1
|
Kudo Y, Konoki K, Yotsu-Yamashita M. Identification of γ-butyrolactone signalling molecules in diverse actinomycetes using resin-assisted isolation and chemoenzymatic synthesis. RSC Chem Biol 2025; 6:630-641. [PMID: 40046449 PMCID: PMC11877004 DOI: 10.1039/d5cb00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Actinomycetes are prolific producers of secondary metabolites with diverse bioactivities. Secondary metabolism in actinomycetes is regulated by signalling molecules, often termed "bacterial hormones." In Streptomyces griseus, the γ-butyrolactone (GBL) A-factor (1) plays a key role in regulating secondary metabolism, including streptomycin production. The widespread presence of afsA, the gene encoding A-factor synthase, suggests that GBLs are a major class of signalling molecules in actinomycetes. However, their identification is hindered by the requirement for large-scale cultures. This study presents two methodologies for identifying natural GBLs. First, a resin-assisted culture method combined with MS-guided screening enabled the isolation and structural determination of GBLs (2-5) from smaller-scale cultures. Second, a chemoenzymatic synthesis method involving one-pot three enzymatic reactions was developed, allowing the production of GBL standards (10a-10l). Using these standards, HR-LCMS analysis of 31 strains across 10 actinomycetes genera identified GBLs in nearly half of the tested strains, including genera where GBLs were detected for the first time. Chiral HPLC analysis further revealed the presence of the (3S)-isomer of GBL (11), an enantiomer of known GBLs. This study uncovers the widespread distribution and structural diversity of GBLs among actinomycetes, providing insights into their regulatory roles and potential for activating secondary metabolism, which may facilitate the discovery of new natural products.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8578 Japan
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| |
Collapse
|
2
|
Relative Risk Assessment for Substandard Antibiotics Along the Manufacturing and Supply Chain: A Proof-of-Concept Study. Ther Innov Regul Sci 2023; 57:121-131. [PMID: 36006562 DOI: 10.1007/s43441-022-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Ensuring good quality of antibiotics is essential for desired health outcomes. Risk assessment of products for quality issues arising along the manufacturing and supply chain can thus have an important role in surveillance and management of interventions designed to reduce the burden of substandard antibiotics. Demonstrated and validated risk assessments are currently limited. OBJECTIVES The objective of this study was to investigate whether a comparative risk assessment framework, which adapts the WHO criteria for estimating risks for quality issues posed by individual medicines, is applicable and can identify antibiotics with a higher relative risk of substandard prevalence. METHODS For a proof-of-concept study, a set of antibiotics from the WHO essential medicines list was selected. Quantitative and qualitative data were extracted for each risk assessment criteria pertaining to severity and probability. A final risk matrix was then compared to field data for validation. RESULTS Antibiotic products were classified by relative risk. Of all the antibiotic products assessed (n = 28), 32% were categorized as highest risk, 46% as high risk, 18% as medium risk, and 4% as lowest risk. The comparison of the risk scores and incidence of quality failure from the USP Medicines Quality Database showed significant correlation. CONCLUSION The framework and extracted data sets appear applicable to determine relative risk for substandard antibiotics. Results of the risk matrix may be valuable for guiding pharmacovigilance, surveillance strategies, standardizing risk-based approaches, and mitigation efforts. Refinement with increased data availability may improve results.
