1
|
Thacker M, Wong KY, Zhou L, Liu J, Wong MS. Exploring ocular disorders in Parkinson's disease: A comprehensive review and future perspectives. Exp Eye Res 2025; 251:110225. [PMID: 39725258 DOI: 10.1016/j.exer.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Parkinson's disease (PD) is a multifaceted neurodegenerative disorder characterized by predominantly motor symptoms. However, recent research has broadened our understanding of PD by revealing its impact on non-motor functions, including ocular manifestations. This review explored the intricate relationship between PD and ocular health, shedding light on the mechanisms underlying common ocular diseases such as dry eye disease, cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. It also underscores the importance of recognizing ocular manifestations as potential early markers of PD, as well as their impact on patients' daily activities, necessitating prompt identification and intervention to prevent complications and enhance the overall quality of life. Furthermore, future research should prioritize unraveling the potential association between PD and other prevalent ocular diseases, such as myopia, to formulate effective treatment strategies.
Collapse
Affiliation(s)
- Minal Thacker
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Ka Ying Wong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Liping Zhou
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong; School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Juewen Liu
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Zhang Y, Shi M, Peng D, Chen W, Ma Y, Song W, Wang Y, Hu H, Ji Z, Yang F. QiMing granules for diabetic retinopathy: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1429071. [PMID: 39239647 PMCID: PMC11374745 DOI: 10.3389/fphar.2024.1429071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Objective This study aimed to assess the efficacy and safety of QiMing granules (QM) in the treatment of patients with diabetic retinopathy (DR). Methods We systematically searched multiple databases, including Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, Chinese National Knowledge Infrastructure (CNKI), Wanfang database, and VIP database. Randomized controlled trials (RCTs) of QM in the treatment of DR were collected, and the search time limit was from the establishment of the database to 27 March 2024. Two independent researchers were involved in literature screening, data extraction, and bias risk assessment. The risk of bias in the included studies was assessed using the Risk of Bias Assessment tool for randomized controlled trials of Cochrane Collaboration 2.0 (RoB 2.0). The main outcomes were the overall efficacy, visual acuity, retinal circulation time, macular thickness. The secondary outcomes were the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glycated hemoglobin (HbA1c). The adverse events was considered the safety outcome. Review Manager 5.4.1 and Stata 15.1 were used for meta-analysis. Data were pooled by random-effects or fixed-effects model to obtain the mean difference (MD), risk ratio (RR), and 95% confidence interval (CI). Results A total of 33 RCTs involving 3,042 patients were included in this study. Overall, we demonstrated that QM had a significant clinical effect on DR. QM alone was superior to conventional treatment (CT) in terms of overall efficacy [RR = 1.45, 95% CI: (1.34, 1.58), p < 0.00001, moderate certainty], retinal circulation time [MD = -0.56, 95% CI: (-1.01, -0.12), p = 0.01] and macular thickness [MD = -11.99, 95% CI: (-23.15, -0.83), p = 0.04]. QM plus CT was superior to CT in terms of overall efficacy [RR = 1.29, 95% CI: (1.24, 1.33), p < 0.00001], visual acuity [MD = 0.14, 95% CI: (0.11, 0.17), p < 0.00001], macular thickness [MD = -14.70, 95% CI: (-21.56, -7.83), p < 0.0001], TG [MD = -0.20, 95% CI: (-0.33, -0.08), p = 0.001, moderate certainty], TC [MD = -0.57, 95% CI: (-1.06, -0.07), p = 0.02], and LDL-C [MD = -0.36, 95% CI: (-0.70, -0.03), p = 0.03]. In terms of safety, the incidence of adverse events in the experimental group was less than that in the control group. The results of the GRADE evidence quality evaluation showed that the evidence quality of outcome indicators was mostly low. Conclusion QM can effectively improve overall efficacy, visual acuity, macular thickness, retinal circulation time, and reduce the levels of TG, TC, and LDL-C. However, due to the limited number of studies included, a small sample size, and a lack of high-quality literature, the possibility of publication bias cannot be excluded. Moreover, biases are present due to differences in study design, such as the absence of placebo use in the control group and a predominant use of combined intervention designs in the control group, along with deficiencies in allocation concealment and blinding methods. Therefore, more multi-center, large-sample, and rigorously designed studies are needed to substantiate this conclusion. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42023465165.
Collapse
Affiliation(s)
- Yazi Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglong Shi
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dehui Peng
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weijie Chen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yucong Ma
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenting Song
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuetong Wang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyin Hu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Zhaochen Ji
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengwen Yang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Santi MD, Carvalho D, Dapueto R, Bentura M, Zeni M, Martínez-González L, Martínez A, Peralta MA, Rey A, Giglio J, Ortega MG, Savio E, Abin-Carriquiry JA, Arredondo F. Prenylated Flavanone Isolated from Dalea Species as a Potential Multitarget-Neuroprotector in an In Vitro Alzheimer's Disease Mice Model. Neurotox Res 2024; 42:23. [PMID: 38578482 DOI: 10.1007/s12640-024-00703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3β-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3β. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.
Collapse
Affiliation(s)
- Maria D Santi
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
- Área de Matemática - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Rosina Dapueto
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Manuela Bentura
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Maia Zeni
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Loreto Martínez-González
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Mariana A Peralta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Córdoba, Argentina
| | - Ana Rey
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Javier Giglio
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
- Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Maria G Ortega
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Córdoba, Argentina
| | - Eduardo Savio
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | | | - Florencia Arredondo
- I+D Biomédico y Química Farmacéutica, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay.
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay.
| |
Collapse
|
4
|
Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T. Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist 2023; 29:694-714. [PMID: 35769016 DOI: 10.1177/10738584221104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors. Furthermore, NTs are involved in signaling pathways such as inflammation, apoptosis, and angiogenesis in a nonneuronal cell type. Interestingly, NTs and the precursors can bind and activate the p75 neurotrophin receptor (p75NTR) at low and high affinity. Mature NTs bind their cognate tropomyosin/tyrosine-regulated kinase receptors, crucial for maintenance and neuronal development in the brain and retina axis. Activation of p75NTR results in neuronal apoptosis and cell death, while tropomysin receptor kinase upregulation contributes to differentiation and cell growth. Recent findings indicate that modulation of NTs and their receptors contribute to neurovascular dysfunction in the NVU. Several chronic metabolic and acute ischemic diseases affect the NVU, including diabetic and ischemic retinopathy for the retina, as well as stroke, acute encephalitis, and traumatic brain injury for the brain. This work aims to review the current evidence through published literature studying the impact of NTs and their receptors, including the p75NTR receptor, on the injured and healthy brain-retina axis.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin Mark Adam
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
6
|
Walsh J, Palandra J, Goihberg E, Deng S, Hurst S, Neubert H. Analysis of β-nerve growth factor and its precursor during human pregnancy by immunoaffinity-liquid chromatography tandem mass spectrometry. Sci Rep 2023; 13:9180. [PMID: 37280257 DOI: 10.1038/s41598-023-34695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
β-Nerve growth factor (NGF) is a neurotrophin that plays a critical role in fetal development during gestation. ProNGF is the precursor form of NGF with a distinct biological profile. In order to investigate the role of NGF and proNGF in pregnant human females, a sensitive and selective immunoaffinity liquid chromatography-tandem mass spectrometry assay was developed and qualified to simultaneously measure the levels of total NGF (tNGF; sum of mature and proNGF) and proNGF using full and relative quantification strategies, respectively. The assay was used to determine serum tNGF and proNGF levels in the three gestational trimesters of pregnancy and in non-pregnant female controls. Mean tNGF ± SD were 44.6 ± 12.3, 42.6 ± 9.3, 65.4 ± 17.6 and 77.0 ± 17.8 pg/mL for non-pregnant, first, second, and third trimesters, respectively, demonstrating no significant increase in circulating tNGF between the control and the first trimester, and a moderate yet significant 1.7-fold increase through gestation. proNGF levels during the first trimester were unchanged compared to control. In contrast to tNGF, however, proNGF levels during gestation remained stable without significant changes. The development of this sensitive, novel immunoaffinity duplexed assay for both tNGF and proNGF is expected to enable further elucidation of the roles these neurotrophins play in human pregnancy as well as other models.
