Sakharov Environmental Institute, Belarusian State University, 220030 Minsk, Belarus
| | - Qianyuan Chen
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenguo Shen
- College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Indus-trial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Viktar Lemiasheuski
- International Sakharov Environmental Institute, Belarusian State University, 220030 Minsk, Belarus; All-Russian Research Institute of Physiology, Biochemistry and Nutrition of Animals - Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L. K. Ernst, Institute, 249013, Borovsk, Russian Federation
| | - Siyang Xu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Romero-Benavides JC, Guaraca-Pino E, Duarte-Casar R, Rojas-Le-Fort M, Bailon-Moscoso N. Chenopodium quinoa Willd. and Amaranthus hybridus L.: Ancestral Andean Food Security and Modern Anticancer and Antimicrobial Activity. Pharmaceuticals (Basel) 2023; 16:1728. [PMID: 38139854 PMCID: PMC10747716 DOI: 10.3390/ph16121728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The species Chenopodium quinoa Willd. and Amaranthus hybridus L. are Andean staples, part of the traditional diet and gastronomy of the people of the highlands of Colombia, Ecuador, Peru, Bolivia, northern Argentina and Chile, with several ethnopharmacological uses, among them anticancer applications. This review aims to present updated information on the nutritional composition, phytochemistry, and antimicrobial and anticancer activity of Quinoa and Amaranth. Both species contribute to food security due to their essential amino acid contents, which are higher than those of most staples. It is highlighted that the biological activity, especially the antimicrobial activity in C. quinoa, and the anticancer activity in both species is related to the presence of phytochemicals present mostly in leaves and seeds. The biological activity of both species is consistent with their phytochemical composition, with phenolic acids, flavonoids, carotenoids, alkaloids, terpenoids, saponins and peptides being the main compound families of interest. Extracts of different plant organs of both species and peptide fractions have shown in vitro and, to a lesser degree, in vivo activity against a variety of bacteria and cancer cell lines. These findings confirm the antimicrobial and anticancer activity of both species, C. quinoa having more reported activity than A. hybridus through different compounds and mechanisms.
Collapse
Affiliation(s)
- Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Evelyn Guaraca-Pino
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
- Maestría en Alimentos, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Rodrigo Duarte-Casar
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Marlene Rojas-Le-Fort
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Natalia Bailon-Moscoso
- Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| |
Collapse
|
3
|
Tshikororo RR, Ajao AAN, Moteetee AN. Exploring the Use of Indigenous Wild Vegetables by the Basotho People of Southern Africa: A Comprehensive Review of the Literature and Nutritional Analysis of Selected Species. Foods 2023; 12:2763. [PMID: 37509855 PMCID: PMC10378859 DOI: 10.3390/foods12142763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Wild indigenous vegetables have recently been receiving attention due to their accessibility and potential to fight malnutrition. The current study investigated the nutritional profile of 10 selected wild indigenous vegetables, namely Asclepias multicaulis, Lepidium africanum, Erucastrum austroafricanum, Solanum nigrum, Sonchus dregeanus, Sonchus integrifolius, Sonchus nanus, Rorippa fluviatilis, Tribulus terrestris, and Urtica lobulata, consumed by the Basotho people of southern Africa. This was done by first compiling a comprehensive literature review to identify the knowledge gaps and further analysing the selected vegetables for mineral contents and proximate compositions using standard analytical procedures of AOAC. The literature survey revealed that 90 wild plants are used as vegetables by the Basotho people, and there are knowledge gaps on the nutritional value of many species. Mineral analyses of the wild vegetables showed that Asclepias multicaulis and Sonchus dregeanus are rich in minerals such as Al, Ca, K, Mg, Na, P, and S and can compete favourably with commercialised vegetables such as lettuce and spinach in terms of mineral components. Also, all the wild vegetables studied have more than 12% recommended caloric protein value except Tribulus terrestris (10.07%) and Lepidium africanum (11.32%). The crude fat content in Asclepias multicaulis, Lepidium africanum, Rorippa fluviatilis, Erucastrum austroafricanum, and Urtica lobulata fall within the range required for healthy living. The concentrations of cadmium, copper, and lead in all the vegetables studied are below the detection level, thus making them non-toxic and safe for consumption.
Collapse
Affiliation(s)
- Rudzani Ralph Tshikororo
- Department of Botany and Plant Biotechnology, APK Campus, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Abdulwakeel Ayokun-Nun Ajao
- Department of Botany and Plant Biotechnology, APK Campus, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Annah Ntsamaeeng Moteetee
- Department of Botany and Plant Biotechnology, APK Campus, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
Alajmi MF, Alam P, Rehman MT, Husain FM, Khan AA, Siddiqui NA, Hussain A, Kalam MA, Parvez MK. Interspecies Anticancer and Antimicrobial Activities of Genus Solanum and Estimation of Rutin by Validated UPLC-PDA Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:6040815. [PMID: 30057644 PMCID: PMC6051100 DOI: 10.1155/2018/6040815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
Solanaceae is one of the highly diverse plant families of which Solanum is the largest genera (1700 species) containing several pharmacological properties like anticancer and antimicrobial. This motivated us to explore the anticancer (against HepG2, HEK-293, and MCF-7 cells) and antimicrobial (against S. aureus, E. coli, P. aeruginosa, and C. albicans) properties of S. schimperianum, S. villosum, S. coagulans, S. glabratum, S. incanum, and S. nigrum along with rutin estimation by UPLC-PDA method. Of the studied Solanum extracts, S. nigrum exhibited significant cytotoxic property against HepG2 (IC50: 20.4 μg/mL) and MCF-7 (IC50: 30.1 μg/mL); S. coagulans showed toxicity against HepG2 (IC50: 28.4 μg/mL) and HEK-293 cells (IC50: 25.7 μg/mL) compared to 5-Fluorouracil (standard). Compared to these, extracts of S. coagulans and S. glabratum exhibited relatively high antimicrobial potency (MIC: 0.4-1.6 mg/mL). Nonetheless, all Solanum extracts significantly reduced the biofilm against PAO1-strain. Rutin was detected in all extracts with the highest content (53.79 μg/mg) in S. coagulans that supported its strong antimicrobial and anticancer properties. Molecular docking analysis showing strong binding of rutin with human DNA and proteins (DNA Topoisomerase IIα and E. coli DNA gyrase B) supported the anticancer and antimicrobial activities of Solanum species.
Collapse
Affiliation(s)
- Mohamed Fahad Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd. Abul Kalam
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|