1
|
Benítez-Burraco A, Progovac L. Syntax and the brain: language evolution as the missing link(ing theory)? Front Psychol 2024; 15:1445192. [PMID: 39526128 PMCID: PMC11543476 DOI: 10.3389/fpsyg.2024.1445192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction This paper provides proof of concept that neurolinguistic research on human language syntax would benefit greatly by expanding its scope to include evolutionary considerations, as well as non-propositional functions of language, including naming/nicknaming and verbal aggression. In particular, an evolutionary approach can help circumvent the so-called granularity problem in studying the processing of syntax in the brain, that is, the apparent mismatch between the abstract postulates of syntax (e.g. Tense Phrase (TP), Determiner Phrase (DP), etc.) and the concrete units of neurobiology (neurons, axons, etc.). Methods First, we decompose syntax into its evolutionary primitives, identifying one of the earliest stages as a simple, flat combination of just one verb and one noun. Next, we identify proxies ("living fossils") of such a stage in present-day languages, including compounds and small clauses, lacking at least some layers of structure, e.g. TPs and DPs. These proxies of ancestral language have been subjected to fMRI neuroimaging experiments. Results We discuss the finding that less hierarchical small clauses, in contrast to full sentences with TPs and DPs, show reduced activation in the left Broca's area (BA) 44 and the right basal ganglia, consistent with the hypothesis that more recent, more elaborate syntax requires more connectivity in the Broca's-basal ganglia network, whose neuronal density has been significantly enhanced in recent evolution, implicating mutations in FOXP2 and other genes. We also discuss the finding that the processing of ancestral verb-noun compounds, which are typically used for (derogatory) naming and nicknaming, shows enhanced activation in the right fusiform gyrus area (BA 37), the area that is implicated in the processing of metaphoricity and imageability, but also in naming and face recognition, opening up an intriguing possibility that the enhanced face recognition in humans was facilitated by the early emergence of a simple syntactic strategy for naming. Discussion The considerations in this paper are consistent with the hypothesis of a gradual gene-culture co-evolution of syntax and the brain, targeting cortico-striatal brain networks. It is also of note that a sound grounding in neurobiology of language should in turn inform syntactic theories themselves.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ljiljana Progovac
- Department of English, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Alves CL, Martinelli T, Sallum LF, Rodrigues FA, Toutain TGLDO, Porto JAM, Thielemann C, Aguiar PMDC, Moeckel M. Multiclass classification of Autism Spectrum Disorder, attention deficit hyperactivity disorder, and typically developed individuals using fMRI functional connectivity analysis. PLoS One 2024; 19:e0305630. [PMID: 39418298 PMCID: PMC11486369 DOI: 10.1371/journal.pone.0305630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodevelopmental conditions, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), present unique challenges due to overlapping symptoms, making an accurate diagnosis and targeted intervention difficult. Our study employs advanced machine learning techniques to analyze functional magnetic resonance imaging (fMRI) data from individuals with ASD, ADHD, and typically developed (TD) controls, totaling 120 subjects in the study. Leveraging multiclass classification (ML) algorithms, we achieve superior accuracy in distinguishing between ASD, ADHD, and TD groups, surpassing existing benchmarks with an area under the ROC curve near 98%. Our analysis reveals distinct neural signatures associated with ASD and ADHD: individuals with ADHD exhibit altered connectivity patterns of regions involved in attention and impulse control, whereas those with ASD show disruptions in brain regions critical for social and cognitive functions. The observed connectivity patterns, on which the ML classification rests, agree with established diagnostic approaches based on clinical symptoms. Furthermore, complex network analyses highlight differences in brain network integration and segregation among the three groups. Our findings pave the way for refined, ML-enhanced diagnostics in accordance with established practices, offering a promising avenue for developing trustworthy clinical decision-support systems.
Collapse
Affiliation(s)
- Caroline L. Alves
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Tiago Martinelli
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Loriz Francisco Sallum
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Joel Augusto Moura Porto
- Institute of Physics of São Carlos (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- Institute of Biological Information Processing, Heinrich Heine University Düsseldorf, Düsseldorf, North Rhine–Westphalia Land, Germany
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Patrícia Maria de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Moeckel
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| |
Collapse
|
3
|
Clouette J, Potvin-Desrochers A, Seo F, Churchward-Venne TA, Paquette C. Reorganization of Brain Resting-state Functional Connectivity Following 14 Days of Elbow Immobilization in Young Females. Neuroscience 2024; 540:77-86. [PMID: 38246474 DOI: 10.1016/j.neuroscience.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Limb immobilization is known to cause significant decreases in muscle strength and muscle mass as early as two days following the onset of immobilization. However, the decline in strength surpasses the decline in muscle mass, suggesting that factors in addition to muscle loss, such as neuroplasticity, contribute to the decrease in force production. However, little is known regarding immobilization-induced neural changes, although sensorimotor regions seem to be the most affected. The present study aimed to determine whether brain functional organization is altered following 14 days of unilateral elbow immobilization. Functional organization was quantified using resting-state functional connectivity, a measure of the synchronicity of the spontaneous discharge of different brain regions at rest. Data was obtained from twelve healthy young females before and after completing the immobilization period. A seed-to-voxel analysis was performed using seeds associated with cortical, subcortical, and cerebellar sensorimotor regions of the brain. The results showed changes predominantly involving cerebellar connectivity. For example, the immobilization period caused a decrease in connectivity between the motor cerebellar region of the immobilized arm and the left temporal lobe, and an increase between the same cerebellar region and the supplementary motor area. Overall, changes in connectivity occurred in regions typically associated with error detection and motor learning, suggesting a potential functional reorganization of the brain within 14 days of elbow immobilization.
Collapse
Affiliation(s)
- Julien Clouette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada
| | - Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, 1033 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada
| | - Freddie Seo
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Division of Geriatric Medicine, McGill University, 1650 Cedar Ave., Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, 1033 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Huang Y, Huang J, Li L, Lin T, Zou L. Neural network of metaphor comprehension: an ALE meta-analysis and MACM analysis. Cereb Cortex 2023; 33:10918-10930. [PMID: 37718244 DOI: 10.1093/cercor/bhad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
The comprehension of metaphor, a vivid and figurative language, is a complex endeavor requiring cooperation among multiple cognitive systems. There are still many important questions regarding neural mechanisms implicated in specific types of metaphor. To address these questions, we conducted activation likelihood estimation meta-analyses on 30 studies (containing data of 480 participants) and meta-analytic connectivity modeling analyses. First, the results showed that metaphor comprehension engaged the inferior frontal gyrus, middle temporal gyrus, fusiform gyrus, lingual gyrus, and middle occipital gyrus-all in the left hemisphere. In addition to the commonly reported networks of language and attention, metaphor comprehension engaged networks of visual. Second, sub-analysis showed that the contextual complexity can modulate figurativeness, with the convergence on the left fusiform gyrus during metaphor comprehension at discourse-level. Especially, right hemisphere only showed convergence in studies of novel metaphors, suggesting that the right hemisphere is more associated with difficulty than metaphorical. The work here extends knowledge of the neural mechanisms underlying metaphor comprehension in individual brain regions and neural networks.
Collapse
Affiliation(s)
- Yanyang Huang
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiayu Huang
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Le Li
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, 100083, China
| | - Tao Lin
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Laiquan Zou
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Kang N. Increased Cerebellar Gray Matter Volume in Athletes: A Voxel-Wise Coordinate-Based Meta-Analysis. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:597-608. [PMID: 35438607 DOI: 10.1080/02701367.2022.2026285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Purpose: The purpose of this systematic review and meta-analysis study was to investigate distinct brain structural characteristics in athletes as compared with those in non-athletes by quantifying regional gray matter (GM) volume changes using voxel-based morphometry analysis based on a whole-brain approach. Methods: The systematic literature search was conducted from November 1, 2020 to October 18, 2021 via the two search engines including the PubMed and Web of Science. We included 13 studies that reported GM volume data in 229 athletes as compared 219 non-athletes based on the whole-brain analysis with specific three-dimensional coordinates in a standard stereotactic space. Thus, we performed a coordinate-based meta-analysis using the seed-based d mapping via permutation of subject images methods. Result: The coordinate-based meta-analysis reported that the athletes significantly reveal greater regional GM volume across right cerebellar lobules IV-V and Brodmann area 37 regions than those in the non-athletes with minimal levels of heterogeneity and publication bias between the included studies. The subgroup analyses show that greater GM volume for athletes in closed-skill sports appeared across the right cerebellar hemispheric lobules VIII and the right cingulum than those for non-athletes. Conclusion: These cumulative findings from multiple brain imaging studies suggest potential brain plasticity evidence in the athletes who experienced extensive motor training.
Collapse
|
6
|
Hernández O, Zurek E, Barbosa J, Villasana M. A comparative study of the cortical function during the interpretation of algorithms in pseudocode and the solution of first-order algebraic equations. PLoS One 2023; 18:e0274713. [PMID: 37368883 DOI: 10.1371/journal.pone.0274713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
This study intends to determine whether similarities of the functioning of the cerebral cortex exist, modeled as a graph, during the execution of mathematical tasks and programming related tasks. The comparison is done using network parameters and during the development of computer programming tasks and the solution of first-order algebraic equations. For that purpose, electroencephalographic recordings (EEG) were made with a volunteer group of 16 students of systems engineering of Universidad del Norte in Colombia, while they were performing computer programming tasks and solving first-order algebraic equations with three levels of difficulty. Then, based on the Synchronization Likelihood method, graph models of functional cortical networks were developed, whose parameters of Small-Worldness (SWN), global(Eg) and local (El) efficiency were compared between both types of tasks. From this study, it can be highlighted, first, the novelty of studying cortical function during the solution of algebraic equations and during programming tasks; second, significant differences between both types of tasks observed only in the delta and theta bands. Likewise, the differences between simpler mathematical tasks with the other levels in both types of tasks; third, the Brodmann areas 21 and 42, associated with auditory sensory processing, can be considered as differentiating elements of programming tasks; as well as Brodmann area 8, during equation solving.