Collapse
|
3
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Stieleria sedimenti sp. nov., a Novel Member of the Family Pirellulaceae with Antimicrobial Activity Isolated in Portugal from Brackish Sediments. Microorganisms 2022; 10:2151. [PMID: 36363743 PMCID: PMC9692418 DOI: 10.3390/microorganisms10112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/23/2023] Open
Abstract
The phylum Planctomycetota is known for having uncommon biological features. Recently, biotechnological applications of its members have started to be explored, namely in the genus Stieleria. Here, we formally describe a novel Stieleriaisolate designated as strain ICT_E10.1T, obtained from sediments collected in the Tagus estuary (Portugal). Strain ICT_E10.1T is pink-pigmented, spherical to ovoid in shape, and 1.7 µm ± 0.3 × 1.4 µm ± 0.3 in size. Cells cluster strongly in aggregates or small chains, divide by budding, and have prominent fimbriae. Strain ICT_E10.1T is heterotrophic and aerobic. Growth occurs from 20 to 30 °C, from 0.5 to 3% (w/v) NaCl, and from pH 6.5 to 11.0. The analysis of the 16S rRNA gene sequence placed strain ICT_E10.1T into the genus Stieleria with Stieleria neptunia Enr13T as the closest validly described relative. The genome size is 9,813,311 bp and the DNA G+C content is 58.8 mol%. Morphological, physiological, and genomic analyses support the separation of this strain into a novel species, for which we propose the name Stieleria sedimenti represented by strain ICT_E10.1T as the type of strain (=CECT 30514T= DSM 113784T). Furthermore, this isolate showed biotechnological potential by displaying relevant biosynthetic gene clusters and potent activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Dominika Klimek
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Magdalena Calusinska
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
5
|
Fadhilah QG, Santoso I, Maryanto AE, Abdullah S, Yasman Y. Evaluation of the antifungal activity of marine actinomycetes isolates against the phytopathogenic fungi Colletotrichum siamense KA: A preliminary study for new antifungal compound discovery. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e72817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine actinomycetes are being explored to discover potential actinomycetes that produce antifungal compounds. In a previous study, marine actinomycetes isolates from the mangrove ecosystem were found to inhibit growth of the phytopathogenic fungi Colletotrichum siamense KA. In this study, the three of these isolates with the highest antagonistic activity—SM11, SM14, and SM15—were evaluated for their antifungal activity using antibiosis assay. The fermentation was performed in SCB:PDB medium (1:1) for 6, 9, and 12 days. The results showed that SM14 was the strongest potential isolate; it inhibited the growth of C. siamense KA on average up to 64.90% for 12 days on PDA filtrate medium. Molecular identification showed SM14 was closely related to Streptomyces sanyensis, but had differences in morphological and biochemical characteristics compared to SM11 or SM15. This indicated that the three isolates were different strains and may challenge further research on identifying and analyzing their antifungal compounds.
Collapse
|
6
|
Heterogeneous A40926 Self-Resistance Profile in Nonomuraea gerenzanensis Population Informs Strain Improvement. FERMENTATION 2021. [DOI: 10.3390/fermentation7030140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonomuraea gerenzanensis ATCC 39727 produces the glycopeptide antibiotic A40926, which is the natural precursor of the semi-synthetic, last-resort drug dalbavancin. To reduce the cost of dalbavancin production, it is mandatory to improve the productivity of the producing strain. Here, we report that the exposure of N. gerenzanensis wild-type population to sub-inhibitory concentrations of A40926 led to the isolation of differently resistant phenotypes to which a diverse A40926 productivity was associated. The most resistant population (G, grand colonies) represented at least the 20% of the colonies growing on 2 µg/mL of A40926. It showed a stable phenotype after sub-culturing and a homogeneous profile of self-resistance to A40926 in population analysis profile (PAP) experiments. The less resistant population (P, petit) was represented by slow-growing colonies to which a lower A40926 productivity was associated. At bioreactor scale, the G variant produced twice more than the wild-type (ca. 400 mg/L A40926 versus less than 200 mg/L, respectively), paving the way for a rational strain improvement based on the selection of increasingly self-resistant colonies.