Collapse
Affiliation(s)
- Jason Walsh
- Pfizer Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Joe Palandra
- Pfizer Inc., 1 Burtt Road, Andover, MA, 01810, USA
| | | | - Shibing Deng
- Pfizer Inc., 10777 Science Center Drive, San Diego, CA, 92121, USA
| | - Susan Hurst
- Pfizer Inc., 445 Eastern Point Road, Groton, CT, 06340, USA
| | | |
Collapse
|
7
|
Li B, Li W, Guo C, Guo C, Chen M. Early diagnosis of retinal neurovascular injury in diabetic patients without retinopathy by quantitative analysis of OCT and OCTA. Acta Diabetol 2023:10.1007/s00592-023-02086-z. [PMID: 37145367 DOI: 10.1007/s00592-023-02086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
AIMS To quantitatively analyze and compare the differences in retinal neurovascular units (NVUs) between healthy individuals and patients with type 2 diabetes mellitus (DM) by optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) techniques and to determine the value of this technique for the early diagnosis of retinal neurovascular damage in patients with diabetes mellitus without retinopathy (NDR). METHODS This observational case‒control study was conducted from July 1, 2022, to November 30, 2022, at the outpatient ophthalmology clinic of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine. All subjects underwent baseline data entry and mean thickness of the peripapillary retinal nerve fiber layer (pRNFL), the thickness of each retinal layer in the macula 3 × 3 mm, and vascular density (VD) examination. RESULTS The study included 35 healthy individuals and 48 patients with DM. The retinal VD as well as partial pRNFL, macular nerve fiber layer (NFL), and macular ganglion cell layer (GCL) thickness in DM patients exhibited significantly lower VD in the DM group than in the control group (p < 0.05). Age and disease duration of DM patients showed a negative trend with pRNFL thickness, macular NFL thickness, macular GCL thickness, and VD. However, a positive trend was observed between DM duration and partial inner nuclear layer (INL) thickness. Moreover, there was a positive correlation between macular NFL and GCL thickness and VD for the most part, while a negative correlation was shown between INL temporal thickness and DVC-VD. pRNFL-TI and GCL-superior thickness were screened as two variables in the analysis of the predictors of retinal damage in DM according to the presence or absence of DM. The AUCs were 0.765 and 0.673, respectively. By combining the two indicators for diagnosis, the model predicted prognosis with an AUC of 0.831. In the analysis of retinal damage indicators associated with the duration of DM, after regression logistic analysis according to the duration of DM within 5 years and more than 5 years, the model incorporated two indicators, DVC-VD and pRNFL-N thickness, and the AUCs were 0.764 and 0.852, respectively. Combining the two indicators for diagnosis, the AUC reached 0.925. CONCLUSIONS Retinal NVU may have been compromised in patients with DM without retinopathy. Basic clinical information and rapid noninvasive OCT and OCTA techniques are useful for the quantitative assessment of retinal NVU prognosis in patients with DM without retinopathy.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, No. 4655 Da-Xue Road, Jinan, 250355, Shandong Province, People's Republic of China
| | - Wenwen Li
- Ophthalmology Department of Shandong Hospital of Traditional Chinese Medicine, No. 16369 Jing-Shi Road, Jinan, 250013, Shandong Province, People's Republic of China
| | - Chaohong Guo
- Ophthalmology Department of Shandong Hospital of Traditional Chinese Medicine, No. 16369 Jing-Shi Road, Jinan, 250013, Shandong Province, People's Republic of China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, No. 4655 Da-Xue Road, Jinan, 250355, Shandong Province, People's Republic of China.
| | - Meirong Chen
- Ophthalmology Department of Shandong Hospital of Traditional Chinese Medicine, No. 16369 Jing-Shi Road, Jinan, 250013, Shandong Province, People's Republic of China.
| |
Collapse
|
8
|
NGF and Its Role in Immunoendocrine Communication during Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24031957. [PMID: 36768281 PMCID: PMC9916855 DOI: 10.3390/ijms24031957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Nerve growth factor (NGF) was the first neurotrophin described. This neurotrophin contributes to organogenesis by promoting sensory innervation and angiogenesis in the endocrine and immune systems. Neuronal and non-neuronal cells produce and secrete NGF, and several cell types throughout the body express the high-affinity neurotrophin receptor TrkA and the low-affinity receptor p75NTR. NGF is essential for glucose-stimulated insulin secretion and the complete development of pancreatic islets. Plus, this factor is involved in regulating lipolysis and thermogenesis in adipose tissue. Immune cells produce and respond to NGF, modulating their inflammatory phenotype and the secretion of cytokines, contributing to insulin resistance and metabolic homeostasis. This neurotrophin regulates the synthesis of gonadal steroid hormones, which ultimately participate in the metabolic homeostasis of other tissues. Therefore, we propose that this neurotrophin's imbalance in concentrations and signaling during metabolic syndrome contribute to its pathophysiology. In the present work, we describe the multiple roles of NGF in immunoendocrine organs that are important in metabolic homeostasis and related to the pathophysiology of metabolic syndrome.
Collapse
|
9
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
10
|
Tan X, Zhao L, Tang Y. The Function of BDNF and Its Receptor in the Male Genitourinary System and Its Potential Clinical Application. Curr Issues Mol Biol 2022; 45:110-121. [PMID: 36661494 PMCID: PMC9856797 DOI: 10.3390/cimb45010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF), as a member of the nerve growth factor family, has been mentioned more and more frequently in recent literature reports. Among them, content about the male genitourinary system is also increasing. Objective and Rationale: BDNF plays an important role in the male genitourinary system. At the same time, the literature in this field is constantly increasing. Therefore, we systematically summarized the literature in order to more intuitively show the function of BDNF and its receptor in the male genitourinary system and its potential clinical application. Search Methods: An electronic search of, e.g., PubMed, scholar.google and Scopus, for articles relating to BDNF and its receptor in the male genitourinary system. Outcomes: In the male genitourinary system, BDNF and its receptors TrkB and p75 participate in a series of normal physiological activities, such as the maturation and morphogenesis of testes and epididymis and maintenance of isolated sperm motility. Similarly, an imbalance of the circulating concentration of BDNF also mediates the pathophysiological process of many diseases, such as prostate cancer, benign prostatic hyperplasia, male infertility, diabetes erectile dysfunction, penile sclerosis, and bladder fibrosis. As a consequence, we conclude that BDNF and its receptor are key regulatory proteins in the male genitourinary system, which can be used as potential therapeutic targets and markers for disease diagnosis.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| |
Collapse
|
11
|
Nyström S, Kendall A, Adepu S, Lindahl A, Skiöldebrand E. The expression of nerve growth factor in healthy and inflamed equine chondrocytes analysed by capillary western immunoassay. Res Vet Sci 2022; 151:156-163. [PMID: 36029605 DOI: 10.1016/j.rvsc.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Nerve Growth Factor (NGF) is a signalling molecule for pain and inflammation. NGF is increased in synovial fluid from osteoarthritic humans and animals, compared to healthy controls. Monoclonal antibody therapy directed against NGF has been approved to treat pain in osteoarthritic dogs but despite many years of trialling, therapy has not been approved for human use. One reason for this is that adverse reactions with rapidly progressing osteoarthritis has occurred in some individuals. More detailed knowledge of NGF expression in joints is needed. In this study, capillary-based Simple Western was used to analyse NGF in cultured equine chondrocytes. Chondrocytes were collected post mortem from three macroscopically healthy intercarpal joints and three intercarpal joints with mild osteoarthritic changes. The chondrocytes were expanded to passage one and seeded in chondrogenic medium to maintain the phenotype. On day four, cells were either stimulated with LPS or kept untreated in medium. All cells were harvested on day five. Wes analysis of lysates did not show mature NGF but two proforms, 40 and 45 kDa, were identified. Results were confirmed with western blot. The same proforms were expressed in chondrocytes from healthy and osteoarthritic joints. Acute inflammation induced by LPS stimulation did not change the forms of expressed NGF. Capillary Simple Western offers a sensitive and sample-sparing alternative to traditional western blot. However, confirmation of peaks is imperative in order to avoid misinterpretation of findings. In addition, in this case the method did not offer the possibility of quantification advertised by the manufacturers.
