1
|
de-Souza-Silva CM, Hurtado FA, Tavares AH, de Oliveira GP, Raiol T, Nishibe C, Agustinho DP, Almeida NF, Walter MEMT, Nicola AM, Bocca AL, Albuquerque P, Silva-Pereira I. Transcriptional Remodeling Patterns in Murine Dendritic Cells Infected with Paracoccidioides brasiliensis: More Is Not Necessarily Better. J Fungi (Basel) 2020; 6:jof6040311. [PMID: 33255176 PMCID: PMC7712260 DOI: 10.3390/jof6040311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Most people infected with the fungus Paracoccidioides spp. do not get sick, but approximately 5% develop paracoccidioidomycosis. Understanding how host immunity determinants influence disease development could lead to novel preventative or therapeutic strategies; hence, we used two mouse strains that are resistant (A/J) or susceptible (B10.A) to P. brasiliensis to study how dendritic cells (DCs) respond to the infection. RNA sequencing analysis showed that the susceptible strain DCs remodeled their transcriptomes much more intensely than those from the resistant strain, agreeing with a previous model of more intense innate immunity response in the susceptible strain. Contrastingly, these cells also repress genes/processes involved in antigen processing and presentation, such as lysosomal activity and autophagy. After the interaction with P. brasiliensis, both DCs and macrophages from the susceptible mouse reduced the autophagy marker LC3-II recruitment to the fungal phagosome compared to the resistant strain cells, confirming this pathway’s repression. These results suggest that impairment in antigen processing and presentation processes might be partially responsible for the inefficient activation of the adaptive immune response in this model.
Collapse
Affiliation(s)
- Calliandra M. de-Souza-Silva
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
| | - Fabián Andrés Hurtado
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
- Molecular Pathology Post-Graduation Program, University of Brasília Medical School, Brasília, DF 70910-900, Brazil
| | | | - Getúlio P. de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Taina Raiol
- Fiocruz Brasília, Oswaldo Cruz Foundation, Brasília, DF 70904-130, Brazil;
| | - Christiane Nishibe
- Faculty of Computing, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (C.N.); (N.F.A.)
| | - Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA;
| | - Nalvo Franco Almeida
- Faculty of Computing, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (C.N.); (N.F.A.)
| | | | - André Moraes Nicola
- Faculty of Medicine, University of Brasília, Brasília, DF 70910-900, Brazil;
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil;
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
- Faculty of Ceilândia, University of Brasília, Brasília, DF 72220-275, Brazil;
- Correspondence: ; Tel.: +55-61-985830129
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; (C.M.d.-S.-S.); (F.A.H.); (I.S.-P.)
- Molecular Pathology Post-Graduation Program, University of Brasília Medical School, Brasília, DF 70910-900, Brazil
| |
Collapse
|
2
|
Basso AMM, De Castro RJA, de Castro TB, Guimarães HI, Polez VLP, Carbonero ER, Pomin VH, Hoffmann C, Grossi-de-Sa MF, Tavares AH, Bocca AL. Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans. Med Mycol 2020; 58:227-239. [PMID: 31095342 DOI: 10.1093/mmy/myz042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Current antifungal drugs present poor effectiveness and there is no available vaccine for fungal infections. Thus, novel strategies to treat or prevent invasive mycosis, such as cryptococcosis, are highly desirable. One strategy is the use of immunomodulators of polysaccharide nature isolated from mushrooms. The purpose of the present work was to evaluate the immunostimulatory activity of β-(1,3)-glucan-containing exopolysaccharides (EPS) from the edible mushrooms Auricularia auricula in phagocytes and mice infected with Cryptococcus neoformans. EPS triggered macrophages and dendritic cell activation upon binding to Dectin-1, a pattern recognition receptor of the C-type lectin receptor family. Engagement of Dectin-1 culminated in pro-inflammatory cytokine production and cell maturation via its canonical Syk-dependent pathway signaling. Furthermore, upon EPS treatment, M2-like phenotype macrophages, known to support intracellular survival and replication of C. neoformans, repolarize to M1 macrophage pattern associated with enhanced production of the microbicidal molecule nitric oxide that results in efficient killing of C. neoformans. Treatment with EPS also upregulated transcript levels of genes encoding products associated with host protection against C. neoformans and Dectin-1 mediated signaling in macrophages. Finally, orally administrated β-glucan-containing EPS from A. auricular enhanced the survival of mice infected with C. neoformans. In conclusion, the results demonstrate that EPS from A. auricula exert immunostimulatory activity in phagocytes and induce host protection against C. neoformans, suggesting that polysaccharides from this mushroom may be promising as an adjuvant for vaccines or antifungal therapy.