Collapse
|
7
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
8
|
Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat Rev Microbiol 2020; 18:275-285. [PMID: 31745331 PMCID: PMC7223541 DOI: 10.1038/s41579-019-0288-0] [Citation(s) in RCA: 448] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/31/2022]
Abstract
Antibacterial resistance is a great concern and requires global action. A critical question is whether enough new antibacterial drugs are being discovered and developed. A review of the clinical antibacterial drug pipeline was recently published, but comprehensive information about the global preclinical pipeline is unavailable. This Review focuses on discovery and preclinical development projects and has found, as of 1 May 2019, 407 antibacterial projects from 314 institutions. The focus is on Gram-negative pathogens, particularly bacteria on the WHO priority bacteria list. The preclinical pipeline is characterized by high levels of diversity and interesting scientific concepts, with 135 projects on direct-acting small molecules that represent new classes, new targets or new mechanisms of action. There is also a strong trend towards non-traditional approaches, including diverse antivirulence approaches, microbiome-modifying strategies, and engineered phages and probiotics. The high number of pathogen-specific and adjunctive approaches is unprecedented in antibiotic history. Translational hurdles are not adequately addressed yet, especially development pathways to show clinical impact of non-traditional approaches. The innovative potential of the preclinical pipeline compared with the clinical pipeline is encouraging but fragile. Much more work, focus and funding are needed for the novel approaches to result in effective antibacterial therapies to sustainably combat antibacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Froes TQ, Baldini RL, Vajda S, Castilho MS. Structure-based Druggability Assessment of Anti-virulence Targets from Pseudomonas aeruginosa. Curr Protein Pept Sci 2020; 20:1189-1203. [PMID: 31038064 DOI: 10.2174/1389203720666190417120758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 11/22/2022]
Abstract
Antimicrobial Resistance (AMR) represents a serious threat to health and the global economy. However, interest in antibacterial drug development has decreased substantially in recent decades. Meanwhile, anti-virulence drug development has emerged as an attractive alternative to fight AMR. Although several macromolecular targets have been explored for this goal, their druggability is a vital piece of information that has been overlooked. This review explores this subject by showing how structure- based freely available in silico tools, such as PockDrug and FTMap, might be useful for designing novel inhibitors of the pyocyanin biosynthesis pathway and improving the potency/selectivity of compounds that target the Pseudomonas aeruginosa quorum sensing mechanism. The information provided by hotspot analysis, along with binding site features, reveals novel druggable targets (PhzA and PhzS) that remain largely unexplored. However, it also highlights that in silico druggability prediction tools have several limitations that might be overcome in the near future. Meanwhile, anti-virulence drug targets should be assessed by complementary methods, such as the combined use of FTMap/PockDrug, once the consensus druggability classification reduces the risk of wasting resources on undruggable proteins.
Collapse
Affiliation(s)
- Thamires Q Froes
- Programa de Pos-Graduacao em Biotecnologia da Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil.,aculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA, Brazil
| | - Regina L Baldini
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo. Sao Paulo, SP, Brazil
| | - Sandor Vajda
- College of Engineering, Boston University, Boston, MA, United States
| | - Marcelo S Castilho
- Programa de Pos-Graduacao em Biotecnologia da Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil.,aculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA, Brazil.,College of Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
10
|
Berlinck RGS, Monteiro AF, Bertonha AF, Bernardi DI, Gubiani JR, Slivinski J, Michaliski LF, Tonon LAC, Venancio VA, Freire VF. Approaches for the isolation and identification of hydrophilic, light-sensitive, volatile and minor natural products. Nat Prod Rep 2019; 36:981-1004. [DOI: 10.1039/c9np00009g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water-soluble, volatile, minor and photosensitive natural products are yet poorly known, and this review discusses the literature reporting the isolation strategies for some of these metabolites.