Collapse
Affiliation(s)
- Susanne Nyström
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45 Gothenburg, Sweden.
| | - Anna Kendall
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| | - Saritha Adepu
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| | - Anders Lindahl
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45 Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Eva Skiöldebrand
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| |
Collapse
|
12
|
Zhang Z, Zhou Y, Zhao H, Xu J, Yang X. Association Between Pathophysiological Mechanisms of Diabetic Retinopathy and Parkinson's Disease. Cell Mol Neurobiol 2022; 42:665-675. [PMID: 32880791 PMCID: PMC11441199 DOI: 10.1007/s10571-020-00953-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/22/2020] [Indexed: 11/27/2022]
Abstract
Diabetic retinopathy, the most common complication of diabetes, is a neurodegenerative disease in the eye. And Parkinson's disease, affecting the health of 1-2% of people over 60 years old throughout the world, is the second largest neurodegenerative disease in the brain. As the understanding of diabetic retinopathy and Parkinson's disease deepens, the two diseases are found to show correlation in incidence, similarity in clinical presentation, and close association in pathophysiological mechanisms. To reveal the association between pathophysiological mechanisms of the two disease, in this review, the shared pathophysiological factors of diabetic retinopathy and Parkinson's disease are summarized and classified into dopaminergic system, circadian rhythm, neurotrophic factors, α-synuclein, and Wnt signaling pathways. Furthermore, similar and different mechanisms so far as the shared pathophysiological factors of the two disorders are discussed systematically. Finally, a brief summary and new perspectives are presented to provide new directions for further efforts on the association, exploration, and clinical prevention and treatment of diabetic retinopathy and Parkinson's disease.
Collapse
Affiliation(s)
- Zhuoqing Zhang
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yikun Zhou
- Department of Endocrinology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Haiyan Zhao
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jinghui Xu
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiaochun Yang
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Fleury S, Schnitzer ME, Ledoux-Hutchinson L, Boukhatem I, Bélanger JC, Welman M, Busseuil D, Tardif JC, D’Antono B, Lordkipanidzé M. Clinical Correlates Identify ProBDNF and Thrombo-Inflammatory Markers as Key Predictors of Circulating p75NTR Extracellular Domain Levels in Older Adults. Front Aging Neurosci 2022; 14:821865. [PMID: 35264944 PMCID: PMC8899540 DOI: 10.3389/fnagi.2022.821865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The p75NTR receptor binds all neurotrophins and is mostly known for its role in neuronal survival and apoptosis. Recently, the extracellular domain (ECD) of p75NTR has been reported in plasma, its levels being dysregulated in numerous neurological diseases. However, the factors associated with p75NTR ECD levels remain unknown. We investigated clinical correlates of plasma p75NTR ECD levels in older adults without clinically manifested neurological disorders. Circulating p75NTR levels were measured by enzyme-linked immunosorbent assay in plasma obtained from participants in the BEL-AGE cohort (n = 1,280). Determinants of plasma p75NTR ECD levels were explored using linear and non-linear statistical models. Plasma p75NTR ECD levels were higher in male participants; were positively correlated with circulating concentrations of pro-brain-derived neurotrophic factor, and inflammatory markers interleukin-6 and CD40 Ligand; and were negatively correlated with the platelet activation marker P-selectin. While most individuals had p75NTR levels ranging from 43 to 358 pg/ml, high p75NTR levels reaching up to 9,000 pg/ml were detectable in a subgroup representing 15% of the individuals studied. In this cohort of older adults without clinically manifested neurological disorders, there was no association between plasma p75NTR ECD levels and cognitive performance, as assessed by the Montreal Cognitive Assessment score. The physiological relevance of high p75NTR ECD levels in plasma warrants further investigation. Further research assessing the source of circulating p75NTR is needed for a deeper understanding of the direction of effect, and to investigate whether high p75NTR ECD levels are predictive biomarkers or consequences of neuropathology.
Collapse
Affiliation(s)
- Samuel Fleury
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Mireille E. Schnitzer
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | | | - Imane Boukhatem
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Jean-Christophe Bélanger
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Mélanie Welman
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - David Busseuil
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Bianca D’Antono
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Bianca D’Antono,
| | - Marie Lordkipanidzé
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Marie Lordkipanidzé,
| |
Collapse
|
14
|
Wang SS, Liao X, Liu F, Zhang Q, Qiu JJ, Fu SH. miR-132 mediates cell permeability and migration by targeting occludin in high-glucose -induced ARPE-19 cells. Endocr J 2021; 68:531-541. [PMID: 33563844 DOI: 10.1507/endocrj.ej20-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated the effects and mechanisms of miR-132 related to the permeability and mobility of human retinal pigment epithelium ARPE-19 cells in high-glucose (HG) condition. ARPE-19 cells were cultured in normal and HG condition and identified by immunofluorescence staining. Cell viability was assessed by the MTT assay, cell permeability was assessed by the FITC-dextran assay and cell mobility was assessed by the wound healing assay. Different miRNA and mRNA expression levels were determined by quantitative real-time polymerase chain reaction (RT-qPCR). The expression of tight junction-related proteins was determined by Western blot assay and immunofluorescence. The interaction between occludin and miR-132 was confirmed by a dual-luciferase reporter assay. We revealed that HG-treated ARPE-19 cells exhibited significantly increased miR-132 expression, decreased expression of the tight-junction markers including occludin and E-cadherin, and increased cell mobility and permeability. Occludin is a direct target of miR-132, which could regulate cell viability, mobility and permeability under HG condition through the JAK/STAT3 signaling pathway. These are the first data to suggest that miR-132 may contribute to the progression of diabetic retinopathy (DR) and that targeting the effect of miR-132 on occudin and the JAK/STAT3 pathway could represent a novel effective DR-treatment strategy.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Xing Liao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| |
Collapse
|
15
|
Imbalance of nerve growth factor metabolism in aging women with overactive bladder syndrome. World J Urol 2020; 39:2055-2063. [PMID: 32870355 DOI: 10.1007/s00345-020-03422-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Given the disputable link between nerve growth factor (NGF) and overactive bladder syndrome (OAB) and the lack of studies on its precursor (proNGF) in OAB, the aim of the study was to identify changes in the urinary levels of NGF and its proteolytic enzymes in aging women with OAB. METHODS We examined the urinary proNGF/NGF ratio and its processing enzymes in aging women (50-80 years), comparing 20 controls and 20 subjects with OAB. RESULTS In contrast to previous reports correlating NGF to OAB symptoms, we found that proNGF/NGF ratio in the OAB group was twice as high compared to controls (p = 0.009) with a lower NGF levels in women with OAB without statistical significance [1.36 (Q1, Q3: 0.668, 2.39) vs. 1.7 (Q1, Q3: 1.27, 3.045) pg/mg creatinine in control group, p = 0.05]. Enzymatic activity of MMP-7, the main enzyme for extracellular proNGF maturation, was significantly increased in the OAB group and correlated positively with scores of OAB symptoms questionnaires. However, this was counteracted by several-folds increase in the MMP-9 enzyme responsible for NGF proteolysis. While these findings highlight the importance of changes in the proteolytic enzymes to maintain proNGF/NGF balance in OAB, analysis of covariates showed that these changes were attributed to age, insulin resistance and renal function. CONCLUSION NGF proteolysis imbalance can be clinically meaningful in OAB related to aging, rendering it as a potential therapeutic target. However, other age-related factors such as insulin resistance and renal function may contribute to the relationship between NGF and aging-related OAB phenotype.
