1
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
2
|
Lew ET, Yuen JSK, Zhang KL, Fuller K, Frost SC, Kaplan DL. Chemical and sensory analyses of cultivated pork fat tissue as a flavor enhancer for meat alternatives. Sci Rep 2024; 14:17643. [PMID: 39085314 PMCID: PMC11291926 DOI: 10.1038/s41598-024-68247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The emerging field of cellular agriculture has accelerated the development of cell-cultivated adipose tissue as an additive to enhance the flavor of alternative meat products. However, there has been limited research to evaluate the sensory profile of in vitro-grown tissues compared to conventionally obtained animal fat. This study aimed to investigate the aromatic characteristics of cell-cultivated fat tissue as a flavor enhancer for meat alternatives. Porcine dedifferentiated fat (PDFAT) cells were clonally isolated and differentiated into adipocytes. This cultured adipose tissue was then analyzed alongside native porcine fat using gas chromatography-mass spectrometry (GC/MS) coupled with descriptive sensory analysis by human consumers. This evaluation enabled quantitative and qualitative assessments of volatile compounds released during cooking for both in vitro and in vivo porcine fats. The volatile profiles generated during the cooking process and fatty aroma characteristics reported by sensory consumers were largely similar between the two fat sources, with some differences in select compounds and aroma attributes. Ultimately, the consumers found comparable overall liking scores reported between the conventional and cultured porcine fats. These findings provide valuable sensory evidence supporting the viability of cell-cultivated adipose tissue as a flavor component of meat alternatives, substituting for conventional animal fat.
Collapse
Affiliation(s)
- Emily T Lew
- Tufts University School of Engineering, Medford, MA, 02155, USA
| | - John S K Yuen
- Tufts University School of Engineering, Medford, MA, 02155, USA
| | - Kevin L Zhang
- Tufts University School of Arts and Sciences, Medford, MA, 02155, USA
| | - Katherine Fuller
- Tufts University Friedman School of Nutrition, Boston, MA, 02111, USA
| | - Scott C Frost
- Tufts University School of Arts and Sciences, Medford, MA, 02155, USA
| | - David L Kaplan
- Tufts University School of Engineering, Medford, MA, 02155, USA.
| |
Collapse
|
3
|
Cheng YM, Hong PC, Song MM, Zhu HN, Qin J, Zhang ZD, Chen H, Ma XZ, Tian MY, Zhu WY, Huang Z. An immortal porcine preadipocyte cell strain for efficient production of cell-cultured fat. Commun Biol 2023; 6:1202. [PMID: 38007598 PMCID: PMC10676435 DOI: 10.1038/s42003-023-05583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Adding adipose cells to cell-cultured meat can provide a distinctive aroma and juicy texture similar to real meat. However, a significant challenge still exists in obtaining seed cells that can be propagated for long periods, maintain their adipogenic potential, and reduce production costs. In this study, we present a cell strain derived from immortalized porcine preadipocytes that can be subculture for over 40 passages without losing differentiation capacity. This cell strain can be differentiated within 3D bioscaffolds to generate cell-cultured fat using fewer chemicals and less serum. Additionally, it can be expanded and differentiated on microcarriers with upscaled culture to reduce costs and labor. Moreover, it can co-differentiate with muscle precursor cells, producing a pattern similar to real meat. Therefore, our cell strain provides an exceptional model for studying and producing cell-cultured fat.