Collapse
Affiliation(s)
| | - Afif F. Monteiro
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Ariane F. Bertonha
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Darlon I. Bernardi
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Juliana R. Gubiani
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Juliano Slivinski
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | | | | | - Victor A. Venancio
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Vitor F. Freire
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
11
|
Armenia I, Marcone GL, Berini F, Orlandi VT, Pirrone C, Martegani E, Gornati R, Bernardini G, Marinelli F. Magnetic Nanoconjugated Teicoplanin: A Novel Tool for Bacterial Infection Site Targeting. Front Microbiol 2018; 9:2270. [PMID: 30386305 PMCID: PMC6199386 DOI: 10.3389/fmicb.2018.02270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Nanoconjugated antibiotics can be regarded as next-generation drugs as they possess remarkable potential to overcome multidrug resistance in pathogenic bacteria. Iron oxide nanoparticles (IONPs) have been extensively used in the biomedical field because of their biocompatibility and magnetic properties. More recently, IONPs have been investigated as potential nanocarriers for antibiotics to be magnetically directed to/recovered from infection sites. Here, we conjugated the “last-resort” glycopeptide antibiotic teicoplanin to IONPs after surface functionalization with (3-aminopropyl) triethoxysilane (APTES). Classical microbiological methods and fluorescence and electron microscopy analysis were used to compare antimicrobial activity and surface interactions of naked IONPs, amino-functionalized NPs (NP-APTES), and nanoconjugated teicoplanin (NP-TEICO) with non-conjugated teicoplanin. As bacterial models, differently resistant strains of three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis) and a Gram-negative representative (Escherichia coli) were used. The results indicated that teicoplanin conjugation conferred a valuable and prolonged antimicrobial activity to IONPs toward Gram-positive bacteria. No antimicrobial activity was detected using NP-TEICO toward the Gram-negative E. coli. Although IONPs and NP-APTES showed only insignificant antimicrobial activity in comparison to NP-TEICO, our data indicate that they might establish diverse interaction patterns at bacterial surfaces. Sensitivity of bacteria to NPs varied according to the surface provided by the bacteria and it was species specific. In addition, conjugation of teicoplanin improved the cytocompatibility of IONPs toward two human cell lines. Finally, NP-TEICO inhibited the formation of S. aureus biofilm, conserving the activity of non-conjugated teicoplanin versus planktonic cells and improving it toward adherent cells.
Collapse
Affiliation(s)
- Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eleonora Martegani
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Antibiotic discovery: combining isolation chip (iChip) technology and co-culture technique. Appl Microbiol Biotechnol 2018; 102:7333-7341. [DOI: 10.1007/s00253-018-9193-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
13
|
Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 2018; 10:1-21. [PMID: 29584555 PMCID: PMC6363078 DOI: 10.1080/19490976.2018.1455790] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 02/08/2023] Open
Abstract
Bacteria, Archaea, Eukarya and viruses coexist in the human gut, and this coexistence is functionally balanced by symbiotic or antagonistic relationships. Antagonism is often characterized by the production of antimicrobials against other organisms occupying the same environmental niche. Indeed, close co-evolution in the gut has led to the development of specialized antimicrobials, which is attracting increased attention as these may serve as novel alternatives to antibiotics and thereby help to address the global problem of antimicrobial resistance. The gastrointestinal (GI) tract is especially suitable for finding novel antimicrobials due to the vast array of microbes that inhabit it, and a considerable number of antimicrobial producers of both wide and narrow spectrum have been described. In this review, we summarize some of the antimicrobial compounds that are produced by bacteria isolated from the gut environment, with a special focus on bacteriocins. We also evaluate the potential therapeutic application of these compounds to maintain homeostasis in the gut and the biocontrol of pathogenic bacteria.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Melinda J. Mayer
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Paul D. Cotter
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome, Ireland
| | - Arjan Narbad
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
14
|
Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnol Adv 2018; 36:534-554. [PMID: 29454983 DOI: 10.1016/j.biotechadv.2018.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 02/05/2023]
Abstract
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by multi-drug resistant Gram-positive pathogens. First-generation glycopeptides (vancomycin and teicoplanin) are produced by soil-dwelling actinomycetes. Second-generation glycopeptides (dalbavancin, oritavancin, and telavancin) are semi-synthetic derivatives of the progenitor natural products. Herein, we cover past and present biotechnological approaches for searching for and producing old and new glycopeptide antibiotics. We review the strategies adopted to increase microbial production (from classical strain improvement to rational genetic engineering), and the recent progress in genome mining, chemoenzymatic derivatization, and combinatorial biosynthesis for expanding glycopeptide chemical diversity and tackling the never-ceasing evolution of antibiotic resistance.