Collapse
Affiliation(s)
- Oscar Hernández
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Atlántico, Colombia
| | - Eduardo Zurek
- Departamento de Ingeniería de sistemas, Universidad del Norte, Barranquilla, Atlántico, Colombia
| | - John Barbosa
- Departamento de Ingeniería de sistemas, Universidad del Norte, Barranquilla, Atlántico, Colombia
| | - Minaya Villasana
- Departamento de Cómputo Científico y Estadística, Universidad Simón Bolivar, Caracas, Venezuela
| |
Collapse
|
7
|
Fafrowicz M, Ceglarek A, Olszewska J, Sobczak A, Bohaterewicz B, Ostrogorska M, Reuter-Lorenz P, Lewandowska K, Sikora-Wachowicz B, Oginska H, Hubalewska-Mazgaj M, Marek T. Dynamics of working memory process revealed by independent component analysis in an fMRI study. Sci Rep 2023; 13:2900. [PMID: 36808174 PMCID: PMC9938907 DOI: 10.1038/s41598-023-29869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/11/2023] [Indexed: 02/20/2023] Open
Abstract
Human memory is prone to errors in many everyday activities but also when cultivating hobbies such as traveling and/or learning a new language. For instance, while visiting foreign countries, people erroneously recall foreign language words that are meaningless to them. Our research simulated such errors in a modified Deese-Roediger-McDermott paradigm for short-term memory with phonologically related stimuli aimed at uncovering behavioral and neuronal indices of false memory formation with regard to time-of-day, a variable known to influence memory. Fifty-eight participants were tested in a magnetic resonance (MR) scanner twice. The results of an Independent Component Analysis revealed encoding-related activity of the medial visual network preceding correct recognition of positive probes and correct rejection of lure probes. The engagement of this network preceding false alarms was not observed. We also explored if diurnal rhythmicity influences working memory processes. Diurnal differences were seen in the default mode network and the medial visual network with lower deactivation in the evening hours. The GLM results showed greater activation of the right lingual gyrus, part of the visual cortex and the left cerebellum in the evening. The study offers new insight into the mechanisms associated with false memories, suggesting that deficient engagement of the medial visual network during the memorization phase of a task results in short-term memory distortions. The results shed new light on the dynamics of working memory processes by taking into account the effect of time-of-day on memory performance.
Collapse
Affiliation(s)
- Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348, Krakow, Poland.
| | - Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348, Krakow, Poland.
| | - Justyna Olszewska
- grid.267474.40000 0001 0674 4543Department of Psychology, University of Wisconsin-Oshkosh, Oshkosh, WI USA
| | - Anna Sobczak
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Bartosz Bohaterewicz
- grid.433893.60000 0001 2184 0541Department of Psychology of Individual Differences, Psychological Diagnosis and Psychometrics, Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Monika Ostrogorska
- grid.5522.00000 0001 2162 9631Chair of Radiology, Medical College, Jagiellonian University, Krakow, Poland
| | - Patricia Reuter-Lorenz
- grid.214458.e0000000086837370Department of Psychology, University of Michigan, Ann Arbor, MI USA
| | - Koryna Lewandowska
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Barbara Sikora-Wachowicz
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Halszka Oginska
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Magdalena Hubalewska-Mazgaj
- grid.413454.30000 0001 1958 0162Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Tadeusz Marek
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| |
Collapse
|
8
|
Stefanini M, Cornia M, Baraldi L, Cascianelli S, Fiameni G, Cucchiara R. From Show to Tell: A Survey on Deep Learning-Based Image Captioning. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:539-559. [PMID: 35130142 DOI: 10.1109/tpami.2022.3148210] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, large research efforts have been devoted to image captioning, i.e. describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoder and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview of image captioning approaches, from visual encoding and text generation to training strategies, datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in architectures and training strategies. Moreover, many variants of the problem and its open challenges are discussed. The final goal of this work is to serve as a tool for understanding the existing literature and highlighting the future directions for a research area where Computer Vision and Natural Language Processing can find an optimal synergy.
Collapse
|
9
|
Research on Top Archer’s EEG Microstates and Source Analysis in Different States. Brain Sci 2022; 12:brainsci12081017. [PMID: 36009079 PMCID: PMC9405655 DOI: 10.3390/brainsci12081017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The electroencephalograph (EEG) microstate is a method used to describe the characteristics of the EEG signal through the brain scalp electrode potential’s spatial distribution; as such, it reflects the changes in the brain’s functional state. The EEGs of 13 elite archers from China’s national archery team and 13 expert archers from China’s provincial archery team were recorded under the alpha rhythm during the resting state (with closed eyes) and during archery aiming. By analyzing the differences between the EEG microstate parameters and the correlation between these parameters with archery performance, as well as by combining our findings through standardized low-resolution brain electromagnetic tomography source analysis (sLORETA), we explored the changes in the neural activity of professional archers of different levels, under different states. The results of the resting state study demonstrated that the duration, occurrence, and coverage in microstate D of elite archers were significantly higher than those of expert archers and that their other microstates had the greatest probability of transferring to microstate D. During the archery aiming state, the average transition probability of the other microstates transferring to microstate in the left temporal region was the highest observed in the two groups of archers. Moreover, there was a significant negative correlation between the duration and coverage of microstates in the frontal region of elite archers and their archery performance. Our findings indicate that elite archers are more active in the dorsal attention system and demonstrate a higher neural efficiency during the resting state. When aiming, professional archers experience an activation of brain regions associated with archery by suppressing brain regions unrelated to archery tasks. These findings provide a novel theoretical basis for the study of EEG microstate dynamics in archery and related cognitive motor tasks, particularly from the perspective of the subject’s mental state.
Collapse
|
10
|
Ahmmed AU, Asif A, Winterburn S. Visual Processing Impairment in Children With Suspected Auditory Processing Disorder: A Transdisciplinary Dimensional Approach to Diagnosis. Am J Audiol 2022; 31:268-283. [PMID: 35290100 DOI: 10.1044/2021_aja-21-00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this study is to explore the utility of impairment(s) in language (LI), manual dexterity (IMD), and visual perceptual skills (IVPS) as a reference standard for diagnosing auditory processing disorder (APD). METHOD Data from 104 participants with suspected APD (males = 57, females = 47; 6-16 years) were retrospectively analyzed. Index auditory processing (AP) tests included Auditory Figure Ground 0 dB, Competing Words-Directed Ear (CW-DE), and Time-Compressed Sentences (TCS). General Communication Composite (GCC) of the Children's Communication Checklist-2, manual dexterity (MD) component of the Movement Assessment Battery for Children-Second Edition, and Test for Visual Perceptual Skills-Third Edition (TVPS-3) were used to identify LI, IMD, and IVPS, respectively. RESULTS Eighty-one (77.8%), 58 (55.8%), and 37 (35.6%) participants had LI, IVPS, and IMD, respectively. Four factors explaining 67.69% of the variance were extracted. TVPS-3 (except visual closure [VClo]) represented the first; AFG 0, VClo, and MD the second; CW-DE and GCC the third; and TCS the fourth. APD diagnosed by combining AP tests and comorbidities had better accuracy compared to AP tests alone. The combined approach had overall diagnostic accuracy of 92.2%, 88.4%, and 81.7% for the 9th, 5th, and 2nd percentile AP test cutoffs, respectively. CONCLUSIONS First-order AP tests in this study were related to language, MD, and visual perceptual skills. Given the overlap of LI, IMD, and IVPS with impaired AP, these comorbidities are an effective reference standard for APD. APD can be diagnosed following failing one AP test if one or more comorbidities exist. Ninth percentile AP test cutoff had better diagnostic accuracy compared to the currently used 2nd percentile cutoff.
Collapse
Affiliation(s)
- Ansar U. Ahmmed
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Aysha Asif
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | | |
Collapse
|
11
|
Schneider P, Wójcik GM, Kawiak A, Kwasniewicz L, Wierzbicki A. Modeling and Comparing Brain Processes in Message and Earned Source Credibility Evaluation. Front Hum Neurosci 2022; 16:808382. [PMID: 35601908 PMCID: PMC9121397 DOI: 10.3389/fnhum.2022.808382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding how humans evaluate credibility is an important scientific question in the era of fake news. Source credibility is among the most important aspects of credibility evaluations. One of the most direct ways to understand source credibility is to use measurements of brain activity of humans who make credibility evaluations. This article reports the results of an experiment during which we have measured brain activity during credibility evaluation using EEG. In the experiment, participants had to learn source credibility of fictitious students based on a preparatory stage, during which they evaluated message credibility with perfect knowledge. The experiment allowed for identification of brain areas that were active when a participant made positive or negative source credibility evaluations. Based on experimental data, we modeled and predicted human source credibility evaluations using EEG brain activity measurements with F1 score exceeding 0.7 (using 10-fold cross-validation). We are also able to model and predict message credibility evaluations with perfect knowledge, and to compare both models obtained from a single experiment.
Collapse
Affiliation(s)
- Piotr Schneider
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Lublin, Poland
| | - Grzegorz M. Wójcik
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Lublin, Poland
- *Correspondence: Grzegorz M. Wójcik
| | - Andrzej Kawiak
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Lublin, Poland
| | - Lukasz Kwasniewicz
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Lublin, Poland
| | - Adam Wierzbicki
- Polish-Japanese Academy of Information Technology, Warsaw, Poland
| |
Collapse
|
12
|
Hwang YE, Kim YB, Son YD. Finding Cortical Subregions Regarding the Dorsal Language Pathway Based on the Structural Connectivity. Front Hum Neurosci 2022; 16:784340. [PMID: 35585994 PMCID: PMC9108242 DOI: 10.3389/fnhum.2022.784340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although the language-related fiber pathways in the human brain, such as the superior longitudinal fasciculus (SLF) and arcuate fasciculus (AF), are already well-known, understanding more sophisticated cortical regions connected by the fiber tracts is essential to scrutinize the structural connectivity of language circuits. With the regions of interest that were selected based on the Brainnetome atlas, the fiber orientation distribution estimation method for tractography was used to produce further elaborate connectivity information. The results indicated that both fiber bundles had two distinct connections with the prefrontal cortex (PFC). The SLF-II and dorsal AF are mainly connected to the rostrodorsal part of the inferior parietal cortex (IPC) and lateral part of the fusiform gyrus with the inferior frontal junction (IFJ), respectively. In contrast, the SLF-III and ventral AF were primarily linked to the anterior part of the supramarginal gyrus and superior part of the temporal cortex with the inferior frontal cortex, including the Broca's area. Moreover, the IFJ in the PFC, which has rarely been emphasized as a language-related subregion, also had the strongest connectivity with the previously known language-related subregions among the PFC; consequently, we proposed that these specific regions are interconnected via the SLF and AF within the PFC, IPC, and temporal cortex as language-related circuitry.
Collapse
Affiliation(s)
- Young-Eun Hwang
- Neuroscience Convergence Center, Korea University, Seoul, South Korea
- Department of Health Sciences and Technology, Gachion Advanced Institute for Health Sciences & Technology (GAHIST), Gachon University, Incheon, South Korea
- Department of Biomedical Engineering, Gachon University, Incheon, South Korea
| | - Young-Bo Kim
- Department of Neurosurgery, Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Young-Don Son
- Department of Health Sciences and Technology, Gachion Advanced Institute for Health Sciences & Technology (GAHIST), Gachon University, Incheon, South Korea
- Department of Biomedical Engineering, Gachon University, Incheon, South Korea
- *Correspondence: Young-Don Son
| |
Collapse
|
13
|
Gan X, Zhou X, Li J, Jiao G, Jiang X, Biswal B, Yao S, Klugah-Brown B, Becker B. Common and distinct neurofunctional representations of core and social disgust in the brain: Coordinate-based and network meta-analyses. Neurosci Biobehav Rev 2022; 135:104553. [PMID: 35122784 DOI: 10.1016/j.neubiorev.2022.104553] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/02/2022] [Accepted: 01/30/2022] [Indexed: 01/19/2023]
Abstract
Disgust represents a multifaceted defensive-avoidance response. On the behavioral level, the response includes withdrawal and a disgust-specific facial expression. While both serve the avoidance of pathogens, the latter additionally transmits social-communicative information. Given that common and distinct brain representation of the primary defensive-avoidance response (core disgust) and encoding of the social-communicative signal (social disgust) remain debated, we employed neuroimaging meta-analyses to (1) determine brain systems generally engaged in disgust processing, and (2) segregate common and distinct brain systems for core and social disgust. Disgust processing, in general, engaged a bilateral network encompassing the insula, amygdala, occipital and prefrontal regions. Core disgust evoked stronger reactivity in left-lateralized threat detection and defensive response network including amygdala, occipital and frontal regions, while social disgust engaged a right-lateralized superior temporal-frontal network involved in social cognition. Anterior insula, inferior frontal and fusiform regions were commonly engaged during core and social disgust, suggesting a shared neurofunctional basis. We demonstrate a common and distinct neural basis of primary disgust responses and encoding of associated social-communicative signals.