Collapse
|
16
|
Ding XW, Li R, Geetha T, Tao YX, Babu JR. Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165858. [PMID: 32531260 DOI: 10.1016/j.bbadis.2020.165858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
As the population ages, obesity and metabolic complications as well as neurological disorders are becoming more prevalent, with huge economic burdens on both societies and families. New therapeutics are urgently needed. Nerve growth factor (NGF), first discovered in 1950s, is a neurotrophic factor involved in regulating cell proliferation, growth, survival, and apoptosis in both central and peripheral nervous systems. NGF and its precursor, proNGF, bind to TrkA and p75 receptors and initiate protein phosphorylation cascades, resulting in changes of cellular functions, and are associated with obesity, diabetes and its complications, and Alzheimer's disease. In this article, we summarize changes in NGF levels in metabolic and neuronal disorders, the signal transduction initiated by NGF and proNGF, the physiological and pathophysiological relevance, and therapeutic potential in treating chronic metabolic diseases and cognitive decline.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
17
|
Rowe CW, Faulkner S, Paul JW, Tolosa JM, Gedye C, Bendinelli C, Wynne K, McGrath S, Attia J, Smith R, Hondermarck H. The precursor for nerve growth factor (proNGF) is not a serum or biopsy-rinse biomarker for thyroid cancer diagnosis. BMC Endocr Disord 2019; 19:128. [PMID: 31775768 PMCID: PMC6882079 DOI: 10.1186/s12902-019-0457-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nerves and neurotrophic growth factors are emerging promoters of cancer growth. The precursor for Nerve Growth Factor (proNGF) is overexpressed in thyroid cancer, but its potential role as a clinical biomarker has not been reported. Here we have examined the value of proNGF as a serum and biopsy-rinse biomarker for thyroid cancer diagnosis. METHODS Patients presenting for thyroid surgery or biopsy were enrolled in separate cohorts examining serum (n = 204, including 46 cases of thyroid cancer) and biopsy-rinse specimens (n = 188, including 26 cases of thyroid cancer). ProNGF levels in clinical samples were analysed by ELISA. Univariate and multivariate statistical analyses were used to compare proNGF levels with malignancy status and clinicopathological parameters. RESULTS ProNGF was not detected in the majority of serum samples (176/204, 86%) and the detection of proNGF was not associated with thyroid cancer diagnosis. In the few cases where proNGF was detected in the serum, thyroidectomy did not affect proNGF concentration, demonstrating that the thyroid was not the source of serum proNGF. Intriguingly, an association between hyperthyroidism and serum proNGF was observed (OR 3.3, 95% CI 1.6-8.7 p = 0.02). In biopsy-rinse, proNGF was detected in 73/188 (39%) cases, with no association between proNGF and thyroid cancer. However, a significant positive association between follicular lesions and biopsy-rinse proNGF was found (OR 3.3, 95% CI 1.2-8.7, p = 0.02). CONCLUSIONS ProNGF levels in serum and biopsy-rinse are not increased in thyroid cancer and therefore proNGF is not a clinical biomarker for this condition.
Collapse
Affiliation(s)
- Christopher W Rowe
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia.
- Department of Endocrinology, John Hunter Hospital, Locked Bag 1 HMRC, Newcastle, 2310, Australia.
- Hunter Medical Research Institute, New Lambton Heights, Australia.
| | - Sam Faulkner
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Jonathan W Paul
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jorge M Tolosa
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Craig Gedye
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Department of Surgery, John Hunter Hospital, Newcastle, Australia
| | - Cino Bendinelli
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Department of Medical Oncology, Calvary Mater Newcastle, Waratah, Australia
| | - Katie Wynne
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Department of Endocrinology, John Hunter Hospital, Locked Bag 1 HMRC, Newcastle, 2310, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Shaun McGrath
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Department of Endocrinology, John Hunter Hospital, Locked Bag 1 HMRC, Newcastle, 2310, Australia
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
- Clinical Research Design, IT, and Statistical Support Unit, Hunter Medical Research Institute, Newcastle, Australia
| | - Roger Smith
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Department of Endocrinology, John Hunter Hospital, Locked Bag 1 HMRC, Newcastle, 2310, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Hubert Hondermarck
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| |
Collapse
|
18
|
Elsherbiny NM, Abdel-Mottaleb Y, Elkazaz AY, Atef H, Lashine RM, Youssef AM, Ezzat W, El-Ghaiesh SH, Elshaer RE, El-Shafey M, Zaitone SA. Carbamazepine Alleviates Retinal and Optic Nerve Neural Degeneration in Diabetic Mice via Nerve Growth Factor-Induced PI3K/Akt/mTOR Activation. Front Neurosci 2019; 13:1089. [PMID: 31736682 PMCID: PMC6838003 DOI: 10.3389/fnins.2019.01089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Aim: Diabetic retinopathy causes loss of vision in adults at working-age. Few therapeutic options are available for treatment of diabetic retinopathy. Carbamazepine (CARB), a widely used antiepileptic drug, was recently accounted for its neuroprotective effect. Nerve growth factor (NGF) activates various cascades among which, PI3K/Akt/mTOR pathway has a vital action in NGF-mediated neuronal differentiation and survival. This study evaluated the effect of CARB in the treatment of diabetic retina and unveiled some of the underlying molecular mechanisms. Main Methods: Alloxan diabetes model was induced in 36 albino well-acclimatized mice. After establishment of the diabetic model in 9 weeks, mice were assigned to treatment groups: (1) saline, (2) alloxan-diabetic, (3 and 4) alloxan+CARB (25 or 50 mg per kg p.o) for 4 weeks. After completion of the therapeutic period, mice were sacrificed and eyeballs were enucleated. Retinal levels of NGF and PI3K/Akt were assessed using real-time polymerase chain reaction. Further, total and phosphorylated TrKA, PI3K, Akt, mTOR as well as Caspase-3 were measured by Western blot analysis. Key Findings: Histopathological examination demonstrated that CARB attenuated vacuolization and restored normal thickness and organization of retinal cell layers. In addition, CARB increased pTrKA/TrKA ratio and ameliorated diabetes-induced reduction of NGF mRNA and immunostaining in retina. Additionally, it augmented the mRNA expression of PI3K and Akt, as well as the protein level of the phosphorylated PI3/Akt/mTOR. Significance: Results highlighted, for the first time, the neuronal protective effect for CARB in diabetic retina, which is mediated, at least in part, by activation of the NGF/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Yousra Abdel-Mottaleb
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Amany Y. Elkazaz
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Portsaid University, Port Said, Egypt
| | - Hoda Atef
- Department of Histology and Cytology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab M. Lashine
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal M. Youssef
- Department of Physiology, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wessam Ezzat
- Department of Physiology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Sabah H. El-Ghaiesh
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Rabie E. Elshaer
- Pathology Department, Faculty of Medicine (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
19
|
Cecilia OM, José Alberto CG, José NP, Ernesto Germán CM, Ana Karen LC, Luis Miguel RP, Ricardo Raúl RR, Adolfo Daniel RC. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J Diabetes Res 2019; 2019:8562408. [PMID: 31511825 PMCID: PMC6710812 DOI: 10.1155/2019/8562408] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM) causing vision impairment even at young ages. There are numerous mechanisms involved in its development such as inflammation and cellular degeneration leading to endothelial and neural damage. These mechanisms are interlinked thus worsening the diabetic retinopathy outcome. In this review, we propose oxidative stress as the focus point of this complication onset.