Collapse
Affiliation(s)
- Yun-Mou Cheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Peng-Cheng Hong
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Ming-Mei Song
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Hai-Ning Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Jing Qin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zeng-Di Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Hao Chen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Xing-Zhou Ma
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yuan Tian
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wei-Yun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zan Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. ECM proteins and cationic polymers coating promote dedifferentiation of patient-derived mature adipocytes to stem cells. Biomater Sci 2023; 11:7623-7638. [PMID: 37830400 DOI: 10.1039/d3bm00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Reprogramming of mature adipocytes is an attractive research area due to the plasticity of these cells. Mature adipocytes can be reprogrammed in vitro, transforming them into dedifferentiated fat cells (DFATs), which are considered a new type of stem cell, and thereby have a high potential for use in tissue engineering and regenerative medicine. However, there are still no reports or findings on in vitro controlling the dedifferentiation. Although ceiling culture performed in related studies is a relatively simple method, its yield is low and does not allow manipulation of mature adipocytes to increase or decrease the dedifferentiation. In this study, to understand the role of physicochemical surface effects on the dedifferentiation of patient-derived mature adipocytes, the surfaces of cell culture flasks were coated with extracellular matrix, basement membrane proteins, and cationic/anionic polymers. Extracellular matrix such as fibronectin and collagen type I, and basement membrane proteins such as collagen type IV and laminin strongly promoted dedifferentiation of mature adipocytes, with laminin showing the highest effect with a DFAT ratio of 2.98 (±0.84). Interestingly, cationic polymers also showed a high dedifferentiation effect, but anionic polymers did not, and poly(diallyl dimethylammonium chloride) showed the highest DFAT ratio of 2.27 (±2.8) among the cationic polymers. Protein assay results revealed that serum proteins were strongly adsorbed on the surfaces of the cationic polymer coating, including inducing high mature adipocyte adhesion. This study demonstrates for the first time the possibility of regulating the transformation of mature adipocytes to DFAT stem cells by controlling the physicochemical properties of the surface of conventional cell culture flasks.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
5
|
Lee DK, Kim M, Jeong J, Lee YS, Yoon JW, An MJ, Jung HY, Kim CH, Ahn Y, Choi KH, Jo C, Lee CK. Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. Curr Res Food Sci 2023; 7:100551. [PMID: 37575132 PMCID: PMC10412782 DOI: 10.1016/j.crfs.2023.100551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cellular agriculture is an emerging research field of agribiotechnology that aims to produce agricultural products using stem cells, without sacrificing animals or cultivating crops. Cultivated meat, as a representative cellular product of cellular agriculture, is being actively researched due to global food insecurity, environmental, and ethical concerns. This review focuses on the application of stem cells, which are the seeds of cellular agriculture, for the production of cultivated meat, with emphasis on deriving and culturing muscle and adipose stem cells for imitating fresh meat. Establishing standards and safety regulations for culturing stem cells is crucial for the market entry of cultured muscle tissue-based biomaterials. Understanding stem cells is a prerequisite for creating reliable cultivated meat and other cellular agricultural biomaterials. The techniques and regulations from the cultivated meat industry could pave the way for new cellular agriculture industries in the future.
Collapse
Affiliation(s)
- Dong-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Seok Lee
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Ji Won Yoon
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Min-Jeong An
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yelim Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Research and Development Center, Space F Corporation, Hwasung, 18471, Gyeonggi-do, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| |
Collapse
|
6
|
Yuen Jr JSK, Saad MK, Xiang N, Barrick BM, DiCindio H, Li C, Zhang SW, Rittenberg M, Lew ET, Zhang KL, Leung G, Pietropinto JA, Kaplan DL. Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications. eLife 2023; 12:e82120. [PMID: 37014056 PMCID: PMC10072877 DOI: 10.7554/elife.82120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
We present a method of producing bulk cell-cultured fat tissue for food applications. Mass transport limitations (nutrients, oxygen, waste diffusion) of macroscale 3D tissue culture are circumvented by initially culturing murine or porcine adipocytes in 2D, after which bulk fat tissue is produced by mechanically harvesting and aggregating the lipid-filled adipocytes into 3D constructs using alginate or transglutaminase binders. The 3D fat tissues were visually similar to fat tissue harvested from animals, with matching textures based on uniaxial compression tests. The mechanical properties of cultured fat tissues were based on binder choice and concentration, and changes in the fatty acid compositions of cellular triacylglyceride and phospholipids were observed after lipid supplementation (soybean oil) during in vitro culture. This approach of aggregating individual adipocytes into a bulk 3D tissue provides a scalable and versatile strategy to produce cultured fat tissue for food-related applications, thereby addressing a key obstacle in cultivated meat production.