Collapse
Affiliation(s)
- A M M Basso
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - R J A De Castro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - T B de Castro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - H I Guimarães
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - V L P Polez
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - E R Carbonero
- Department of Chemistry, Federal University of Goiás, Campus Catalão, GO, Brazil
| | - V H Pomin
- Program of Glicobiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University Federal of Rio de Janeiro, RJ, Brazil.,Department of BioMolecular Sciences, Division of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, the University of Mississippi, Oxford, MS 38677-1848, USA
| | - C Hoffmann
- Department of Food Sciences and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Graduated Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil
| | - A H Tavares
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - A L Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| |
Collapse
|
3
|
Jannuzzi GP, de Almeida JRF, Amarante-Mendes GP, Romera LMD, Kaihami GH, Vasconcelos JR, Ferreira CP, de Almeida SR, Ferreira KS. TLR3 Is a Negative Regulator of Immune Responses Against Paracoccidioides brasiliensis. Front Cell Infect Microbiol 2019; 8:426. [PMID: 30687643 PMCID: PMC6335947 DOI: 10.3389/fcimb.2018.00426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) comprise the best-characterized pattern-recognition receptor (PRR) family able to activate distinct immune responses depending on the receptor/adaptor set assembled. TLRs, such as TLR2, TLR4 and TLR9, and their signaling were shown to be important in Paracoccidioides brasiliensis infections. However, the role of the endosomal TLR3 in experimental paracoccidioidomycosys remains obscure. In vitro assays, macrophages of the bone marrow of WT or TLR3−/− mice were differentiated for evaluation of their microbicidal activity. In vivo assays, WT or TLR3−/− mice were infected intratracheally with Paracoccidioides brasiliensis yeasts for investigation of the lung response type induced. The cytotoxic activity of CD8+ T cells was assessed by cytotoxicity assay. To confirm the importance of CD8+ T cells in the control of infection in the absence of tlr3, a depletion assay of these cells was performed. Here, we show for the first time that TLR3 modulate the infection against Paracoccidioides brasiliensis by dampening pro-inflammatory response, NO production, IFN+CD8+T, and IL-17+CD8+T cell activation and cytotoxic function, associated with granzyme B and perforin down regulation. As conclusion, we suggest that TLR3 could be used as an escape mechanism of the fungus in an experimental paracoccidioidomycosis.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | | | - Gustavo P Amarante-Mendes
- Departamento de Imunologia, do Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lavínia Maria Dal'Mas Romera
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto Hideo Kaihami
- Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Camila Pontes Ferreira
- Centro de Terapia Molecular e Celular do Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Karen Spadari Ferreira
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil.,Departamento de Imunologia, do Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Biociências da Universidade Federal de São Paulo, São Paulo, Brazil.,Centro de Terapia Molecular e Celular do Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, Liang Y, Fan J, Luo H, He Z. Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol 2017; 17:177. [PMID: 28821221 PMCID: PMC5563047 DOI: 10.1186/s12866-017-1086-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background Penicillium marneffei (P. marneffei) is a thermally dimorphic fungus pathogen that causes fatal infection. Alveolar macrophages are innate immune cells that have critical roles in protection against pulmonary fungal pathogens and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. The aim of this study was to investigate mouse alveolar macrophage polarization states during P. marneffei infection. Results We used enzyme-linked immunosorbent (ELISA) assays, quantitative real-time PCR (qRT-PCR), and Griess, arginase activity to evaluate the phenotypic markers of alveolar macrophages from BALB/C mice infected with P. marneffei. We then treated alveolar macrophages from infected mice with P. marneffei cytoplasmic yeast antigen (CYA) and investigated alveolar macrophage phenotypic markers in order to identify macrophage polarization in response to P. marneffei antigens. Our results showed: i) P. marneffei infection significantly enhanced the expression of classically activated macrophage (M1)-phenotypic markers (inducible nitric oxide synthase [iNOS] mRNA, nitric oxide [NO], interleukin-12 [IL-12], tumor necrosis factor-alpha [TNF-α]) and alternatively activated macrophage (M2a)-phenotypic markers (arginase1 [Arg1] mRNA, urea) during the second week post-infection. This significantly decreased during the fourth week post-infection. ii) During P. marneffei infection, CYA stimulation also significantly enhanced the expression of M1 and M2a-phenotypic markers, consistent with the results for P. marneffei infection and CYA stimulation preferentially induced M1 subtype. Conclusions The data from the current study demonstrated that alveolar macrophage M1/M2a subtypes were present in host defense against acute P. marneffei infection and that CYA could mimic P. marneffei to induce a host immune response with enhanced M1 subtype. This could be useful for investigating the enhancement of host anti-P. marneffei immune responses and to provide novel ideas for prevention of P. marneffei-infection. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoying Dai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Congzheng Mao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine Research, Nanning, Guangxi, 530021, China
| | - Huan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Meihua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jingmin Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuli Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yi Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiangtao Fan
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Honglin Luo
- Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
5
|
Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci Rep 2016; 6:35867. [PMID: 27775058 PMCID: PMC5075875 DOI: 10.1038/srep35867] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) released by eukaryotes, archaea, and bacteria contain proteins, lipids, polysaccharides, and other molecules. The cargo analysis of EVs shows that they contain virulence factors suggesting a role in the pathogenesis of infection. The proteome, lipidome, RNA content, and carbohydrate composition of EVs from Paracoccidioides brasiliensis and Paracoccidioides lutzii were characterized. However, the effects of P. brasiliensis EVs on the host immune system have not yet been investigated. Herein, we verified that EVs from P. brasiliensis induce the production of proinflammatory mediators by murine macrophages in a dose-dependent manner. Addition of EV to macrophages also promoted transcription of the M1-polarization marker iNOs and diminish that of the M2 markers Arginase-1, Ym-1, and FIZZ-1. Furthermore, the augmented expression of M2-polarization markers, stimulated by IL-4 plus IL-10, was reverted toward an M1 phenotype in response to secondary stimulation with EVs from P. brasiliensis. The ability of EVs from P. brasiliensis to promote M1 polarization macrophages favoring an enhanced fungicidal activity, demonstrated by the decreased CFU recovery of internalized yeasts, with comparable phagocytic efficacy. Our results suggest that EVs from P. brasiliensis can modulate the innate immune response and affect the relationship between P. brasiliensis and host immune cells.
Collapse
|
6
|
Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype. Inflammation 2016; 39:1690-703. [DOI: 10.1007/s10753-016-0404-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|