Collapse
Affiliation(s)
- Olvera-Montaño Cecilia
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Castellanos-González José Alberto
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Mexico
| | - Navarro-Partida José
- Tecnológico de Monterrey Institute, School of Medicine and Health Sciences, Campus Guadalajara, Mexico
| | - Cardona-Muñoz Ernesto Germán
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - López-Contreras Ana Karen
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | | | - Robles-Rivera Ricardo Raúl
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Rodríguez-Carrizalez Adolfo Daniel
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| |
Collapse
|
20
|
Elshaer SL, Alwhaibi A, Mohamed R, Lemtalsi T, Coucha M, Longo FM, El-Remessy AB. Modulation of the p75 neurotrophin receptor using LM11A-31 prevents diabetes-induced retinal vascular permeability in mice via inhibition of inflammation and the RhoA kinase pathway. Diabetologia 2019; 62:1488-1500. [PMID: 31073629 PMCID: PMC8808141 DOI: 10.1007/s00125-019-4885-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Breakdown of the inner blood-retinal barrier (BRB) is an early event in the pathogenesis of diabetic macular oedema, that eventually leads to vision loss. We have previously shown that diabetes causes an imbalance of nerve growth factor (NGF) isoforms resulting in accumulation of its precursor proNGF and upregulation of the p75 neurotrophin receptor (p75NTR), with consequent increases in the activation of Ras homologue gene family, member A (RhoA). We also showed that genetic deletion of p75NTR in diabetes preserved the BRB and prevented inflammatory mediators in retinas. This study aims to examine the therapeutic potential of LM11A-31, a small-molecule p75NTR modulator and proNGF antagonist, in preventing diabetes-induced BRB breakdown. The study also examined the role of p75NTR/RhoA downstream signalling in mediating cell permeability. METHODS Male C57BL/6 J mice were rendered diabetic using streptozotocin injection. After 2 weeks of diabetes, mice received oral gavage of LM11A-31 (50 mg kg-1 day-1) or saline (NaCl 154 mmol/l) for an additional 4 weeks. BRB breakdown was assessed by extravasation of BSA-AlexaFluor-488. Direct effects of proNGF were examined in human retinal endothelial (HRE) cells in the presence or absence of LM11A-31 or the Rho kinase inhibitor Y-27632. RESULTS Diabetes triggered BRB breakdown and caused significant increases in circulatory and retinal TNF-α and IL-1β levels. These effects coincided with significant decreases in retinal NGF and increases in vascular endothelial growth factor and proNGF expression, as well as activation of RhoA. Interventional modulation of p75NTR activity through treatment of mouse models of diabetes with LM11A-31 significantly mitigated proNGF accumulation and preserved BRB integrity. In HRE cells, treatment with mutant proNGF (10 ng/ml) triggered increased cell permeability with marked reduction of expression of tight junction proteins, zona occludens-1 (ZO-1) and claudin-5, compared with control, independent of inflammatory mediators or cell death. Modulating p75NTR significantly inhibited proNGF-mediated RhoA activation, occludin phosphorylation (at serine 490) and cell permeability. ProNGF induced redistribution of ZO-1 in the cell wall and formation of F-actin stress fibres; these effects were mitigated by LM11A-31. CONCLUSIONS/INTERPRETATION Targeting p75NTR signalling using LM11A-31, an orally bioavailable receptor modulator, may offer an effective, safe and non-invasive therapeutic strategy for treating macular oedema, a major cause of blindness in diabetes.
Collapse
Affiliation(s)
- Sally L Elshaer
- Augusta Biomedical Research Corporation, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdulrahman Alwhaibi
- Augusta Biomedical Research Corporation, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Riyaz Mohamed
- Augusta Biomedical Research Corporation, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Tahira Lemtalsi
- Augusta Biomedical Research Corporation, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Maha Coucha
- Augusta Biomedical Research Corporation, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Azza B El-Remessy
- Augusta Biomedical Research Corporation, Augusta, GA, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
- Department of the Pharmacy, Doctors Hospital of Augusta, Augusta, GA, 30909, USA.
| |
Collapse
|
21
|
Abstract
Studies in psychoneuroimmunology (PNI) would provide better insights into the "whole mind-body system." Systems biology models of the complex adaptive systems (CASs), such as a conceptual framework of "Yin-Yang dynamics," may be helpful for identifying systems-based biomarkers and targets for more effective prevention and treatment. The disturbances in the Yin-Yang dynamical balance may result in stress, inflammation, and various disorders including insomnia, Alzheimer's disease, obesity, diabetes, cardiovascular diseases, skin disorders, and cancer. At the molecular and cellular levels, the imbalances in the cytokine pathways, mitochondria networks, redox systems, and various signaling pathways may contribute to systemic inflammation. In the nervous system, Yin and Yang may represent the dynamical associations between the progressive and regressive processes in aging and neurodegenerative diseases. In response to the damages to the heart, the Yin-Yang dynamical balance between proinflammatory and anti-inflammatory cytokine networks is crucial. The studies of cancer have revealed the importance of the Yin-Yang dynamics in the tumoricidal and tumorigenic activities of the immune system. Stress-induced neuroimmune imbalances are also essential in chronic skin disorders including atopic dermatitis and psoriasis. With the integrative framework, the restoration of the Yin-Yang dynamics can become the objective of dynamical systems medicine.
Collapse
Affiliation(s)
- Qing Yan
- PharmTao, Santa Clara, CA, USA. .,University of Maryland University College, Adelphi, MD, USA.
| |
Collapse
|
22
|
Elshaer SL, El-Remessy AB. Deletion of p75 NTR prevents vaso-obliteration and retinal neovascularization via activation of Trk- A receptor in ischemic retinopathy model. Sci Rep 2018; 8:12490. [PMID: 30131506 PMCID: PMC6104090 DOI: 10.1038/s41598-018-30029-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Ischemic retinopathy is characterized by ischemia followed by retinal neovascularization (RNV) resulting in visual impairment. Given the role of neuron-secreted growth factors in regulating angiogenesis, we examined how genetic deletion of the neurotrophin receptor; p75NTR can overcome retinal ischemia using oxygen-induced retinopathy (OIR) mouse model. Wildtype (WT) or p75NTR-/- mice pups were subjected to hyperoxia (70% O2, p7-p12) then returned to normal air (relative hypoxia, p12-p17). Vascular alterations were assessed at p12 and p17 time-points. Deletion of p75NTR prevented hyperoxia-associated central vascular cell death (p12) and hypoxia-associated RNV and enhanced central vascular repair (p17). Decreased expression of apoptotic markers; preserved Akt survival signal decreased proNGF were also observed at p12. During hypoxia, deletion of p75NTR maintained VEGF and VEGFR2 activation and restored NGF/proNGF and BDNF/proBDNF levels. Deletion of p75NTR coincided with significant increases in expression and activation of NGF survival receptor, TrkA at basal and hyperoxic condition. Pharmacological inhibition of TrkA using compound K-252a (0.5 μg 1 μl-1/eye) resulted in 2-fold increase in pathological RNV and 1.34-fold increase in central vascular cell death in p75NTR-/- pups. In conclusion, deletion of p75NTR protected against retinal ischemia and prevented RNV, in part, through restoring neurotrophic support and activating TrkA receptor.
Collapse
Affiliation(s)
- Sally L Elshaer
- Augusta Biomedical Research Corporation, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
- Ophthalmology Department, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Azza B El-Remessy
- Augusta Biomedical Research Corporation, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
| |
Collapse
|
23
|
Capozzi ME, Giblin MJ, Penn JS. Palmitic Acid Induces Müller Cell Inflammation that is Potentiated by Co-treatment with Glucose. Sci Rep 2018; 8:5459. [PMID: 29626212 PMCID: PMC5889388 DOI: 10.1038/s41598-018-23601-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic hyperglycemia is thought to be the major stimulator of retinal dysfunction in diabetic retinopathy (DR). Thus, many diabetes-related systemic factors have been overlooked as inducers of DR pathology. Cell culture models of retinal cell types are frequently used to mechanistically study DR, but appropriate stimulators of DR-like factors are difficult to identify. Furthermore, elevated glucose, a gold standard for cell culture treatments, yields little to no response from many primary human retinal cells. Thus, the goal of this project was to demonstrate the effectiveness of the free fatty acid, palmitic acid and compare its use alone and in combination with elevated glucose as a stimulus for human Müller cells, a retinal glial cell type that is activated early in DR pathogenesis and uniquely responsive to fatty acids. Using RNA sequencing, we identified a variety of DR-relevant pathways, including NFκB signaling and inflammation, intracellular lipid signaling, angiogenesis, and MAPK signaling, that were stimulated by palmitic acid, while elevated glucose alone did not significantly alter any diabetes-relevant pathways. Co-treatment of high glucose with palmitic acid potentiated the expression of several DR-relevant angiogenic and inflammatory targets, including PTGS2 (COX-2) and CXCL8 (IL-8).