Collapse
Affiliation(s)
- Xianyang Gan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Max Planck School of Cognition, Leipzig 04103, Germany
| | - Guojuan Jiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Department of Biomedical Engineering, New Jersey Institute of Technology, NJ 7102, United States
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| |
Collapse
|
14
|
Ding J, Qu X, Cui J, Dong J, Guo J, Xian J, Li D. Altered Spontaneous Brain Activity and Network Property in Patients With Congenital Monocular Blindness. Front Neurol 2022; 13:789655. [PMID: 35280267 PMCID: PMC8907119 DOI: 10.3389/fneur.2022.789655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals with congenital monocular blindness may have specific brain changes since the brain is prenatally deprived of half the normal visual input. To explore characteristic brain functional changes of congenital monocular blindness, we analyzed resting-state functional MRI (rs-fMRI) data of 16 patients with unilateral congenital microphthalmia and 16 healthy subjects with normal vision to compare intergroup differences of amplitude of low frequency fluctuations (ALFFs), functional connectivity (FC), and network topolgoical properties. Compared with controls, patients with microphthalmia exhibited significantly lower ALFF values in the left inferior occipital and temporal gyri, superior temporal gyrus, inferior parietal lobe and post-central gyrus, whereas higher ALFF in the right middle and inferior temporal gyri, middle and superior frontal gyri, left superior frontal, and temporal gyri, such as angular gyrus. Meanwhile, FC between left medial superior frontal gyrus and angular gyrus, FC between left superior temporal gyrus and inferior parietal lobe and post-central gyrus decreased in the patients with congenital microphthalmia. In addition, a graph theory-analysis revealed increased regional network metrics (degree centrality and nodal efficiency) in the middle and inferior temporal gyri and middle and superior frontal gyri, while decreased values in the inferior occipital and temporal gyri, inferior parietal lobule, post-central gyrus, and angular gyrus. Taken together, patients with congenital microphthalmia had widespread abnormal activities within neural networks involving the vision and language and language-related regions played dominant roles in their brain networks. These findings may provide clues for functional reorganization of vision and language networks induced by the congenital monocular blindness.
Collapse
Affiliation(s)
- Jingwen Ding
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Cui
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Dong
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian Guo
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Junfang Xian
| | - Dongmei Li
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Dongmei Li
| |
Collapse
|
15
|
Chang CW, Su KC, Lu FC, Cheng HM, Cheng CY. Visual Function and Visual Perception among Senior Citizens with Mild Cognitive Impairment in Taiwan. Healthcare (Basel) 2021; 10:healthcare10010020. [PMID: 35052184 PMCID: PMC8775582 DOI: 10.3390/healthcare10010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: With the benefits of advanced medical technology, Taiwan has gradually changed from an aged society to a super-aged society. According to previous studies, the prevalence rate of mild cognitive impairment (MCI) over the age of 60 is 15% to 20%. Therefore, the main purpose of our study was to analyze the correlation of cognitive function with visual function (specifically, binocular vision and visual perception) in Taiwanese volunteers aged 60 years or older. Methods: Thirty-six healthy participants who were not taking psychiatric medications and who had not been diagnosed with any retinal or optic nerve diseases were enrolled. Addenbrooke’s cognitive examination III (ACE-III), binocular visual function, and visual perception evaluation were performed, and the data analyzed statistically by t-test, χ2, linear regression, and MANOVA. Results: Cognitive function was closely correlated with visual function and visual perception; the horizontal adjustment time of binocular eye movement, stereopsis, the motor-free visual perception test-4 (MVPT-4), and peripheral awareness actually displayed higher explanatory power in predicting cognitive function. In addition, various interactive parameters between visual function and visual perception were found to affect specific aspects of ACE-III. Discussion: Our study revealed that there was a close correlation of cognitive function with visual function; as such, it may be possible to predict visual function deficits in patients with mild cognitive impairment.
Collapse
Affiliation(s)
- Chi-Wu Chang
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (C.-W.C.); (K.-C.S.)
| | - Kuo-Chen Su
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (C.-W.C.); (K.-C.S.)
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Fang-Chun Lu
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Hong-Ming Cheng
- Department of Optometry, Asia University, Taichung 413, Taiwan;
| | - Ching-Ying Cheng
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (C.-W.C.); (K.-C.S.)
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan;
- Correspondence: ; Tel.: +886-4-2473-0022
| |
Collapse
|
16
|
Intertemporal preference reversals are associated with early activation of insula and sustained preferential processing of immediate rewards in visual cortex. Sci Rep 2021; 11:22277. [PMID: 34782648 PMCID: PMC8593020 DOI: 10.1038/s41598-021-01579-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Decision makers tend to give magnified significance to immediately available rewards which leads to intertemporal preference reversals, which is a form of self-control failure. The objective of the present study was to understand the cognitive and neural underpinnings of this phenomenon using event-related potentials (ERP) and their source localization using standardized low-resolution brain electromagnetic tomography analysis (sLORETA). Twenty-four participants performed a money choice task, where they made choices between a smaller-sooner and a larger-later reward, which included trials with and without an immediately available option, while their electroencephalography (EEG) activity was recorded. Trials with and without immediacy were identical except that the latter involved a front-end delay added to both the rewards. Results showed that presence of immediacy made the choices significantly more impulsive. Presence of immediate reward elicited larger visual P2 and late positive potential (LPP), indicating enhanced capture of automatic and sustained attention respectively, and smaller N2, indicative of diminished engagement of cognitive control processes. Source localization revealed increased activity in the visual cortex in the presence of immediacy, signifying higher valuation. Higher activation of areas of insula during P2-suggesting increased awareness of visceral signals-predicted larger impulsive preference reversals. The results suggest that presence of immediate reward biases the choice very early during the decision making process by precipitating visceral states that triggers approach behaviour, and highlight the need to adopt strategies like precommitment to counter the effect.
Collapse
|
17
|
Valdes-Hernandez PA, Montesino-Goicolea S, Hoyos L, Porges EC, Huo Z, Ebner NC, Woods AJ, Cohen R, Riley JL, Fillingim RB, Cruz-Almeida Y. Resting-state functional connectivity patterns are associated with worst pain duration in community-dwelling older adults. Pain Rep 2021; 6:e978. [PMID: 34901680 PMCID: PMC8660002 DOI: 10.1097/pr9.0000000000000978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION An individual's chronic pain history is associated with brain morphometric alterations; but little is known about the association between pain history and brain function. OBJECTIVES This cross-sectional study aimed at determining how worst musculoskeletal pain intensity (WPINT) moderated the association between worst musculoskeletal pain duration (WPDUR) and brain resting-state magnetic resonance imaging functional connectivity (RSFC) in community-dwelling older adults (60-94 years, 75% females, 97% right-handed). METHODS Resting-state magnetic resonance imaging functional connectivity between region of interests was linearly regressed on WPDUR and WPINT. Predictions were compared with a control group's average RSFC (61-85 years, 47% females, 95% right-handed). RESULTS Three significant patterns emerged: (1) the positive association between WPDUR and RSFC between the medial prefrontal cortex, in the anterior salience network (SN), and bilateral lateral Brodmann area 6, in the visuospatial network (VSN), in participants with more severe chronic pain, resulting in abnormally lower RSFC for shorter WPDUR; (2) the negative association between WPDUR and RSFC between right VSN occipitotemporal cortex (lateral BA37 and visual V5) and bilateral VSN lateral Brodmann area 6, independently of WPINT, resulting in abnormally higher and lower RSFC for shorter and longer WPDUR, respectively; and (3) the positive association between WPDUR and the left hemisphere's salience network-default mode network connectivity (between the hippocampus and both dorsal insula and ventral or opercular BA44), independently of WPINT, resulting in abnormally higher RSFC for longer WPDUR. CONCLUSION Musculoskeletal effects on brain functional networks of general healthy individuals could accumulate until being observable at older ages. Results invite to examinations of these effects' impact on function and memory.
Collapse
Affiliation(s)
- Pedro A. Valdes-Hernandez
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Soamy Montesino-Goicolea
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Lorraine Hoyos
- University of Central Florida, Department of Clinical Sciences, Orlando, Florida, USA
| | - Eric C. Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Natalie C. Ebner
- Center for Cognitive Aging and Memory, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Psychology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Joseph L. Riley
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, Florida, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Roger B. Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, Florida, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Kwasniewicz L, Wojcik GM, Schneider P, Kawiak A, Wierzbicki A. What to Believe? Impact of Knowledge and Message Length on Neural Activity in Message Credibility Evaluation. Front Hum Neurosci 2021; 15:659243. [PMID: 34602991 PMCID: PMC8485696 DOI: 10.3389/fnhum.2021.659243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022] Open
Abstract
Understanding how humans evaluate credibility is an important scientific question in the era of fake news. Message credibility is among crucial aspects of credibility evaluations. One of the most direct ways to understand message credibility is to use measurements of brain activity of humans performing credibility evaluations. Nevertheless, message credibility has never been investigated using such a method before. This article reports the results of an experiment during which we have measured brain activity during message credibility evaluation, using EEG. The experiment allowed for identification of brain areas that were active when participant made positive or negative message credibility evaluations. Based on experimental data, we modeled and predicted human message credibility evaluations using EEG brain activity measurements with F1 score exceeding 0.7.