Collapse
|
15
|
Selenazolinium Salts as "Small Molecule Catalysts" with High Potency against ESKAPE Bacterial Pathogens. Molecules 2017; 22:molecules22122174. [PMID: 29292789 PMCID: PMC6149925 DOI: 10.3390/molecules22122174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
In view of the pressing need to identify new antibacterial agents able to combat multidrug-resistant bacteria, we investigated a series of fused selenazolinium derivatives (1–8) regarding their in vitro antimicrobial activities against 25 ESKAPE-pathogen strains. Ebselen was used as reference compound. Most of the selenocompounds demonstrated an excellent in vitro activity against all S. aureus strains, with activities comparable to or even exceeding the one of ebselen. In contrast to ebselen, some selenazolinium derivatives (1, 3, and 7) even displayed significant actions against all Gram-negative pathogens tested. The 3-bromo-2-(1-hydroxy-1-methylethyl)[1,2]selenazolo[2,3-a]pyridinium chloride (1) was particularly active (minimum inhibitory concentrations, MICs: 0.31–1.24 µg/mL for MRSA, and 0.31–2.48 µg/mL for Gram-negative bacteria) and devoid of any significant mutagenicity in the Ames assay. Our preliminary mechanistic studies in cell culture indicated that their mode of action is likely to be associated with an alteration of intracellular levels of glutathione and cysteine thiols of different proteins in the bacterial cells, hence supporting the idea that such compounds interact with the intracellular thiolstat. This alteration of pivotal cysteine residues is most likely the result of a direct or catalytic oxidative modification of such residues by the highly reactive selenium species (RSeS) employed.
Collapse
|
16
|
Bilyk O, Luzhetskyy A. Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 2016; 42:98-107. [DOI: 10.1016/j.copbio.2016.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
|
17
|
Zhang T, Wei X, Miao Z, Hassan H, Song Y, Fan M. Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. Chem Cent J 2016; 10:47. [PMID: 27486478 PMCID: PMC4970275 DOI: 10.1186/s13065-016-0195-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synthetic antioxidants and antimicrobials are losing ground to their natural counterparts and therefore, the food industry has motivated to seek other natural alternatives. Apple pomace, a by-product in the processing of apples, is rich in polyphenols, and plant polyphenols have been used as food additives owing to their strong antioxidant and antimicrobial properties. The goal of this study was to screen the individual polyphenols with antioxidant and antimicrobial activities from the extracts (methanol, ethanol, acetone, ethyl acetate, and chloroform) of Golden Delicious pomace. RESULTS First, the polyphenolic compounds (total phenol content, TPC; total flavonoids, TFD; total flavanols, TFL) and antioxidant activities (AAs) with four assays (ferric reducing antioxidant power, FRAP; 1,1-diphenyl-2-picryhydrazyl radical scavenging capacity assay, DRSC; hydroxyl radical averting capacity assay, HORAC; oxygen radical absorbance capacity assay, ORAC) were analyzed. The results showed a significant positive correlation (P < 0.05) between AAs and TFD. Ethyl acetate extract (EAE) exhibited the highest TFD with a concentration of 1.85 mg RE/g powder (expressed as rutin equivalents), and the highest AAs (expressed as butylated hydroxytoluene (BHT) equivalents) with 2.07 mg BHT/g powder for FRAP, 3.05 mg BHT/g powder for DRSC, 5.42 mg BHT/g powder for HORAC, and 8.89 mg BHT/g powder for ORAC. Composition and AA assays of individual polyphenols from the EAE were then performed. Phloridzin and phloretin accounted for 46.70 and 41.94 % of TFD, respectively. Phloretin displayed the highest AA, followed by phloridzin. Finally, the antimicrobial activities of the EAE, phloridzin, and phloretin were evaluated. EAE displayed good inhibitory activities against Staphylococcus aureus with a minimum inhibition concentration (MIC) of 1.25 mg/ml and against Escherichia coli with a MIC of 2.50 mg/ml. Phloridzin and phloretin showed better inhibitory activities than the EAE, which were MICs of 0.50 and 0.10 mg/ml, respectively, against S. aureus and MICs of 1.50 and 0.75 mg/ml, respectively, against E. coli. CONCLUSIONS Ethyl acetate was the best solvent of choice to extract natural products to obtain the maximum antioxidant and antibacterial benefits. Phloridzin and phloretin have the potential to be used as natural alternatives to synthetic antioxidants and antimicrobials.