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA.
| | - Meredith J Giblin
- Department of Cell and Developmental Biology at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
| | - John S Penn
- Department of Molecular Physiology and Biophysics at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
- Department of Cell and Developmental Biology at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
- Department of Ophthalmology and Visual Sciences at Vanderbilt University Medical Center, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
| |
Collapse
|
24
|
Kheirouri S, Naghizadeh S, Alizadeh M. Zinc supplementation does not influence serum levels of VEGF, BDNF, and NGF in diabetic retinopathy patients: a randomized controlled clinical trial. Nutr Neurosci 2018; 22:718-724. [PMID: 29421993 DOI: 10.1080/1028415x.2018.1436236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: This study was aimed to evaluate the effects of zinc (Zn) supplementation on serum levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in patients with diabetic retinopathy (DR). Methods: In this randomized clinical trial, 50 patients with DR were allocated into the Zn (n = 25) and placebo (n = 25) groups to receive 30 mg Zn gluconate or maltose dextrin per day, respectively, for three months. Metabolic parameters and blood pressure were measured. Serum levels of Zn were assessed by atomic absorption spectrophotometry and serum levels of VEGF, BDNF and NGF by ELISA. Results: Forty-five patients completed the intervention. Levels of VEGF, BDNF and NGF were not affected by the Zn supplementation. Levels of VEGF correlated negatively with levels of Zn and positively with BDNF and NGF. There was also a positive correlation between BDNF and NGF. Serum levels of VEGF, BDNF and NGF were negatively correlated with serum levels of the diabetic parameters measured. Conclusions: Strong positive relationship between the growth factors and their inverse association with metabolic factors is possibly suggesting the contribution of these factors in the pathogenesis of DR through acting in a same biological pathway.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Siamak Naghizadeh
- Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Alizadeh
- Department of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
25
|
Mohamed R, Shanab AY, El Remessy AB. Deletion of the Neurotrophin Receptor p75 NTR Prevents Diabetes-Induced Retinal Acellular Capillaries in Streptozotocin-Induced Mouse Diabetic Model. ACTA ACUST UNITED AC 2017; 4. [PMID: 29658956 DOI: 10.15406/jdmdc.2017.04.00129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy is characterized by early stage of retinal neuro-inflammation that triggers development of acellular capillaries and a late stage of pathological neovascularization. Due to limited treatment options, there is a pressing need to develop new therapeutics. Our group discovered that diabetes-impaired processing of the nerve growth factor precursor (proNGF) resulting in its accumulation and its receptor p75NTR. Here, we examine the protective effects of modulating p75NTR in experimental model of diabetic retinopathy. Diabetes was induced using streptozotocin in both wild type (WT) and p75NTR knockout (p75KO) mice. Retinal inflammation and microvascular dysfunction were assessed. Western blot analysis was performed to assess expression of apoptotic and inflammatory markers and levels of the neurotrophin, p75NTR and ephrin-B2. Deletion of p75NTR did not alter body weight or diabetes status compared to WT mice. In WT-mice, diabetes triggered retinal inflammation, significant decrease in pericyte count and marked increase in development of occluded (acellular) capillary formation after 24-weeks. Deletion of p75NTR prevented acellular capillary, restored pericyte count, and inhibited the retinal Ephrin-B2, activation of the stress-kinase JNK and apoptotic marker cleaved caspase-3 in the diabetic retina. Deletion of p75NTR reduced retinal inflammation, and proNGF expression. These effects coincided with increased NGF level and TrkA activation in the diabetic retina. Targeting p75NTR using genetic approach protected the retina from the impact of long-term diabetes in mediating microvascular degeneration and maintains the balance of NGF/proNGF level. Together, these results provide rationale that targeting p75NTR may offer novel and effective therapeutic strategy to combat diabetic retinopathy.
Collapse
Affiliation(s)
- Riyaz Mohamed
- Charlie Norwood Veterans Affairs Medical Center, USA
| | | | - Azza B El Remessy
- Charlie Norwood Veterans Affairs Medical Center, USA.,Augusta Biomedical Research Foundation, USA
| |
Collapse
|
26
|
Inducible overexpression of endothelial proNGF as a mouse model to study microvascular dysfunction. Biochim Biophys Acta Mol Basis Dis 2017; 1864:746-757. [PMID: 29253516 DOI: 10.1016/j.bbadis.2017.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
Impaired maturation of nerve growth factor precursor (proNGF) and its accumulation has been reported in several neurodegenerative diseases, myocardial infarction and diabetes. To elucidate the direct impact of proNGF accumulation identified the need to create a transgenic model that can express fully mutated cleavage-resistant proNGF. Using Cre-Lox technology, we developed an inducible endothelial-specific proNGF transgenic mouse (proNGFLoxp) that overexpresses GFP-conjugated cleavage-resistant proNGF123 when crossed with VE-cadherin-CreERT2 (Cre). Expression of proNGF, inflammatory mediators, NGF and VEGF was evaluated by PCR, Western blot and immunohistochemistry. EC-proNGF overexpression was confirmed using colocalization of anti-proNGF within retinal vasculature. EC-proNGF did not cause retinal neurotoxicity or marked glial activation at 4-weeks. Microvascular preparation from Cre-proNGF mice showed significant imbalance of proNGF/NGF ratio, enhanced expression of TNF-α and p75NTR, and tendency to impair TrkA phosphorylation compared to controls. EC-proNGF overexpression triggered mRNA expression of p75NTR and inflammatory mediators in both retina and renal cortex compared to controls. EC-proNGF expression induced vascular permeability including breakdown of BRB and albuminuria in the kidney without affecting VEGF level at 4-weeks. Histopathological changes were assessed after 8-weeks and the results showed that EC-proNGF triggered formation of occluded (acellular) capillaries, hall mark of retinal ischemia. EC-proNGF resulted in glomerular enlargement and kidney fibrosis, hall mark of renal dysfunction. We have successfully created an inducible mouse model that can dissect the contribution of autocrine direct action of cleavage-resistant proNGF on systemic microvascular abnormalities in both retina and kidney, major targets for microvascular complication.
Collapse
|
27
|
Cheng C, Xu JM, Yu T. Neutralizing IL-6 reduces heart injury by decreasing nerve growth factor precursor in the heart and hypothalamus during rat cardiopulmonary bypass. Life Sci 2017; 178:61-69. [PMID: 28438640 DOI: 10.1016/j.lfs.2017.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
Abstract
AIMS To investigate whether the expression of nerve growth factor precursor (proNGF) changes during cardiopulmonary bypass (CPB) and whether neutralizing interleukin-6 (IL-6) during CPB has cardiac benefits. MAIN METHODS Thirty patients undergoing CPB were recruited and their serum proNGF and troponin-I (TNI) were detected. In addition, rats were divided into three groups: CPB group, CPB with cardiac ischemia-reperfusion (IR) group, and a control group. The pre-CPB standard deviation of N-N intervals (SDNN) and post-CPB SDNN were compared. At the end of CPB, nerve peptide Y (NPY), acetylcholinesterase, cell apoptosis, and proNGF protein expression were measured in the heart and hypothalamus. Another rat cohort undergoing CPB was divided into two groups: an anti-IL-6 group with IL-6 antibody and a control group with phosphate buffer solution. At the end of CPB, serum hs-troponin-T and cardiac caspases 3 and 9 were detected. NPY and proNGF in the heart and hypothalamus were detected. KEY FINDINGS In patients, serum proNGF increased during CPB, and the concentration was positively correlated with TNI. In rats, cardiac autonomic nervous function was disturbed during CPB. More apoptotic cells and higher levels of proNGF were found in the heart and hypothalamus in the CPB groups than in the control groups. Neutralizing IL-6 was beneficial to lower cardiac injury by decreasing proNGF and apoptosis. SIGNIFICANCE CPB induced changes in proNGF in the heart and hypothalamus. Suppressing inflammation attenuated myocardial apoptosis and autonomic nerve function disturbance in CPB rats, likely due in part to regulation of proNGF in the heart and hypothalamus.