Collapse
Affiliation(s)
- Lukasz Kwasniewicz
- Chair of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Grzegorz M Wojcik
- Chair of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Piotr Schneider
- Chair of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Andrzej Kawiak
- Chair of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Adam Wierzbicki
- Polish-Japanese Academy of Information Technology, Warsaw, Poland
| |
Collapse
|
19
|
Sanjeevan T, Hammill C, Brian J, Crosbie J, Schachar R, Kelley E, Liu X, Nicolson R, Iaboni A, Day Fragiadakis S, Ristic L, Lerch JP, Anagnostou E. Exploring the Neural Structures Underlying the Procedural Memory Network as Predictors of Language Ability in Children and Adolescents With Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder. Front Hum Neurosci 2020; 14:587019. [PMID: 33362492 PMCID: PMC7759764 DOI: 10.3389/fnhum.2020.587019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: There is significant overlap in the type of structural language impairments exhibited by children with autism spectrum disorder (ASD) and children with attention deficit hyperactivity disorder (ADHD). This similarity suggests that the cognitive impairment(s) contributing to the structural language deficits in ASD and ADHD may be shared. Previous studies have speculated that procedural memory deficits may be the shared cognitive impairment. The procedural deficit hypothesis (PDH) argues that language deficits can be explained by differences in the neural structures underlying the procedural memory network. This hypothesis is based on the premise that the neural structures comprising the procedural network support language learning. In this study, we aimed to test the PDH in children with ASD, ADHD, and typical development (TD). Methods: One hundred and sixty-three participants (ages 10–21): 91 with ASD, 26 with ADHD, and 46 with TD, completed standardized measures of cognitive and language ability as well as structural magnetic resonance imaging. We compared the structural language abilities, the neural structures underlying the procedural memory network, and the relationship between structural language and neural structure across diagnostic groups. Results: Our analyses revealed that while the structural language abilities differed across ASD, ADHD, and TD groups, the thickness, area, and volume of the structures supporting the procedural memory network were not significantly different between diagnostic groups. Also, several neural structures were associated with structural language abilities across diagnostic groups. Only two of these structures, the inferior frontal gyrus, and the left superior parietal gyrus, are known to be linked to the procedural memory network. Conclusions: The inferior frontal gyrus and the left superior parietal gyrus, have well-established roles in language learning independent of their role as part of the procedural memory system. Other structures such as the caudate and cerebellum, with critical roles in the procedural memory network, were not associated with structural language abilities across diagnostic groups. It is unclear whether the procedural memory network plays a fundamental role in language learning in ASD, ADHD, and TD.
Collapse
Affiliation(s)
- Teenu Sanjeevan
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | | | - Jessica Brian
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Paediatrics, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
| | - Jennifer Crosbie
- Psychiatry Research, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Psychiatry Research, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Robert Nicolson
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Alana Iaboni
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | | | - Leanne Ristic
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Paediatrics, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Kessler M, Schierholz I, Mamach M, Wilke F, Hahne A, Büchner A, Geworski L, Bengel FM, Sandmann P, Berding G. Combined Brain-Perfusion SPECT and EEG Measurements Suggest Distinct Strategies for Speech Comprehension in CI Users With Higher and Lower Performance. Front Neurosci 2020; 14:787. [PMID: 32848560 PMCID: PMC7431776 DOI: 10.3389/fnins.2020.00787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Cochlear implantation constitutes a successful therapy of inner ear deafness, with the majority of patients showing good outcomes. There is, however, still some unexplained variability in outcomes with a number of cochlear-implant (CI) users, showing major limitations in speech comprehension. The current study used a multimodal diagnostic approach combining single-photon emission computed tomography (SPECT) and electroencephalography (EEG) to examine the mechanisms underlying speech processing in postlingually deafened CI users (N = 21). In one session, the participants performed a speech discrimination task, during which a 96-channel EEG was recorded and the perfusions marker 99mTc-HMPAO was injected intravenously. The SPECT scan was acquired 1.5 h after injection to measure the cortical activity during the speech task. The second session included a SPECT scan after injection without stimulation at rest. Analysis of EEG and SPECT data showed N400 and P600 event-related potentials (ERPs) particularly evoked by semantic violations in the sentences, and enhanced perfusion in a temporo-frontal network during task compared to rest, involving the auditory cortex bilaterally and Broca's area. Moreover, higher performance in testing for word recognition and verbal intelligence strongly correlated to the activation in this network during the speech task. However, comparing CI users with lower and higher speech intelligibility [median split with cutoff + 7.6 dB signal-to-noise ratio (SNR) in the Göttinger sentence test] revealed for CI users with higher performance additional activations of parietal and occipital regions and for those with lower performance stronger activation of superior frontal areas. Furthermore, SPECT activity was tightly coupled with EEG and cognitive abilities, as indicated by correlations between (1) cortical activation and the amplitudes in EEG, N400 (temporal and occipital areas)/P600 (parietal and occipital areas) and (2) between cortical activation in left-sided temporal and bilateral occipital/parietal areas and working memory capacity. These results suggest the recruitment of a temporo-frontal network in CI users during speech processing and a close connection between ERP effects and cortical activation in CI users. The observed differences in speech-evoked cortical activation patterns for CI users with higher and lower speech intelligibility suggest distinct processing strategies during speech rehabilitation with CI.
Collapse
Affiliation(s)
- Mariella Kessler
- Department of Nuclear Medicine, Hannover Medical School, Hanover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
| | - Irina Schierholz
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hanover, Germany
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Martin Mamach
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hanover, Germany
| | - Florian Wilke
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hanover, Germany
| | - Anja Hahne
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Saxonian Cochlear Implant Center, Technical University Dresden, Dresden, Germany
| | - Andreas Büchner
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hanover, Germany
| | - Lilli Geworski
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hanover, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hanover, Germany
| | - Pascale Sandmann
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Hanover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
21
|
Dávila G, Moyano MP, Edelkraut L, Moreno-Campos L, Berthier ML, Torres-Prioris MJ, López-Barroso D. Pharmacotherapy of Traumatic Childhood Aphasia: Beneficial Effects of Donepezil Alone and Combined With Intensive Naming Therapy. Front Pharmacol 2020; 11:1144. [PMID: 32848757 PMCID: PMC7411310 DOI: 10.3389/fphar.2020.01144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
At present, language therapy is the only available treatment for childhood aphasia (CA). Studying new interventions to augment and hasten the benefits provided by language therapy in children is strongly needed. CA frequently emerges as a consequence of traumatic brain injury and, as in the case of adults, it may be associated with dysfunctional activity of neurotransmitter systems. The use of cognitive-enhancing drugs, alone or combined with aphasia therapy, promotes improvement of language deficits in aphasic adults. In this study we report the case of a 9-year-old right-handed girl, subject P, who had chronic anomic aphasia associated with traumatic lesions in the left temporal-parietal cortex. We performed a single-subject, open-label study encompassing administration of the cholinergic agent donepezil (DP) alone during 12 weeks, followed by a combination of DP and intensive naming therapy (INT) for 2 weeks and thereafter by a continued treatment of DP alone during 12 weeks, a 4-week washout period, and another 2 weeks of INT. Four comprehensive language and neuropsychological evaluations were performed at different timepoints along the study, and multiple naming evaluations were performed after each INT in order to assess performance in treated and untreated words. Structural magnetic resonance imaging (MRI) was performed at baseline. MRI revealed two focal lesions in the left hemisphere, one large involving the posterior inferior and middle temporal gyri and another comprising the angular gyrus. Overall, baseline evaluation disclosed marked impairment in naming with mild-to-moderate compromise of spontaneous speech, repetition, and auditory comprehension. Executive and attention functions were also affected, but memory, visuoconstructive, and visuoperceptive functions were preserved. Treatment with DP alone significantly improved spontaneous speech, auditory comprehension, repetition, and picture naming, in addition to processing speed, selective, and sustained attention. Combined DP-INT further improved naming. After washout of both interventions, most of these beneficial changes remained. Importantly, DP produced no side effects and subject P attained the necessary level of language competence to return to regular schooling. In conclusion, the use of DP alone and in combination with INT improved language function and related cognitive posttraumatic deficits in a child with acquired aphasia. Further studies in larger samples are warranted.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María Pilar Moyano
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Lisa Edelkraut
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Lorena Moreno-Campos
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
22
|
D’Angiulli A, Pham DAT, Leisman G, Goldfield G. Evaluating Preschool Visual Attentional Selective-Set: Preliminary ERP Modeling and Simulation of Target Enhancement Homology. Brain Sci 2020; 10:brainsci10020124. [PMID: 32098390 PMCID: PMC7071495 DOI: 10.3390/brainsci10020124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
We reanalyzed, modeled and simulated Event-Related Potential (ERP) data from 13 healthy children (Mean age = 5.12, Standard Deviation = 0.75) during a computerized visual sustained target detection task. Extending an ERP-based ACT–R (Adaptive Control of Thought–Rational) neurocognitive modeling approach, we tested whether visual sustained selective-set attention in preschool children involves the enhancement of neural response to targets, and it shows key adult-like features (neurofunctional homology). Blinded automatic peaks analysis was conducted on vincentized binned grand ERP averages. Time-course and distribution of scalp activity were detailed through topographic mapping and paths analysis. Reaction times and accuracy were also measured. Adult Magnetic Resonance Imaging-based mapping using ACT–R dipole source modeling and electric-field spiking simulation provided very good fit with the actual ERP data (R2 > 0.70). In most electrodes, between 50 and 400 ms, ERPs concurrent with target presentation were enhanced relative to distractor, without manual response confounds. Triangulation of peak analysis, ACT–R modeling and simulation for the entire ERP epochs up to the moment of manual response (~700 ms, on average) suggested converging evidence of distinct but interacting processes of enhancement and planning for response release/inhibition, respectively. The latter involved functions and structures consistent with adult ERP activity which might correspond to a large-scale network, implicating Dorsal and Ventral Attentional Networks, corticostriatal loops, and subcortical hubs connected to prefrontal cortex top-down working memory executive control. Although preliminary, the present approach suggests novel directions for further tests and falsifiable hypotheses on the origins and development of visual selective attention and their ERP correlates.
Collapse
Affiliation(s)
- Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
- Neuroscience of Imagination, Cognition & Emotion Research (NICER) Lab, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Correspondence:
| | - Dao Anh Thu Pham
- Neuroscience of Imagination, Cognition & Emotion Research (NICER) Lab, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Gerry Leisman
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Gary Goldfield
- Department of Pediatrics, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 5B2, Canada
| |
Collapse
|
23
|
How You Say or What You Say? Neural Activity in Message Credibility Evaluation. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7302259 DOI: 10.1007/978-3-030-50371-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Ciesielski KTR, Stern ME, Diamond A, Khan S, Busa EA, Goldsmith TE, van der Kouwe A, Fischl B, Rosen BR. Maturational Changes in Human Dorsal and Ventral Visual Networks. Cereb Cortex 2019; 29:5131-5149. [PMID: 30927361 DOI: 10.1093/cercor/bhz053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Indexed: 11/14/2022] Open
Abstract
Developmental neuroimaging studies report the emergence of increasingly diverse cognitive functions as closely entangled with a rise-fall modulation of cortical thickness (CTh), structural cortical and white-matter connectivity, and a time-course for the experience-dependent selective elimination of the overproduced synapses. We examine which of two visual processing networks, the dorsal (DVN; prefrontal, parietal nodes) or ventral (VVN; frontal-temporal, fusiform nodes) matures first, thus leading the neuro-cognitive developmental trajectory. Three age-dependent measures are reported: (i) the CTh at network nodes; (ii) the matrix of intra-network structural connectivity (edges); and (iii) the proficiency in network-related neuropsychological tests. Typically developing children (age ~6 years), adolescents (~11 years), and adults (~21 years) were tested using multiple-acquisition structural T1-weighted magnetic resonance imaging (MRI) and neuropsychology. MRI images reconstructed into a gray/white/pial matter boundary model were used for CTh evaluation. No significant group differences in CTh and in the matrix of edges were found for DVN (except for the left prefrontal), but a significantly thicker cortex in children for VVN with reduced prefrontal ventral-fusiform connectivity and with an abundance of connections in adolescents. The higher performance in children on tests related to DVN corroborates the age-dependent MRI structural connectivity findings. The current findings are consistent with an earlier maturational course of DVN.