Collapse
Affiliation(s)
- John Se Kit Yuen Jr
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Ning Xiang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Chunmei Li
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | | | - Emily T Lew
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Kevin Lin Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Glenn Leung
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| |
Collapse
|
7
|
Deng W, Jo JI, Morikuni H, Sasayama S, Hashimoto Y, Matsumoto N, Honda Y. Senescence-associated secretory phenotypes in rat-derived dedifferentiated fat cells with replicative senescence. Dent Mater J 2023. [PMID: 36775334 DOI: 10.4012/dmj.2022-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Senescence-associated secretory phenotype (SASPs) secreted from senescent cells often cause the deleterious damages to the surrounding tissues. Although dedifferentiated fat (DFAT) cells prepared are considered a promising cell source for regenerative therapies, SASPs from DFAT cells undergoing long-term cell culture, which latently induce replicative senescence, have barely been explored. The present study was designed to investigate senescent behaviors in rat-derived DFAT cells at high passage numbers and to analyze the possible types of SASPs. Our data show that DFAT cells undergo senescence during replicative passaging, as determined by multiple senescent hallmarks including morphological changes in cell shape and nucleus. Moreover, RT2 PCR array analysis indicated that senescent DFAT cells expressed higher levels of 16 inflammatory cytokines (Ccl11, Ccl12, Ccl21, Ccl5, Csf2, Cxcl1, Cxcl12, Ifna2, IL11, IL12a, IL13, IL1a, IL1rn, IL6, Mif, and Tnf) associated with SASPs than non-senescent cells. This study implicates that rat DFAT cells undergo cellular senescence after long-term cell culture; cautious consideration should be paid to treat SASP secretion when senescent DFAT cells are used in regenerative medicine.
Collapse
Affiliation(s)
- Wenqi Deng
- Department of Orthodontics, Osaka Dental University
| | | | | | | | | | | | | |
Collapse
|
8
|
The Importance of Protecting the Structure and Viability of Adipose Tissue for Fat Grafting. Plast Reconstr Surg 2022; 149:1357-1368. [PMID: 35404340 DOI: 10.1097/prs.0000000000009139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Fat grafting is widely used for soft-tissue augmentation; however, the related clinical outcome remains variable and technique-dependent. The mechanisms underlying fat graft survival are not fully understood, particularly regarding the contributions of different cell types, such as functional adipocytes. This study evaluated the importance of adipose tissue structure and viability in fat grafting and, to some extent, revealed the effect of adipocytes in fat grafting. METHODS Human lipoaspirate was harvested using suction-assisted liposuction and processed using three separate methods: cotton-pad filtration, soft centrifugation (400 g for 1 minute), and Coleman centrifugation (1200 g for 3 minutes). Then all samples were subjected to second cotton-pad concentration. Adipose tissue structure and viability, the numbers of adipose-derived stem cells, and their proliferation and multilineage differentiation abilities were compared in vitro. The volume retention rate and fat graft quality were evaluated in vivo. RESULTS Cell structure destruction and viability decline were more evident in the Coleman centrifugation group compared to the cotton-pad filtration group and the soft centrifugation group. However, no intergroup differences were observed in the numbers, proliferation, or multilineage differentiation abilities of adipose-derived stem cells. After transplantation, the volume retention rates were similar in the three groups. However, greater structural and functional damage was associated with poorer graft quality, including decreased levels of graft viability, vessel density, and vascular endothelial growth factor secretion and increased levels of vacuoles, necrotic areas, fibrosis, and inflammation. CONCLUSIONS Protecting adipose tissue structure and viability is crucial for improving fat grafting outcomes. CLINICAL RELEVANCE STATEMENT The protection of the structure and viability of adipose tissue should be ensured throughout the whole process of fat grafting to reduce complications and improve graft quality.