Collapse
Affiliation(s)
- Chi Cheng
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun-Mei Xu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Tian Yu
- Department of Anesthesiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou 563000, China
| |
Collapse
|
28
|
Gong Q, Xie J, Liu Y, Li Y, Su G. Differentially Expressed MicroRNAs in the Development of Early Diabetic Retinopathy. J Diabetes Res 2017; 2017:4727942. [PMID: 28706953 PMCID: PMC5494571 DOI: 10.1155/2017/4727942] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
The pathological mechanisms of diabetic retinopathy (DR), a leading cause of blindness in adults with diabetes mellitus, remain incompletely understood. Because microRNAs (miRNAs) represent effective DR therapeutic targets, we identified aberrantly expressed miRNAs associated with cellular dysfunction in early DR and detected their potential targets. We exposed human retinal endothelial cells (HRECs) and a cell line of retinal pigment epithelial (RPE) cells to high glucose (25 mmol/L, 1-7 days) to mimic DR progression and used streptozotocin-injected rats (4-8 weeks) for an in vivo diabetes model. HREC/RPE viability decreased after 24 h incubation and diminished further over 6 days, and Hoechst staining revealed hyperglycemia-induced HREC/RPE apoptosis. Although miR-124/-125b expression decreased with DR progression in vitro and in vivo, miR-135b/-199a levels decreased in retinal cells under hyperglycemia exposure, but increased in diabetic retinas. Moreover, miR-145/-146a expression decreased gradually in high-glucose-treated HRECs, but increased in hyperglycemia-exposed RPE cells and in diabetic rats. Our findings suggested that aberrant miRNA expression could be involved in hyperglycemia-induced retinal-cell dysfunction, and the identified miRNAs might vary in different retinal layers, with expression changes associated with DR development. Therefore, miRNA modulation and the targeting of miRNA effects on transcription factors could represent novel and effective DR-treatment strategies.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Eye Center, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Yang Liu
- Eye Center, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Ying Li
- Eye Center, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Guanfang Su
- Eye Center, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin 130021, China
- *Guanfang Su:
| |
Collapse
|
29
|
Paoletti F, de Chiara C, Kelly G, Covaceuszach S, Malerba F, Yan R, Lamba D, Cattaneo A, Pastore A. Conformational Rigidity within Plasticity Promotes Differential Target Recognition of Nerve Growth Factor. Front Mol Biosci 2016; 3:83. [PMID: 28083536 PMCID: PMC5183593 DOI: 10.3389/fmolb.2016.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022] Open
Abstract
Nerve Growth Factor (NGF), the prototype of the neurotrophin family, is essential for maintenance and growth of different neuronal populations. The X-ray crystal structure of NGF has been known since the early '90s and shows a β-sandwich fold with extensive loops that are involved in the interaction with its binding partners. Understanding the dynamical properties of these loops is thus important for molecular recognition. We present here a combined solution NMR/molecular dynamics study which addresses the question of whether and how much the long loops of NGF are flexible and describes the N-terminal intrinsic conformational tendency of the unbound NGF molecule. NMR titration experiments allowed identification of a previously undetected epitope of the anti-NGF antagonist antibody αD11 which will be of crucial importance for future drug lead discovery. The present study thus recapitulates all the available structural information and unveils the conformational versatility of the relatively rigid NGF loops upon functional ligand binding.
Collapse
Affiliation(s)
- Francesca Paoletti
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research, Rita Levi-Montalcini FoundationRome, Italy; Scuola Normale SuperiorePisa, Italy
| | | | - Geoff Kelly
- Medical Research Council (MRC) Biomedical NMR Centre, The Francis Crick Institute London, UK
| | - Sonia Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Basovizza Trieste, Italy
| | - Francesca Malerba
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research, Rita Levi-Montalcini FoundationRome, Italy; Scuola Normale SuperiorePisa, Italy
| | - Robert Yan
- Maurice Wohl Institute, Department of Basic and Clinical Neuroscience, King's College London London, UK
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Basovizza Trieste, Italy
| | - Antonino Cattaneo
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research, Rita Levi-Montalcini FoundationRome, Italy; Scuola Normale SuperiorePisa, Italy
| | - Annalisa Pastore
- Maurice Wohl Institute, Department of Basic and Clinical Neuroscience, King's College LondonLondon, UK; Molecular Medicine Department, University of PaviaPavia, Italy
| |
Collapse
|
30
|
Elshaer SL, El-Remessy AB. Implication of the neurotrophin receptor p75 NTR in vascular diseases: beyond the eye. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:149-158. [PMID: 28979360 DOI: 10.1080/17469899.2017.1269602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The p75 neurotrophin receptor (p75NTR) is a member of TNF-α receptor superfamily that bind all neurotrophins, mainly regulating their pro-apoptotic actions. Ischemia is a common pathology in different cardiovascular diseases affecting multiple organs, however the contribution of p75NTR remains not fully addressed. The aim of this work is to review the current evidence through published literature studying the impact of p75NTR receptor in ischemic vascular diseases. AREAS COVERED In the eye, several ischemic ocular diseases are associated with enhanced p75NTR expression. Ischemic retinopathy including diabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are characterized initially by ischemia followed by excessive neovascularization. Beyond the eye, cerebral ischemia, myocardial infarction and critical limb ischemia are ischemic cardiovascular diseases that are characterized by altered expression of neurotrophins and p75NTR expression. We surveyed both clinical and experimental studies that examined the impact of p75NTR receptor in ischemic diseases of eye, heart, brain and peripheral limbs. EXPERT COMMENTARY p75NTR receptor is a major player in multiple ischemic vascular diseases affecting the eye, brain, heart and peripheral limbs with significant increases in its expression accompanying neuro-vascular injury. This has been addressed in the current review along with the beneficial vascular outcomes of p75NTR inhibition.
Collapse
Affiliation(s)
- Sally L Elshaer
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA
| | - Azza B El-Remessy
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA.,Augusta Biomedical Research Corporation, Augusta, GA, USA
| |
Collapse
|
31
|
Plotkin JL, Wu C. Neurotrophin biology at NGF 2016: From fundamental science to clinical applications. Int J Dev Neurosci 2016; 56:27-34. [PMID: 27888062 DOI: 10.1016/j.ijdevneu.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Joshua L Plotkin
- Department of Neurobiology & Behavior, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| | - Chengbiao Wu
- Department of Neuroscience, University of California San Diego School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Josephy-Hernandez S, Jmaeff S, Pirvulescu I, Aboulkassim T, Saragovi HU. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm. Neurobiol Dis 2016; 97:139-155. [PMID: 27546056 DOI: 10.1016/j.nbd.2016.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are prevalent, complex and devastating conditions, with very limited treatment options currently available. While they manifest in many forms, there are commonalities that link them together. In this review, we will focus on neurotrophins - a family of related factors involved in neuronal development and maintenance. Neurodegenerative diseases often present with a neurotrophin imbalance, in which there may be decreases in trophic signaling through Trk receptors for example, and/or increases in pro-apoptotic activity through p75. Clinical trials with neurotrophins have continuously failed due to their poor pharmacological properties as well as the unavoidable activation of p75. Thus, there is a need for drugs without such setbacks. Small molecule neurotrophin mimetics are favorable options since they can selectively activate Trks or inactivate p75. In this review, we will initially present a brief outline of how these molecules are synthesized and their mechanisms of action; followed by an update in the current state of neurotrophins and small molecules in major neurodegenerative diseases. Although there has been significant progress in the development of potential therapeutics, more studies are needed to establish clear mechanisms of action and target specificity in order to transition from animal models to the assessment of safety and use in humans.