Collapse
Affiliation(s)
- Kristina T R Ciesielski
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Moriah E Stern
- Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Adele Diamond
- Department of Psychiatry, University of British Columbia, Vancouver BC V6T2A1, Canada
| | - Sheraz Khan
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Evelina A Busa
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA
| | - Timothy E Goldsmith
- Pediatric Neuroscience Laboratory, Department of Psychology, Psychology Clinical Neuroscience Center, University of New Mexico, Logan Hall, Albuquerque NM 87131, USA
| | - Andre van der Kouwe
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA
| | - Bruce Fischl
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Bruce R Rosen
- Department of Radiology, MGH/MIT/HMS A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Jung S, Lee A, Bang M, Lee SH. Gray matter abnormalities in language processing areas and their associations with verbal ability and positive symptoms in first-episode patients with schizophrenia spectrum psychosis. NEUROIMAGE-CLINICAL 2019; 24:102022. [PMID: 31670071 PMCID: PMC6831896 DOI: 10.1016/j.nicl.2019.102022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Impaired verbal communication is a prominent feature in patients with schizophrenia. Verbal communication difficulties adversely affect psychosocial outcomes and worsen schizophrenia's clinical manifestation. In the present study, we aimed to investigate associations among gray matter (GM) volumes in language processing areas (LPAs), verbal ability, and positive symptoms in first-episode patients (FEPs) with schizophrenia spectrum psychosis. METHODS We enrolled 94 FEPs and 52 healthy controls (HCs) and subjected them to structural magnetic resonance imaging. The GM volumes of the bilateral pars opercularis (POp), pars triangularis (PTr), planum temporale (PT), Heschl's gyrus (HG), insula, and fusiform gyrus (FG), were estimated and compared between the FEPs and HCs. Verbal intelligence levels and positive symptom severity were examined for correlations with the left LPA volumes. RESULTS The GM volumes of the left POp, HG, and FG were significantly smaller in the FEPs than in the HCs, while the right regions showed no significant between-group difference. A multiple linear regression model revealed that larger left PT volume was associated with better verbal intelligence in FEPs. In exploratory correlation analysis, several LPAs showed significant correlations with the severity of positive symptoms in FEPs. The left FG volume had a strong inverse correlation with the severity of auditory verbal hallucinations, while the left PT volume was inversely associated with the severity of positive formal thought disorder and delusions. Moreover, the volume of the left insula was positively associated with the severity of bizarre behavior. CONCLUSIONS The present study suggests that GM abnormalities in the LPAs, which can be detected during the early stage of illness, may underlie impaired verbal communication and positive symptoms in patients with schizophrenia spectrum psychosis.
Collapse
Affiliation(s)
- Sra Jung
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Arira Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
26
|
Wolak T, Cieśla K, Pluta A, Włodarczyk E, Biswal B, Skarżyński H. Altered Functional Connectivity in Patients With Sloping Sensorineural Hearing Loss. Front Hum Neurosci 2019; 13:284. [PMID: 31507391 PMCID: PMC6713935 DOI: 10.3389/fnhum.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sensory deprivation, such as hearing loss, has been demonstrated to change the intrinsic functional connectivity (FC) of the brain, as measured with resting-state functional magnetic resonance imaging (rs-fMRI). Patients with sloping sensorineural hearing loss (SNHL) are a unique population among the hearing impaired, as they have all been exposed to some auditory input throughout their lifespan and all use spoken language. Materials and Methods Twenty patients with SNHL and 21 control subjects participated in a rs-fMRI study. Whole-brain seed-driven FC maps were obtained, with audiological scores of patients, including hearing loss severity and speech performance, used as covariates. Results Most profound differences in FC were found between patients with prelingual (before language development, PRE) vs. postlingual onset (after language development, POST) of SNHL. An early onset was related to enhancement in long-range network connections, including the default-mode network, the dorsal-attention network and the fronto-parietal network, as well as in local sensory networks, the visual and the sensorimotor. A number of multisensory brain regions in frontal and parietal cortices, as well as the cerebellum, were also more internally connected. We interpret these effects as top-down mechanisms serving optimization of multisensory experience in SNHL with a prelingual onset. At the same time, POST patients showed enhanced FC between the salience network and multisensory parietal areas, as well as with the hippocampus, when they were compared to those with PRE hearing loss. Signal in several cortex regions subserving visual processing was also more intra-correlated in POST vs. PRE patients. This outcome might point to more attention resources directed to multisensory as well as memory experience. Finally, audiological scores correlated with FC in several sensory and high-order brain regions in all patients. Conclusion The results show that a sloping hearing loss is related to altered resting-state brain organization. Effects were shown in attention and cognitive control networks, as well as visual and sensorimotor regions. Specifically, we found that even in a partial hearing deficit (affecting only some of the hearing frequency ranges), the age at the onset affects the brain function differently, pointing to the role of sensitive periods in brain development.
Collapse
Affiliation(s)
- Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Katarzyna Cieśla
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Agnieszka Pluta
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland.,Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Elżbieta Włodarczyk
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Bharat Biswal
- Department of Biomedical Engineering and Department of Radiology, New Jersey Medical School, NJIT, Newark, NJ, United States
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| |
Collapse
|
27
|
Jin S, Yang YT, Bao W, Bai Y, Ai JW, Liu Y, Yong H. Naming difficulties after thyroid stimulating hormone suppression therapy in patients with differentiated thyroid carcinoma: a prospective cohort study. Endocrine 2019; 65:327-337. [PMID: 31056722 PMCID: PMC6656796 DOI: 10.1007/s12020-019-01943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thyroid stimulating hormone (TSH) suppression therapy after differentiated thyroid carcinoma surgery causes cognitive impairment. However, data on naming difficulties (anomia)-related specific cognitive impairment are lacking. METHODS A prospective cohort study was conducted, in which, patients with differentiated thyroid carcinoma and benign thyroid nodules were given oral L-T4 therapy after surgery, after meeting the criteria of TSH suppression therapy and thyroxine replacement therapy, respectively, the patients were continually given L-T4 therapy for 6 and 12 months, and then, the neuropsychological test was performed. RESULTS Of the 255 subjects, 212 cases (83.13%) completed all the tests, including 33 cases in the normal control group (NC group), 110 cases in the TSH suppression therapy group (TS group), and 69 cases in the thyroxine replacement therapy group (TR group). There was no significant difference in background data among the three groups (P > 0.05). The scores of mini-mental state examination, clock drawing test, digit symbol substitution test, personal history, temporal and spatial orientation, digit order relation, visual object recognition, associative learning, and color naming in the TS and TR groups were not significantly different from those in the NC group after 6 and 12 months of L-T4 therapy (P > 0.05); the scores of picture recall, visual recall, comprehension memory, and digit span forward in the TS and TR groups were notably lower than those in the NC group (P < 0.01); the scores of confrontation naming and listing the names in the TS group were significantly lower than those in the NC and TR groups, and the scores decreased with the prolongation of TSH suppression therapy (P < 0.01). CONCLUSION TSH suppression therapy after differentiated thyroid carcinoma surgery could lead to short-term memory impairment, attention impairment, word selection anomia, and depression, of which, word selection anomia was aggravated with the prolongation of TSH suppression therapy. Therefore, we suggested that optimal TSH goals for individual patients must balance the potential benefit of TSH suppression therapy with the possible harm from subclinical hyperthyroidism especially in low risk differentiated thyroid carcinoma patients (ClinicalTrials.gov Protocol Registration System: ClinicalTrials.gov ID NCT0266532, Registered on 21 June 2016).
Collapse
Affiliation(s)
- Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia Autonomous Region, China.
| | - Yun-Tian Yang
- Departments of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia Autonomous Region, China
| | - Wuyuntu Bao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia Autonomous Region, China
| | - Yinbao Bai
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia Autonomous Region, China
| | - Jing-Wen Ai
- Public Health School of Inner Mongolia Medical University, Hohhot, 010100, Inner Mongolia Autonomous Region, China
| | - Yousheng Liu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia Autonomous Region, China
| | - Hong Yong
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
28
|
Császár-Nagy N, Kapócs G, Bókkon I. Classic psychedelics: the special role of the visual system. Rev Neurosci 2019; 30:651-669. [PMID: 30939118 DOI: 10.1515/revneuro-2018-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
Here, we briefly overview the various aspects of classic serotonergic hallucinogens reported by a number of studies. One of the key hypotheses of our paper is that the visual effects of psychedelics might play a key role in resetting fears. Namely, we especially focus on visual processes because they are among the most prominent features of hallucinogen-induced hallucinations. We hypothesize that our brain has an ancient visual-based (preverbal) intrinsic cognitive process that, during the transient inhibition of top-down convergent and abstract thinking (mediated by the prefrontal cortex) by psychedelics, can neutralize emotional fears of unconscious and conscious life experiences from the past. In these processes, the decreased functional integrity of the self-referencing processes of the default mode network, the modified multisensory integration (linked to bodily self-consciousness and self-awareness), and the modified amygdala activity may also play key roles. Moreover, the emotional reset (elimination of stress-related emotions) by psychedelics may induce psychological changes and overwrite the stress-related neuroepigenetic information of past unconscious and conscious emotional fears.