Collapse
|
9
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
10
|
Evaluation of Fat Accumulation and Adipokine Production during the Long-Term Adipogenic Differentiation of Porcine Intramuscular Preadipocytes and Study of the Influence of Immunobiotics. Cells 2020; 9:cells9071715. [PMID: 32708964 PMCID: PMC7408200 DOI: 10.3390/cells9071715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
The degree of fat accumulation and adipokine production are two major indicators of obesity that are correlated with increased adipose tissue mass and chronic inflammatory responses. Adipocytes have been considered effector cells for the inflammatory responses due to their capacity to express Toll-like receptors (TLRs). In this study, we evaluated the degree of fat accumulation and adipokine production in porcine intramuscular preadipocyte (PIP) cells maintained for in vitro differentiation over a long period without or with stimulation of either TNF-α or TLR2-, TLR3-, or TLR4-ligands. The cytosolic fat accumulation was measured by liquid chromatography and the expression of adipokines (CCL2, IL-6, IL-8 and IL-10) were quantified by RT-qPCR and ELISA at several time points (0 to 20 days) of PIP cells differentiation. Long-term adipogenic differentiation (LTAD) induced a progressive fat accumulation in the adipocytes over time. Activation of TLR3 and TLR4 resulted in an increased rate of fat accumulation into the adipocytes over the LTAD. The production of CCL2, IL-8 and IL-6 were significantly increased in unstimulated adipocytes during the LTAD, while IL-10 expression remained stable over the studied period. An increasing trend of adiponectin and leptin production was also observed during the LTAD. On the other hand, the stimulation of adipocytes with TLRs agonists or TNF-α resulted in an increasing trend of CCL2, IL-6 and IL-8 production while IL-10 remained stable in all four treatments during the LTAD. We also examined the influences of several immunoregulatory probiotic strains (immunobiotics) on the modulation of the fat accumulation and adipokine production using supernatants of immunobiotic-treated intestinal immune cells and the LTAD of PIP cells. Immunobiotics have shown a strain-specific ability to modulate the fat accumulation and adipokine production, and differentiation of adipocytes. Here, we expanded the utility and potential application of our in vitro PIP cells model by evaluating an LTAD period (20 days) in order to elucidate further insights of chronic inflammatory pathobiology of adipocytes associated with obesity as well as to explore the prospects of immunomodulatory intervention for obesity such as immunobiotics.
Collapse
|
11
|
Adipocyte dedifferentiation in health and diseases. Clin Sci (Lond) 2020; 133:2107-2119. [PMID: 31654064 DOI: 10.1042/cs20190128] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022]
Abstract
Adipose tissues collectively as an endocrine organ and energy storage are crucial for systemic metabolic homeostasis. The major cell type in the adipose tissue, the adipocytes or fat cells, are remarkably plastic and can increase or decrease their size and number to adapt to changes in systemic or local metabolism. Changes in adipocyte size occur through hypertrophy or atrophy, and changes in cell numbers mainly involve de novo generation of new cells or death of existing cells. Recently, dedifferentiation, whereby a mature adipocyte is reverted to an undifferentiated progenitor-like status, has been reported as a mechanism underlying adipocyte plasticity. Dedifferentiation of mature adipocytes has been observed under both physiological and pathological conditions. This review covers several aspects of adipocyte dedifferentiation, its relevance to adipose tissue function, molecular pathways that drive dedifferentiation, and the potential of therapeutic targeting adipocyte dedifferentiation in human health and metabolic diseases.
Collapse
|
12
|
Fish KD, Rubio NR, Stout AJ, Yuen JSK, Kaplan DL. Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci Technol 2020; 98:53-67. [PMID: 32123465 PMCID: PMC7051019 DOI: 10.1016/j.tifs.2020.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In vitro meat production has been proposed as a solution to environmental and animal welfare issues associated with animal agriculture. While most academic work on cell-cultured meat has focused on innovations for scalable muscle tissue culture, fat production is an important and often neglected component of this technology. Developing suitable biomanufacturing strategies for adipose tissue from agriculturally relevant animal species may be particularly beneficial due to the potential use of cell-cultured fat as a novel food ingredient. SCOPE AND APPROACH Here we review the relevant studies from areas of meat science, cell biology, tissue engineering, and bioprocess engineering to provide a foundation for the development of in vitro fat production systems. We provide an overview of adipose tissue biology and functionality with respect to meat products, then explore cell lines, bioreactors, and tissue engineering strategies of potential utility for in vitro adipose tissue production for food. Regulation and consumer acceptance are also discussed. KEY FINDINGS AND CONCLUSIONS Existing strategies and paradigms are insufficient to meet the full set of unique needs for a cell-cultured fat manufacturing platform, as tradeoffs are often present between simplicity, scalability, stability, and projected cost. Identification and validation of appropriate cell lines, bioprocess strategies, and tissue engineering techniques must therefore be an iterative process as a deeper understanding of the needs and opportunities for cell-cultured fat develops.