Collapse
Affiliation(s)
- Sylvia Josephy-Hernandez
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sean Jmaeff
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Iulia Pirvulescu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tahar Aboulkassim
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Yan PS, Tang S, Zhang HF, Guo YY, Zeng ZW, Wen Q. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells. Neural Regen Res 2016; 11:1851-1856. [PMID: 28123432 PMCID: PMC5204244 DOI: 10.4103/1673-5374.194758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of diabetes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF significantly attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Pan-Shi Yan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shu Tang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hai-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan-Yuan Guo
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, Guangdong Province, China
| | - Zhi-Wen Zeng
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, Guangdong Province, China
| | - Qiang Wen
- Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
34
|
Mohamed R, El-Remessy AB. Imbalance of the Nerve Growth Factor and Its Precursor: Implication in Diabetic Retinopathy. ACTA ACUST UNITED AC 2015; 6. [PMID: 26807305 PMCID: PMC4721560 DOI: 10.4172/2155-9570.1000483] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy is the leading cause of blindness in working age in US and worldwide. Neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) are known to be essential for growth, differentiation and survival of neurons in the developing and mature retina. Nevertheless, a growing body of evidence supports an emerging role of neurotrophins in retinal diseases and in particular, diabetic retinopathy. Neurotrophins are initially synthesized in a pro-form and undergo proteolytic cleavage to produce the mature form that activates two distinctive receptors, the tyrosine kinase tropomycin receptor (Trk) and, to lesser extent, the common low affinity p75 neurotrophin receptor (p75NTR). Despite tight glycemic and metabolic control, many diabetic patients continue to experience progressive retinal damage. Understanding the molecular events involved in diabetic retinopathy is extremely important to identify novel therapeutic strategies to halt the disease progression. Diabetes induces imbalance in neurotrophins by increasing its proform, which is associated with upregulation of the p75NTR receptor in the retina. A growing body of evidence supports a link between the imbalance of pro-neurotrophins and early retinal inflammation, neuro-and microvascular degeneration. Therefore, examining changes in the levels of neurotrophins and its receptors might provide a therapeutically beneficial target to combat disease progression in diabetic patients. This commentary aims to highlight the impact of diabetes-impaired balance of neurotrophins and in particular, the NGF and its receptors; TrkA and p75NTR in the pathology of DR.
Collapse
Affiliation(s)
- Riyaz Mohamed
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University, USA ; Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Azza B El-Remessy
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University, USA ; Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
35
|
Zhao H, Zhang J, Yu J. HMGB-1 as a Potential Target for the Treatment of Diabetic Retinopathy. Med Sci Monit 2015; 21:3062-7. [PMID: 26454330 PMCID: PMC4604733 DOI: 10.12659/msm.894453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Diabetic retinopathy (DR) is one of the most important complications of diabetes mellitus (DM) and is the leading cause of blindness in diabetic patients. Recent studies showed that as important inflammatory mediators, high mobility group box 1 (HMGB-1) is associated with diabetic peripheral neuropathy and can participate in the occurrence and development of DR. This study explored HMGB-1 as a therapeutic target for DR treatment through observing its role in retinal ganglion cells (GRCs) in a high glucose environment. Material/Methods RGCs were randomly divided into 3 groups: the normal control group, the high glucose group, and the siRNA HMGB-1 group. Real-time PCR was used to detect HMGB-1 mRNA expression. ELISA was used to test HMGB-1 protein expression in the supernatant. MTT assay was performed to determine cell proliferation. Real-time PCR and Western blotting were used to analyze TLR4 and NF-κB expression. Results HMGB-1 mRNA was up-regulated (P=0.015) and protein secretion increased (P=0.022) in the high glucose environment. RGCs survival decreased (P=0.026), while TLR4 and NF-κB mRNA (P=0.009 and P=0.017, respectively) and protein expression increased significantly (P=0.041 and P=0.024, respectively). SiRNA HMGB-1 transfection obviously inhibited HMGB-1 mRNA expression (P=0.032), reduced HMGB-1 secretion (P=0.012), and decreased TLR4 and NF-κB mRNA (P=0.033 and P=0.024, respectively) and protein expression (P=0.032; P=0.027, respectively). Compared with the high glucose group, the RGCs survival rate increased significantly (P=0.037). Conclusions As a therapeutic target, HMGB-1 can inhibit inflammation and promote RGCs survival to delay DR progress through the HMGB-1-TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jingzhuang Zhang
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jie Yu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
36
|
Shen H, Rong H. Pterostilbene impact on retinal endothelial cells under high glucose environment. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12589-12594. [PMID: 26722449 PMCID: PMC4680394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Diabetic retinopathy (DR) has complicated pathogenic factors. Studies showed that DR belongs to chronic inflammatory disease, and retinal endothelial cells oxidation by free radicals is one of its mechanisms. Pterostilbene, as the homologous derivative of resveratrol, has obvious antioxidant effect. Its influence on the DR has not been studied. This study intended to investigate the effect and mechanism of pterostilbene on human retinal endothelial cells (hRECs) under high glucose environment to illustrate pterostilbene impact on DR and provide basis for DR clinical treatment. hRECs cultured in high glucose environment were treated by 1.0 mmol/L pterostilbene. MTT assay was applied to test cell proliferation. ELISA was used to detect inflammatory factor TNF-α and IL-1β content. Real time PCR and Western blot were performed to examine NF-κB mRNA and protein expression. ROS and SOD activities were analyzed. Under high glucose environment, hRECs proliferation increased, TNF-α and IL-1β expression elevated, and NF-κB protein level upregulated significantly. On the other side, ROS production increased and SOD activity decreased obviously (P < 0.05). Pterostilbene can suppress hRECs over proliferation, decrease TNF-α and IL-1β, inhibit NF-κB protein expression, reduce ROS production, and increase SOD activity markedly compared with high glucose group (P < 0.05). Pterostilbene may delay DR progress through alleviating inflammation and antioxidation to suppress hRECs over proliferation.
Collapse
Affiliation(s)
- Hongjie Shen
- Department of Ophthalmology, Jinshan Hospital, Fudan University School of MedicineShanghai 201508, China
| | - Hua Rong
- Department of Ophthalmology, East Hospital, Tongji University School of MedicineShanghai 200120, China
| |
Collapse
|
37
|
Jiang Q, Zhao F, Liu X, Li R, Liu J. Effect of miR-200b on retinal endothelial cell function under high glucose environment. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10482-10487. [PMID: 26617758 PMCID: PMC4637573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
As one of the important complications of diabetes, diabetic retinopathy (DR) presented high incidence worldwide. Hyperglycemia is an important promoting factor for DR occurrence and development. It can damage retinal endothelial cell, resulting in retinal structure and function disorder. Studies have shown that miR-200b may involve in regulating DR occurrence and development, but its specific function and mechanism have not been elucidated. This study aimed to investigate miR-200b effect and mechanism on human retinal endothelial cells (hRECs) under high glucose environment. hRECs were cultured under high glucose or normal environment. Real time PCR was applied to detect miR-200b expression. MiR-200b was transfected to hRECs and MTT was used to detect its effect on hRECs proliferation under high glucose environment. Real time PCR and Western blot were performed to determine VEGF and TGFβ1 expression in the retina endothelial cells. MiR-200b expression decreased significantly under high glucose environment, whereas hRECs proliferated obviously. Compared with normal control, VEGF and TGFβ1 mRNA and protein expression increased markedly (P < 0.05). After miR-200b transfection, miR-200b expression increased, while VEGF and TGFβ1 mRNA and protein expression decreased obviously. Compared with high glucose group, hRECs proliferation was inhibited (P < 0.05). MiR-200b can regulate RECs growth and proliferation by changing VEGF and TGFβ1 expression to delay DR.
Collapse
Affiliation(s)
- Qun Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, China
| | - Fei Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, China
| | - Xinmin Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, China
| | - Rongrong Li
- The Third Xiangya Hospital of Central South UniversityChangsha 410013, China
| | - Jianming Liu
- The Third Xiangya Hospital of Central South UniversityChangsha 410013, China
| |
Collapse
|