Collapse
Affiliation(s)
- Noemi Császár-Nagy
- National University of Public Services, Budapest, Hungary.,Psychosomatic Outpatient Clinics, Budapest, Hungary
| | - Gábor Kapócs
- Saint John Hospital, Budapest, Hungary.,Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - István Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary.,Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| |
Collapse
|
29
|
Kasher N, Wittbrodt MT, Alam ZS, Lima BB, Nye JA, Campanella C, Ladd S, Hammadah M, Shah AJ, Raggi P, Quyyumi AA, Vaccarino V, Bremner JD. Sex differences in brain activation patterns with mental stress in patients with coronary artery disease. Biol Sex Differ 2019; 10:35. [PMID: 31300046 PMCID: PMC6626382 DOI: 10.1186/s13293-019-0248-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background Stress is an important contributor to myocardial ischemia and the progression of coronary artery disease (CAD), and women are more susceptible than men to these effects. Little is known, however, about the neural basis of these sex differences. Methods We investigated sex differences in neural correlates of mental stress in a sample of 53 female and 112 male participants (N = 165) with CAD, with and without mental stress-induced myocardial ischemia (MSI), during exposure to mental arithmetic tasks and public speaking stress tasks using high-resolution positron emission tomography (HR-PET) and radiolabeled water imaging of the brain. Results Women compared to men had significantly greater activation with stress in the right frontal (BA 9, 44), right parietal lobe (Area 3, 6, 40), right posterior cingulate gyrus (BA 31), bilateral cerebellum, and left temporal/fusiform gyrus (BA 37) and greater deactivation in bilateral anterior cingulate gyrus (BA 24, 32), bilateral medial frontal gyrus (BA 6, 8, 9, 10), right parahippocampal gyrus, and right middle temporal gyrus (BA 21). Women with MSI (but not those without MSI) showed significantly greater activation than men in the right posterior cingulate gyrus (BA 31) and greater deactivation in several frontal and temporal lobe areas. Conclusion Men and women with CAD show differences in responses to stress in brain limbic areas that regulate emotion, and these functional responses differ by MSI status. Our results suggest that the cingulate gyrus may be involved in sex differences in MSI. Electronic supplementary material The online version of this article (10.1186/s13293-019-0248-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Kasher
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Zuhayr S Alam
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine (Cardiology), Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Carolina Campanella
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Stacy Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Muhammad Hammadah
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine (Cardiology), Emory University School of Medicine, Emory University, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute and the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arshed A Quyyumi
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine (Cardiology), Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA. .,Department of Radiology, Emory University School of Medicine, Emory University, Atlanta, GA, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
30
|
Bernal B, Guillen M, Korman B. Nontask-Related Brain Lateralization Biomarkers in Children: The Asymmetry of Language Areas on Functional Connectivity Functional Magnetic Resonance Imaging. Brain Connect 2019; 8:321-332. [PMID: 30124344 DOI: 10.1089/brain.2017.0553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, we will test the hypothesis that the connectivity of language areas in normal children is asymmetric between the hemispheres. Intrahemispheric region of interest (ROI)-to-ROI connectivity was assessed in 40 normal right-handed children. Asymmetries were assessed (1) between the hemispheres (global language connectivity); (2) between Brodmann areas (BAs) pairs (pairwise connectivity); and (3) between two homotopic BA (Global BA connectivity). Sixteen BAs were selected: 6, 7, 9, 19, 21, 22, 37, 38, 39, 40, 41, 42, 44, 45, 46, and 47. T scores for connectivity of each BA pair were ascertained using the MATLAB toolbox CONN. Lateralization index (LI) scores based on T-values were obtained. Only LIs with 2SD above the mean were considered as significant. Comparisons between T-value groups (per side and per BA) were performed utilizing double-sided T-tests. Null hypothesis was rejected for p < 0.05. There was not a statistical difference between global left and right connectivity strength (p = 0.40). There was significant pairwise connectivity asymmetry for the following pairs: BA7-BA44 (LI = 0.662); BA21-BA42 (LI = -0.616); BA21-BA40 (LI = -0.595); BA38-BA44 (LI = 0.470); BA39-BA44 (LI = -0.903); and BA42-BA47 (LI = -0.445). Language-related brain connectivity asymmetries have been demonstrated in a group of children and young adolescents. Two pairs related to Broca's area were left dominant (BA44-BA38 and BA44-BA7) and four pairs right dominant (BA42-BA47, BA39-BA44, BA21-BA40, and BA21-BA42).
Collapse
Affiliation(s)
- Byron Bernal
- 1 Brain Institute , Nicklaus Children's Hospital, Miami, Florida.,2 Department of Radiology, Florida International University , Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| | - Magno Guillen
- 2 Department of Radiology, Florida International University , Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| | - Brandon Korman
- 1 Brain Institute , Nicklaus Children's Hospital, Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| |
Collapse
|
31
|
Van Hedger K, Keedy SK, Schertz KE, Berman MG, de Wit H. Effects of methamphetamine on neural responses to visual stimuli. Psychopharmacology (Berl) 2019; 236:1741-1748. [PMID: 30604184 PMCID: PMC6606378 DOI: 10.1007/s00213-018-5156-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE The behavioral and reward-related effects of stimulant drugs have been studied extensively; yet the effect of stimulants on sensory processing is still relatively unknown. Prior brain imaging studies have shown that single doses of stimulant drugs increase neural function during cognitive and attentional processes. However, it is not clear if stimulant drugs such as methamphetamine (MA) affect neural responses to novel sensory stimuli, and whether these effects depend on the visual features of the stimuli. OBJECTIVE In this study, we examined the effects of a single dose of MA (20 mg oral) on neural activation in response to visual stimuli that varied on "non-straight edges" (NSE), a low-level visual feature that quantifies curved/fragmented edges and is related to perceived image complexity. METHODS Healthy adult participants (n = 18) completed two sessions in which they received MA and placebo in counterbalanced order before an fMRI scan where they viewed both high and low NSE images. Participants also completed measures of subjective drug effects throughout both sessions. RESULTS During both sessions, high NSE images activated primary visual cortex to a greater extent than low NSE images. Further, MA increased activation only for low NSE images in three areas of visual association cortex: left fusiform, right cingulate/precuneus, and posterior right middle temporal gyrus. This interaction was unrelated to subjective drug effects. CONCLUSIONS These findings suggest that stimulant drugs may change the relative sensitivity of higher order sensory processing to increase visual attention when viewing less complex stimuli. Moreover, MA-induced alterations in this type of sensory processing appear to be independent of the drugs' ability to increase feelings of well-being.
Collapse
Affiliation(s)
- Kathryne Van Hedger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | | | - Marc G Berman
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
32
|
Walenski M, Europa E, Caplan D, Thompson CK. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2019; 40:2275-2304. [PMID: 30689268 DOI: 10.1002/hbm.24523] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Comprehending and producing sentences is a complex endeavor requiring the coordinated activity of multiple brain regions. We examined three issues related to the brain networks underlying sentence comprehension and production in healthy individuals: First, which regions are recruited for sentence comprehension and sentence production? Second, are there differences for auditory sentence comprehension vs. visual sentence comprehension? Third, which regions are specifically recruited for the comprehension of syntactically complex sentences? Results from activation likelihood estimation (ALE) analyses (from 45 studies) implicated a sentence comprehension network occupying bilateral frontal and temporal lobe regions. Regions implicated in production (from 15 studies) overlapped with the set of regions associated with sentence comprehension in the left hemisphere, but did not include inferior frontal cortex, and did not extend to the right hemisphere. Modality differences between auditory and visual sentence comprehension were found principally in the temporal lobes. Results from the analysis of complex syntax (from 37 studies) showed engagement of left inferior frontal and posterior temporal regions, as well as the right insula. The involvement of the right hemisphere in the comprehension of these structures has potentially important implications for language treatment and recovery in individuals with agrammatic aphasia following left hemisphere brain damage.
Collapse
Affiliation(s)
- Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois
| | - Eduardo Europa
- Department of Neurology, University of California, San Francisco
| | - David Caplan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
33
|
Progovac L, Rakhlin N, Angell W, Liddane R, Tang L, Ofen N. Neural Correlates of Syntax and Proto-Syntax: Evolutionary Dimension. Front Psychol 2018; 9:2415. [PMID: 30618908 PMCID: PMC6302005 DOI: 10.3389/fpsyg.2018.02415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
The present fMRI study tested predictions of the evolution-of-syntax framework which analyzes certain structures as remnants ("fossils") of a non-hierarchical (non-recursive) proto-syntactic stage in the evolution of language (Progovac, 2015, 2016). We hypothesized that processing of these structures, in comparison to more modern hierarchical structures, will show less activation in the brain regions that are part of the syntactic network, including Broca's area (BA 44 and 45) and the basal ganglia, i.e., the network bolstered in the line of descent of humans through genetic mutations that contributed to present-day dense neuronal connectivity among these regions. Fourteen healthy native English-speaking adults viewed written stimuli consisting of: (1) full sentences (FullS; e.g., The case is closed); (2) Small Clauses (SC; e.g., Case closed); (3) Complex hierarchical compounds (e.g., joy-killer); and (4) Simple flat compounds (e.g., kill-joy). SC (compared to FullS) resulted in reduced activation in the left BA 44 and right basal ganglia. Simple (relative to complex) compounds resulted in increased activation in the inferior temporal gyrus and the fusiform gyrus (BA 37/19), areas implicated in visual and semantic processing. We discuss our findings in the context of current theories regarding the co-evolution of language and the brain.
Collapse
Affiliation(s)
- Ljiljana Progovac
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - Natalia Rakhlin
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - William Angell
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Ryan Liddane
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Lingfei Tang
- Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Noa Ofen
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
34
|
Aubinet C, Larroque SK, Heine L, Martial C, Majerus S, Laureys S, Di Perri C. Clinical subcategorization of minimally conscious state according to resting functional connectivity. Hum Brain Mapp 2018; 39:4519-4532. [PMID: 29972267 PMCID: PMC6866360 DOI: 10.1002/hbm.24303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 11/11/2022] Open
Abstract
Patients in minimally conscious state (MCS) have been subcategorized in MCS plus and MCS minus, based on command-following, intelligible verbalization or intentional communication. We here aimed to better characterize the functional neuroanatomy of MCS based on this clinical subcategorization by means of resting state functional magnetic resonance imaging (fMRI). Resting state fMRI was acquired in 292 MCS patients and a seed-based analysis was conducted on a convenience sample of 10 MCS plus patients, 9 MCS minus patients and 35 healthy subjects. We investigated the left and right frontoparietal networks (FPN), auditory network, default mode network (DMN), thalamocortical connectivity and DMN between-network anticorrelations. We also employed an analysis based on regions of interest (ROI) to examine interhemispheric connectivity and investigated intergroup differences in gray/white matter volume by means of voxel-based morphometry. We found a higher connectivity in MCS plus as compared to MCS minus in the left FPN, specifically between the left dorso-lateral prefrontal cortex and left temporo-occipital fusiform cortex. No differences between patient groups were observed in the auditory network, right FPN, DMN, thalamocortical and interhemispheric connectivity, between-network anticorrelations and gray/white matter volume. Our preliminary group-level results suggest that the clinical subcategorization of MCS may involve functional connectivity differences in a language-related executive control network. MCS plus and minus patients are seemingly not differentiated by networks associated to auditory processing, perception of surroundings and internal awareness/self-mentation, nor by interhemispheric integration and structural brain damage.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Research Center and Neurology DepartmentUniversity and University Hospital of LiègeLiègeBelgium
| | - Stephen Karl Larroque
- Coma Science Group, GIGA Research Center and Neurology DepartmentUniversity and University Hospital of LiègeLiègeBelgium
| | - Lizette Heine
- Auditory Cognition and Psychoacoustics Team – Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028)LyonFrance
| | - Charlotte Martial
- Coma Science Group, GIGA Research Center and Neurology DepartmentUniversity and University Hospital of LiègeLiègeBelgium
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research UnitUniversity of LiegeBelgium
| | - Steven Laureys
- Coma Science Group, GIGA Research Center and Neurology DepartmentUniversity and University Hospital of LiègeLiègeBelgium
| | - Carol Di Perri
- Coma Science Group, GIGA Research Center and Neurology DepartmentUniversity and University Hospital of LiègeLiègeBelgium
- Centre for Clinical Brain Sciences UK Dementia Research Institute, Centre for Dementia PreventionUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
35
|
Chatterjee I. Mean deviation based identification of activated voxels from time-series fMRI data of schizophrenia patients. F1000Res 2018; 7:1615. [PMID: 30687497 PMCID: PMC6338245 DOI: 10.12688/f1000research.16405.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Schizophrenia is a serious mental illness affecting different regions of the brain, which causes symptoms such as hallucinations and delusions. Functional magnetic resonance imaging (fMRI) is the most popular technique to study the functional activation patterns of the brain. The fMRI data is four-dimensional, composed of 3D brain images over time. Each voxel of the 3D brain volume is associated with a time series of signal intensity values. This study aimed to identify the distinct voxels from time-series fMRI data that show high functional activation during a task. Methods: In this study, a novel mean-deviation based approach was applied to time-series fMRI data of 34 schizophrenia patients and 34 healthy subjects. The statistical measures such as mean and median were used to find the functional changes in each voxel over time. The voxels that show significant changes for each subject were selected and thus used as the feature set during the classification of schizophrenia patients and healthy controls. Results: The proposed approach identifies a set of relevant voxels that are used to distinguish between healthy and schizophrenia subjects with high classification accuracy. The study shows functional changes in brain regions such as superior frontal gyrus, cuneus, medial frontal gyrus, middle occipital gyrus, and superior temporal gyrus. Conclusions: This work describes a simple yet novel feature selection algorithm for time-series fMRI data to identify the activated brain voxels that are generally affected in schizophrenia. The brain regions identified in this study may further help clinicians to understand the illness for better medical intervention. It may be possible to explore the approach to fMRI data of other psychological disorders.