Collapse
Affiliation(s)
- Tingjing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yang Ling, 712100 Shaanxi China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yang Ling, 712100 Shaanxi China
| | - Zhuang Miao
- College of Food Science and Engineering, Northwest A&F University, Yang Ling, 712100 Shaanxi China
| | - Hamada Hassan
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yunbo Song
- College of Food Science and Engineering, Northwest A&F University, Yang Ling, 712100 Shaanxi China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yang Ling, 712100 Shaanxi China
| |
Collapse
|
18
|
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 2016; 70:25-40. [PMID: 27381522 DOI: 10.1038/ja.2016.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.
Collapse
|
19
|
Lin J, Liu Y, Zhan Y, Zhuang C, Liu L, Fu X, Xu W, Li J, Chen M, Cai Z, Huang W. Synthetic Tet-inducible small hairpin RNAs targeting hTERT or Bcl-2 inhibit malignant phenotypes of bladder cancer T24 and 5637 cells. Tumour Biol 2015; 37:3115-21. [PMID: 26427661 DOI: 10.1007/s13277-015-4122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/20/2015] [Indexed: 02/05/2023] Open
Abstract
Small hairpin RNA (shRNA) can inhibit the malignant phenotypes of tumor cell through ribonucleic acid interference (RNAi). However, it is hardly to be regulated and it may induce few phenotypic changes. Here, we build a type of tetracycline (Tet)-inducible vectors which can achieve regulatable expression of shRNA in a time-dependent manner by using synthetic biology approach. In order to prove the effectiveness of this device, we chose hTERT and Bcl-2 as target genes and test the utility of the device on 5637 and T24 cell lines. The experiments show that the Tet-inducible small hairpin RNA can effectively suppress their target genes and generate anti-cancer effects on both 5637 and T24 cell lines. The device we build not only can inhibit proliferation but also can induce apoptosis and suppress migration of the bladder cancer cell lines 5637 and T24. The Tet-inducible small hairpin RNAs may provide a novel strategy for the treatment of human bladder cancer in the future.
Collapse
Affiliation(s)
- Junhao Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
- Shantou University Medical College, Shantou, 515041, China.
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Chengle Zhuang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Xing Fu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Wen Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Mingwei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
- Shantou University Medical College, Shantou, 515041, China.
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
- Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
20
|
A Novel Microbisporicin Producer Identified by Early Dereplication during Lantibiotic Screening. BIOMED RESEARCH INTERNATIONAL 2015; 2015:419383. [PMID: 26346738 PMCID: PMC4539421 DOI: 10.1155/2015/419383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 11/20/2022]
Abstract
With the increasing need of effective antibiotics against multi-drug resistant pathogens, lantibiotics are an attractive option of a new class of molecules. They are ribosomally synthetized and posttranslationally modified peptides possessing potent antimicrobial activity against aerobic and anaerobic Gram-positive pathogens, including those increasingly resistant to β-lactams and glycopeptides. Some of them (actagardine, mersacidin, planosporicin, and microbisporicin) inhibit cell wall biosynthesis in pathogens and their effect is not antagonized by vancomycin. Hereby, we apply an efficient strategy for lantibiotic screening to 240 members of a newly described genus of filamentous actinomycetes, named Actinoallomurus, that is considered a yet-poorly-exploited promising source for novel bioactive metabolites. By combining antimicrobial differential assay against Staphylococcus aureus and its L-form (also in the presence of a β-lactamase cocktail or Ac-Lys-D-alanyl-D-alanine tripeptide), with LC-UV-MS dereplication coupled with bioautography, a novel producer of the potent microbisporicin complex was rapidly identified. Under the commercial name of NAI-107, it is currently in late preclinical phase for the treatment of multi-drug resistant Gram-positive pathogens. To our knowledge, this is the first report on a lantibiotic produced by an Actinoallomurus sp. and on a microbisporicin producer not belonging to the Microbispora genus.
Collapse
|