Collapse
Affiliation(s)
- Kyle D Fish
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| |
Collapse
|
13
|
Ma J, Xia M D J, Gao J, Lu F, Liao Y. Mechanical Signals Induce Dedifferentiation of Mature Adipocytes and Increase the Retention Rate of Fat Grafts. Plast Reconstr Surg 2019; 144:1323-1333. [PMID: 31764645 DOI: 10.1097/prs.0000000000006272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mature adipocytes dedifferentiate in vivo on application of a soft-tissue expander. Dedifferentiated adipocytes can proliferate and redifferentiate. This study used tissue expanders to pretreat adipose flaps, to increase the retention rate after fat graft. METHODS A soft-tissue expander and silicone sheet were implanted beneath the left and right inguinal fat pads of rats, respectively. After 7 days of expansion, the adipose tissue derived from the pads was transplanted beneath dorsal skin. Samples were harvested at various time points, and histologic, immunohistochemical, and gene expression analyses were conducted. Mature adipocytes were cultured in vitro under a pressure of 520 Pa. Changes in cell morphology, the cytoskeleton, and expression of mechanical signal-related proteins were investigated. RESULTS Pressure in adipose flaps increased to 25 kPa on expansion. Mature adipocytes dedifferentiated following expansion. At 1 week after transplantation, the expression of vascular endothelial growth factor (p < 0.05) was higher in the expanded group. The retention rate at 12 weeks after transplantation was higher in the expanded group (56 ± 3 percent) than in the control group (32 ± 3 percent) (p < 0.05), and the surviving/regenerating zones (p < 0.01) were wider. The lipid content of mature adipocytes gradually decreased on culture under increased pressure, and these cells regained a proliferative capacity. This was accompanied by increased expression of mechanical signal--related proteins (p < 0.05). CONCLUSIONS Mechanical signals may induce dedifferentiation of mature adipocytes. Dedifferentiated adipocytes increase the retention rate of fat grafts by acting as seed cells.
Collapse
Affiliation(s)
- Jingjing Ma
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jing Xia M D
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jianhua Gao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunjun Liao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
14
|
Gene expression profiles of early chondrogenic markers in dedifferentiated fat cells stimulated by bone morphogenetic protein 4 under monolayer and spheroid culture conditions in vitro. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.odw.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Duarte MS, Bueno R, Silva W, Campos CF, Gionbelli MP, Guimarães SEF, Silva FF, Lopes PS, Hausman GJ, Dodson MV. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Dedifferentiated fat cells: Potential and perspectives for their use in clinical and animal science purpose. J Anim Sci 2017; 95:2255-2260. [PMID: 28727019 DOI: 10.2527/jas.2016.1094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An increasing body of evidences has demonstrated the ability of the mature adipocyte to dedifferentiate into a population of proliferative-competent cells known as dedifferentiated fat (DFAT) cells. As early as the 1970s, in vitro studies showed that DFAT cells may be obtained by ceiling culture, which takes advantage of the buoyancy property of lipid-filled cells. It was documented that DFAT cells may acquire a phenotype similar to mesenchymal stem cells and yet may differentiate into multiple cell lineages, such as skeletal and smooth muscle cells, cardiomyocytes, osteoblasts, and adipocytes. Additionally, recent studies showed the ability of isolated mature adipocytes to dedifferentiate in vivo and the capacity of the progeny cells to redifferentiate into mature adipocytes, contributing to the increase of body fatness. These findings shed light on the potential for use of DFAT cells, not only for clinical purposes but also within the animal science field, because increasing intramuscular fat without excessive increase in other fat depots is a challenge in livestock production. Knowledge of the mechanisms underlying the dedifferentiation and redifferentiation of DFAT cells will allow the development of strategies for their use for clinical and animal science purposes. In this review, we highlight several aspects of DFAT cells, their potential for clinical purposes, and their contribution to adipose tissue mass in livestock.