Collapse
|
36
|
Yang J, Zhang M, Ahn H, Zhang Q, Jin TB, Li I, Nemesure M, Joshi N, Jiang H, Miller JM, Ogden RT, Petkova E, Milak MS, Sublette ME, Sullivan GM, Trivedi MH, Weissman M, McGrath PJ, Fava M, Kurian BT, Pizzagalli DA, Cooper CM, McInnis M, Oquendo MA, Mann JJ, Parsey RV, DeLorenzo C. Development and evaluation of a multimodal marker of major depressive disorder. Hum Brain Mapp 2018; 39:4420-4439. [PMID: 30113112 DOI: 10.1002/hbm.24282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
This study aimed to identify biomarkers of major depressive disorder (MDD), by relating neuroimage-derived measures to binary (MDD/control), ordinal (severe MDD/mild MDD/control), or continuous (depression severity) outcomes. To address MDD heterogeneity, factors (severity of psychic depression, motivation, anxiety, psychosis, and sleep disturbance) were also used as outcomes. A multisite, multimodal imaging (diffusion MRI [dMRI] and structural MRI [sMRI]) cohort (52 controls and 147 MDD patients) and several modeling techniques-penalized logistic regression, random forest, and support vector machine (SVM)-were used. An additional cohort (25 controls and 83 MDD patients) was used for validation. The optimally performing classifier (SVM) had a 26.0% misclassification rate (binary), 52.2 ± 1.69% accuracy (ordinal) and r = .36 correlation coefficient (p < .001, continuous). Using SVM, R2 values for prediction of any MDD factors were <10%. Binary classification in the external data set resulted in 87.95% sensitivity and 32.00% specificity. Though observed classification rates are too low for clinical utility, four image-based features contributed to accuracy across all models and analyses-two dMRI-based measures (average fractional anisotropy in the right cuneus and left insula) and two sMRI-based measures (asymmetry in the volume of the pars triangularis and the cerebellum) and may serve as a priori regions for future analyses. The poor accuracy of classification and predictive results found here reflects current equivocal findings and sheds light on challenges of using these modalities for MDD biomarker identification. Further, this study suggests a paradigm (e.g., multiple classifier evaluation with external validation) for future studies to avoid nongeneralizable results.
Collapse
Affiliation(s)
- Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University, New York, New York
| | - Mengru Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Hongshik Ahn
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Qing Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Tony B Jin
- Department of Psychiatry, Stony Brook University, New York, New York
| | - Ien Li
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Matthew Nemesure
- Integrative Neuroscience Program, Binghamton University, Binghamton, New York
| | - Nandita Joshi
- Department of Electrical and Computer Engineering, Stony Brook University, New York, New York
| | - Haoran Jiang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York
| | - Jeffrey M Miller
- Department of Psychiatry, Columbia University, New York, New York
| | | | - Eva Petkova
- Department of Child & Adolescent Psychiatry, Department of Population Health, New York University, New York, New York
| | - Matthew S Milak
- Department of Psychiatry, Columbia University, New York, New York
| | | | - Gregory M Sullivan
- Chief Medical Officer, Clinical Research and Development program, Tonix Pharmaceuticals, Inc., New York, New York
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Myrna Weissman
- Department of Psychiatry, Columbia University, New York, New York
| | | | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Benji T Kurian
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Crystal M Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melvin McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Maria A Oquendo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph John Mann
- Department of Psychiatry, Columbia University, New York, New York
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, New York, New York
| | | |
Collapse
|
37
|
Hannant P. Receptive language is associated with visual perception in typically developing children and sensorimotor skills in autism spectrum conditions. Hum Mov Sci 2018; 58:297-306. [PMID: 29549746 DOI: 10.1016/j.humov.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
A number of studies have evidenced marked difficulties in language in autism spectrum conditions (ASC). Studies have also shown that language and word knowledge are associated with the same area of brain that is also responsible for visual perception in typically developing (TD) individuals. However, in ASC, research suggests word meaning is mapped differently, on to situational sensorimotor components within the brain. Furthermore, motor coordination is associated with communication skills. The current study explores whether motor coordination and visual perception are impaired in children with ASC, and whether difficulties in coordination and visual perception correlate with receptive language levels. 36 children took part: 18 with ASC and 18 TD children, matched on age and non-verbal reasoning. Both groups completed the Movement ABC, Beery-Buktenica Developmental Test of Visual-Motor Integration, British Picture Vocabulary Scale and Matrices (WASI). Results showed that ASC children scored significantly lower on receptive language, coordination and visual motor integration than the TD group. In the TD group receptive language significantly correlated with visual perception; in the ASC group receptive language significantly correlated with balance. These results imply that sensorimotor skills are associated with the understanding of language in ASC and thus the relationship between sensorimotor experiences and language warrants further investigation.
Collapse
Affiliation(s)
- Penelope Hannant
- Centre for Research in Psychology, Behaviour and Achievement, Coventry University, UK; School of Education, University of Birmingham, UK.
| |
Collapse
|
38
|
Teipel SJ, Keller F, Thyrian JR, Strohmaier U, Altiner A, Hoffmann W, Kilimann I. Hippocampus and Basal Forebrain Volumetry for Dementia and Mild Cognitive Impairment Diagnosis: Could It Be Useful in Primary Care? J Alzheimers Dis 2018; 55:1379-1394. [PMID: 27834778 DOI: 10.3233/jad-160778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Once a patient or a knowledgeable informant has noticed decline in memory or other cognitive functions, initiation of early dementia assessment is recommended. Hippocampus and cholinergic basal forebrain (BF) volumetry supports the detection of prodromal and early stages of Alzheimer's disease (AD) dementia in highly selected patient populations. OBJECTIVE To compare effect size and diagnostic accuracy of hippocampus and BF volumetry between patients recruited in highly specialized versus primary care and to assess the effect of white matter lesions as a proxy for cerebrovascular comorbidity on diagnostic accuracy. METHODS We determined hippocampus and BF volumes and white matter lesion load from MRI scans of 71 participants included in a primary care intervention trial (clinicaltrials.gov identifier: NCT01401582) and matched 71 participants stemming from a memory clinic. Samples included healthy controls and people with mild cognitive impairment (MCI), AD dementia, mixed dementia, and non-AD related dementias. RESULTS Volumetric measures reached similar effect sizes and cross-validated levels of accuracy in the primary care and the memory clinic samples for the discrimination of AD and mixed dementia cases from healthy controls. In the primary care MCI cases, volumetric measures reached only random guessing levels of accuracy. White matter lesions had only a modest effect on effect size and diagnostic accuracy. CONCLUSIONS Hippocampus and BF volumetry may usefully be employed for the identification of AD and mixed dementia, but the detection of MCI does not benefit from the use of these volumetric markers in a primary care setting.
Collapse
Affiliation(s)
- Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) -Rostock/Greifswald, Rostock, Germany.,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Felix Keller
- German Center for Neurodegenerative Diseases (DZNE) -Rostock/Greifswald, Rostock, Germany.,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Jochen R Thyrian
- German Center for Neurodegenerative Diseases (DZNE) -Rostock/Greifswald, Greifswald, Germany
| | - Urs Strohmaier
- German Center for Neurodegenerative Diseases (DZNE) -Rostock/Greifswald, Greifswald, Germany.,Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Attila Altiner
- Institute of General Practice, University of Rostock, Rostock, Germany
| | - Wolfgang Hoffmann
- German Center for Neurodegenerative Diseases (DZNE) -Rostock/Greifswald, Greifswald, Germany.,Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE) -Rostock/Greifswald, Rostock, Germany.,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
39
|
Zhuang J, Madden DJ, Duong-Fernandez X, Chen NK, Cousins SW, Potter GG, Diaz MT, Whitson HE. Language processing in age-related macular degeneration associated with unique functional connectivity signatures in the right hemisphere. Neurobiol Aging 2017; 63:65-74. [PMID: 29223681 DOI: 10.1016/j.neurobiolaging.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022]
Abstract
Age-related macular degeneration (AMD) is a retinal disease associated with significant vision loss among older adults. Previous large-scale behavioral studies indicate that people with AMD are at increased risk of cognitive deficits in language processing, particularly in verbal fluency tasks. The neural underpinnings of any relationship between AMD and higher cognitive functions, such as language processing, remain unclear. This study aims to address this issue using independent component analysis of spontaneous brain activity at rest. In 2 components associated with visual processing, we observed weaker functional connectivity in the primary visual cortex and lateral occipital cortex in AMD patients compared with healthy controls, indicating that AMD might lead to differences in the neural representation of vision. In a component related to language processing, we found that increasing connectivity within the right inferior frontal gyrus was associated with better verbal fluency performance across all older adults, and the verbal fluency effect was greater in AMD patients than controls in both right inferior frontal gyrus and right posterior temporal regions. As the behavioral performance of our patients is as good as that of controls, these findings suggest that preservation of verbal fluency performance in AMD patients might be achieved through higher contribution from right hemisphere regions in bilateral language networks. If that is the case, there may be an opportunity to promote cognitive resilience among seniors with AMD or other forms of late-life vision loss.
Collapse
Affiliation(s)
- Jie Zhuang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA.