Collapse
|
16
|
Dedifferentiated Adipocytes Promote Adipose Tissue Generation within an External Suspension Device. Plast Reconstr Surg 2017; 140:525-536. [DOI: 10.1097/prs.0000000000003601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Li F, Li Z, Jiang Z, Tian Y, Wang Z, Yi W, Zhang C. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway. Am J Transl Res 2016; 8:4791-4801. [PMID: 27904680 PMCID: PMC5126322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Background: Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated. Objective: To investigate the role of hypoxia in early cardiac differentiation of DFAT cells and the underlying molecular mechanism. Methods: DFAT cells were prepared from 4 to 6 week-age mice and cultured under hypoxic conditions by adding Prolyl hydroxylase inhibitor and dimethyloxalylglycine (DMOG) into the culture media. To inhibit or block Notch signaling, γ-secretase inhibitor-II (GSI-II) and Notch1 siRNA (si-Notch1) were used. DFAT cell viability was detected using MTT assay. qRT-PCR, immunofluorescence microscopy and western blotting were used to evaluate the cardiac differentiation of DFAT cells and co-immunoprecipitation was used to study the interaction between HIF-1α and Notch signaling. Results: 0.6-mM DMOG failed to affect the viability of DFAT cells, but stimulated the cells to express early cardiac transcription factors including Islet1, Nkx2.5 and Gata4 in a time-dependent manner and increase the number of cTnT+ cardiomyocytes (detected at the 28th day after stimulation). It was also demonstrated that DMOG was involved in HIF-1α and Notch signaling as well as HIF-1α-NICD complex formation. Conclusion: Hypoxia enhanced early cardiac differentiation of DFAT cells through HIF-1α and Notch signaling pathway.
Collapse
Affiliation(s)
- Fuhai Li
- Guizhou Institute for Cardiovascular DiseaseGuiyang 550002, China
- Department of Cardiology, Guizhou Province People’s HospitalGuiyang 550002, China
| | - Zongzhuang Li
- Guizhou Institute for Cardiovascular DiseaseGuiyang 550002, China
- Department of Cardiology, Guizhou Province People’s HospitalGuiyang 550002, China
| | - Zhi Jiang
- Guizhou Institute for Cardiovascular DiseaseGuiyang 550002, China
- Department of Cardiology, Guizhou Province People’s HospitalGuiyang 550002, China
| | - Ye Tian
- Guizhou Institute for Cardiovascular DiseaseGuiyang 550002, China
- Department of Cardiology, Guizhou Province People’s HospitalGuiyang 550002, China
| | - Zhi Wang
- Emergency Department, Qingdao Municipal HospitalQingdao 266011, China
| | - Wei Yi
- Department of Pathology, Guizhou Province People’s HospitalGuiyang 550002, China
| | - Chenyun Zhang
- Guizhou Institute for Cardiovascular DiseaseGuiyang 550002, China
- Department of Cardiology, Guizhou Province People’s HospitalGuiyang 550002, China
| |
Collapse
|
18
|
Shah M, George RL, Evancho-Chapman MM, Zhang G. Current challenges in dedifferentiated fat cells research. Organogenesis 2016; 12:119-127. [PMID: 27322672 DOI: 10.1080/15476278.2016.1197461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dedifferentiated fat cells show great promises as a novel cell source for stem cell research. It has many advantages when used for cell-based therapeutics including abundance, pluripotency, and safety. However, there are many obstacles researchers need to overcome to make the next big move in DFAT cells research. In this review, we summarize the current main challenges in DFAT cells research including cell culture purity, phenotypic properties, and dedifferentiation mechanisms. The common methods to produce DFAT cells as well as the cell purity issue during DFAT cell production have been introduced. Current approaches to improve DFAT cell purity have been discussed. The phenotypic profile of DFAT cells have been listed and compared with other stem cells. Further studies on elucidating the underlying dedifferentiation mechanisms will dramatically advance DFAT cell research.
Collapse
Affiliation(s)
- Mickey Shah
- a Integrated Bioscience Program , The University of Akron , Akron , OH , USA.,b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| | - Richard L George
- c Department of Surgery , Summa Health System , Akron , OH , USA.,d Department of Surgery , Northeast Ohio Medical University , Rootstown , OH , USA
| | | | - Ge Zhang
- b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| |
Collapse
|
19
|
Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro. Int J Mol Sci 2015; 16:27988-8000. [PMID: 26602917 PMCID: PMC4691028 DOI: 10.3390/ijms161226081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25-10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy.
Collapse
|