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Xuan Duong-Fernandez
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Scott W Cousins
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA; Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Guy G Potter
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Michele T Diaz
- Department of Psychology, Pennsylvania State University, State College, PA, USA
| | - Heather E Whitson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA; Durham VA Medical Center, Geriatrics Research Education and Clinical Center (GRECC), Durham, NC, USA.
| |
Collapse
|
40
|
Alferova VV, Mayorova LA, Ivanova EG, Guekht AB, Shklovskij VM. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:71-78. [PMID: 28665373 DOI: 10.17116/jnevro20171173271-78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.
Collapse
Affiliation(s)
- V V Alferova
- Center for Speech Pathology and Neurorehabilitation, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - L A Mayorova
- Center for Speech Pathology and Neurorehabilitation, Moscow, Russia; Institute of Higher Nervous Activity of RAS, Moscow, Russia
| | - E G Ivanova
- Center for Speech Pathology and Neurorehabilitation, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - A B Guekht
- Pirogov Russian National Research Medical University, Moscow, Russia; The Solovyov Scientific and Practical Centre of neuropsychiatric, Moscow, Russia
| | - V M Shklovskij
- Center for Speech Pathology and Neurorehabilitation, Moscow, Russia; The Serbsky State Scientific Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
41
|
Brain Areas Subserving Torrance Tests of Creative Thinking: An Functional Magnetic Resonance Imaging Study. Dement Neurocogn Disord 2017; 16:48-53. [PMID: 30906370 PMCID: PMC6427957 DOI: 10.12779/dnd.2017.16.2.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Torrance Tests of Creative Thinking (TTCT) is a well-known and commonly used measure of creativity. However, the TTCT-induced creative hemodynamic brain activity is rarely revealed. The purpose of this study is to elucidate the neural correlates of creative thinking in the setting of a modified version of the figural TTCT adapted for an functional magnetic resonance imaging (fMRI) experiment. Methods We designed a blocked fMRI experiment. Twenty-five participants (11 males, 14 females, mean age 19.9±1.8) were asked to complete the partially presented line drawing of the figural TTCT (creative drawing imagery; creative). As a control condition, subjects were asked to keep tracking the line on the screen (line tracking; control). Results Compared to the control condition, creative condition revealed greater activation in the distributed and bilateral brain regions including the left anterior cingulate, bilateral frontal, parietal, temporal and occipital regions as shown in the previous creativity studies. Conclusions The present revealed the neural basis underlying the figural TTCT using fMRI, providing an evidence of brain areas encompassing the figural TTCT. Considering the significance of a creativity test for dementia patients, the neural correlates of TTCT elucidated by this study may be valuable to evaluate the brain function of patients in the clinical field.
Collapse
|
42
|
Abstract
The ecological environment offered by virtual reality is primarily supported by visual information. The different image contents and their rhythmic presentation imply specific bottom-up and top-down processing. Because these processes already occur during passive observation we studied the brain responses evoked by the presentation of specific 3D virtual tunnels with respect to 2D checkerboard. For this, we characterized electroencephalograhy dynamics (EEG), the evoked potentials and related neural generators involved in various visual paradigms. Time-frequency analysis showed modulation of alpha-beta oscillations indicating the presence of stronger prediction and after-effects of the 3D-tunnel with respect to the checkerboard. Whatever the presented image, the generators of the P100 were situated bilaterally in the occipital cortex (BA18, BA19) and in the right inferior temporal cortex (BA20). In checkerboard but not 3D-tunnel presentation, the left fusiform gyrus (BA37) was additionally recruited. P200 generators were situated in the temporal cortex (BA21) and the cerebellum (lobule VI/Crus I) specifically for the checkerboard while the right parahippocampal gyrus (BA36) and the cerebellum (lobule IV/V and IX/X) were involved only during the 3D-tunnel presentation. For both type of image, P300 generators were localized in BA37 but also in BA19, the right BA21 and the cerebellar lobule VI for only the checkerboard and the left BA20-BA21 for only the 3D-tunnel. Stronger P300 delta-theta oscillations recorded in this later situation point to a prevalence of the effect of changing direction over the proper visual content of the 3D-tunnel. The parahippocampal gyrus (BA36) implicated in navigation was also identified when the 3D-tunnel was compared to their scrambled versions, highlighting an action-oriented effect linked to navigational content.
Collapse
|
43
|
Unni A, Ihme K, Jipp M, Rieger JW. Assessing the Driver's Current Level of Working Memory Load with High Density Functional Near-infrared Spectroscopy: A Realistic Driving Simulator Study. Front Hum Neurosci 2017; 11:167. [PMID: 28424602 PMCID: PMC5380755 DOI: 10.3389/fnhum.2017.00167] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver's cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous 'n' speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing.
Collapse
Affiliation(s)
- Anirudh Unni
- Department of Psychology, University of OldenburgOldenburg, Germany
| | - Klas Ihme
- Institute of Transportation Systems, German Aerospace Research CenterBraunschweig, Germany
| | - Meike Jipp
- Institute of Transportation Systems, German Aerospace Research CenterBraunschweig, Germany
| | - Jochem W Rieger
- Department of Psychology, University of OldenburgOldenburg, Germany
| |
Collapse
|
44
|
Grey Matter Density Predicts the Improvement of Naming Abilities After tDCS Intervention in Agrammatic Variant of Primary Progressive Aphasia. Brain Topogr 2016; 29:738-51. [DOI: 10.1007/s10548-016-0494-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/07/2016] [Indexed: 12/22/2022]
|
45
|
Ardila A, Bernal B, Rosselli M. How Extended Is Wernicke's Area? Meta-Analytic Connectivity Study of BA20 and Integrative Proposal. NEUROSCIENCE JOURNAL 2016; 2016:4962562. [PMID: 27006905 PMCID: PMC4781983 DOI: 10.1155/2016/4962562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/27/2016] [Indexed: 11/17/2022]
Abstract
Understanding the functions of different brain areas has represented a major endeavor of contemporary neurosciences. The purpose of this paper was to pinpoint the connectivity of Brodmann area 20 (BA20) (inferior temporal gyrus, fusiform gyrus) in language tasks. A meta-analysis was conducted to assess the language network in which BA20 is involved. The DataBase of Brainmap was used; 11 papers corresponding to 12 experimental conditions with a total of 207 subjects were included in this analysis. Our results demonstrated seven clusters of activation including other temporal lobe areas (BA3, BA21), the insula, and the prefrontal cortex; minor clusters in the cingulate gyrus and the occipital lobe were observed; however, the volumes of all the activation clusters were small. Our results suggest that regardless of BA20 having certain participation in language processes it cannot be considered as a core language processing area (Wernicke's area); nonetheless, it could be regarded as kind of language processing marginal area, participating in "extended Wernicke's area" or simply "Wernicke's system." It is suggested that "core Wernicke's area" roughly corresponds to BA21, BA22, BA41, and BA42, while a "language associations area" roughly corresponds to BA20, BA37, BA38, BA39, and BA40 ("extended Wernicke's area" or "Wernicke's system").
Collapse
Affiliation(s)
- Alfredo Ardila
- Department of Communication Sciences and Disorders, Florida International University, Miami, FL 33199, USA
| | - Byron Bernal
- Radiology Department and Research Institute, Miami Children's Hospital, Miami, FL 33155, USA
| | - Monica Rosselli
- Department of Psychology, Florida Atlantic University, Davie, FL 33144, USA
| |
Collapse
|
46
|
Ardila A, Bernal B, Rosselli M. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language. Arch Clin Neuropsychol 2015; 31:112-22. [PMID: 26663825 DOI: 10.1093/arclin/acv081] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
The interest in understanding how language is "localized" in the brain has existed for centuries. Departing from seven meta-analytic studies of functional magnetic resonance imaging activity during the performance of different language activities, it is proposed here that there are two different language networks in the brain: first, a language reception/understanding system, including a "core Wernicke's area" involved in word recognition (BA21, BA22, BA41, and BA42), and a fringe or peripheral area ("extended Wernicke's area:" BA20, BA37, BA38, BA39, and BA40) involved in language associations (associating words with other information); second, a language production system ("Broca's complex:" BA44, BA45, and also BA46, BA47, partially BA6-mainly its mesial supplementary motor area-and extending toward the basal ganglia and the thalamus). This paper additionally proposes that the insula (BA13) plays a certain coordinating role in interconnecting these two brain language systems.
Collapse
Affiliation(s)
- Alfredo Ardila
- Department of Communication Sciences and Disorders, Florida International University, Miami, FL, USA
| | - Byron Bernal
- Radiology Department/Research Institute, Miami Children's Hospital, Miami, FL, USA
| | - Monica Rosselli
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| |
Collapse
|
47
|
Chan LWC, Pang B, Shyu CR, Chan T, Khong PL. Genetic algorithm supported by graphical processing unit improves the exploration of effective connectivity in functional brain imaging. Front Comput Neurosci 2015; 9:50. [PMID: 25999846 PMCID: PMC4419833 DOI: 10.3389/fncom.2015.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
Brain regions of human subjects exhibit certain levels of associated activation upon specific environmental stimuli. Functional Magnetic Resonance Imaging (fMRI) detects regional signals, based on which we could infer the direct or indirect neuronal connectivity between the regions. Structural Equation Modeling (SEM) is an appropriate mathematical approach for analyzing the effective connectivity using fMRI data. A maximum likelihood (ML) discrepancy function is minimized against some constrained coefficients of a path model. The minimization is an iterative process. The computing time is very long as the number of iterations increases geometrically with the number of path coefficients. Using regular Quad-Core Central Processing Unit (CPU) platform, duration up to 3 months is required for the iterations from 0 to 30 path coefficients. This study demonstrates the application of Graphical Processing Unit (GPU) with the parallel Genetic Algorithm (GA) that replaces the Powell minimization in the standard program code of the analysis software package. It was found in the same example that GA under GPU reduced the duration to 20 h and provided more accurate solution when compared with standard program code under CPU.
Collapse
Affiliation(s)
- Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University Hong Kong, China
| | - Bin Pang
- Informatics Institute, University of Missouri Columbia, MO, USA
| | - Chi-Ren Shyu
- Informatics Institute, University of Missouri Columbia, MO, USA
| | - Tao Chan
- Department of Diagnostic Radiology, University of Hong Kong Hong Kong, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, University of Hong Kong Hong Kong, China
| |
Collapse
|
48
|
Nam KW, Castellanos N, Simmons A, Froudist-Walsh S, Allin MP, Walshe M, Murray RM, Evans A, Muehlboeck JS, Nosarti C. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. Neuroimage 2015; 115:64-75. [PMID: 25871628 PMCID: PMC4463853 DOI: 10.1016/j.neuroimage.2015.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 11/15/2022] Open
Abstract
Very preterm birth (gestational age < 33 weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age 20 years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing. Individuals born very preterm showed long-term alterations in cortical thickness Such alterations affected predominantly frontal and temporal cortices Multivariate analysis revealed between-group spatially discriminating features, with 86.5% accuracy Longitudinal cortical thickness changes were associated with executive function scores
Collapse
Affiliation(s)
- Kie Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK.
| | - Nazareth Castellanos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Seán Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Matthew P Allin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Muriel Walshe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Alan Evans
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - J-Sebastian Muehlboeck
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK; Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| |
Collapse
|