1
|
Reel S, Reel PS, Van Kralingen J, Larsen CK, Robertson S, MacKenzie SM, Riddell A, McClure JD, Lamprou S, Connell JMC, Amar L, Pecori A, Tetti M, Pamporaki C, Kabat M, Ceccato F, Kroiss M, Dennedy MC, Stell A, Deinum J, Mulatero P, Reincke M, Gimenez-Roqueplo AP, Assié G, Blanchard A, Beuschlein F, Rossi GP, Eisenhofer G, Zennaro MC, Jefferson E, Davies E. Identification of hypertension subtypes using microRNA profiles and machine learning. Eur J Endocrinol 2025; 192:418-428. [PMID: 40105001 DOI: 10.1093/ejendo/lvaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Hypertension is a major cardiovascular risk factor affecting about 1 in 3 adults. Although the majority of hypertension cases (∼90%) are classified as "primary hypertension" (PHT), endocrine hypertension (EHT) accounts for ∼10% of cases and is caused by underlying conditions such as primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or paraganglioma (PPGL). EHT is often misdiagnosed as PHT leading to delays in treatment for the underlying condition, reduced quality of life and costly, often ineffective, antihypertensive treatment. MicroRNA (miRNA) circulating in the plasma is emerging as an attractive potential biomarker for various clinical conditions due to its ease of sampling, the accuracy of its measurement and the correlation of particular disease states with circulating levels of specific miRNAs. METHODS This study systematically presents the most discriminating circulating miRNA features responsible for classifying and distinguishing EHT and its subtypes (PA, PPGL, and CS) from PHT using 8 different supervised machine learning (ML) methods for the prediction. RESULTS The trained models successfully classified PPGL, CS, and EHT from PHT with area under the curve (AUC) of 0.9 and PA from PHT with AUC 0.8 from the test set. The most prominent circulating miRNA features for hypertension identification of different disease combinations were hsa-miR-15a-5p and hsa-miR-32-5p. CONCLUSIONS This study confirms the potential of circulating miRNAs to serve as diagnostic biomarkers for EHT and the viability of ML as a tool for identifying the most informative miRNA species.
Collapse
Affiliation(s)
- Smarti Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, United Kingdom
| | - Parminder S Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, United Kingdom
| | - Josie Van Kralingen
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | - Stacy Robertson
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Scott M MacKenzie
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Alexandra Riddell
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - John D McClure
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Stelios Lamprou
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - John M C Connell
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD2 4BF, United Kingdom
| | - Laurence Amar
- Université Paris Cité, Inserm, PARCC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension Artérielle, Paris, France
| | - Alessio Pecori
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Christina Pamporaki
- Department of Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Germany
- Department of Endocrinology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Marek Kabat
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Filippo Ceccato
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Matthias Kroiss
- Clinical Chemistry and Laboratory Medicine, Core Unit Clinical Mass Spectrometry, Universitätsklinikum Würzburg, Würzburg, Germany
- Schwerpunkt Endokrinologie/Diabetologie, Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Universität Würzburg, Würzburg, Germany
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany
| | - Michael C Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Anthony Stell
- School of Computing and Information Systems, The University of Melbourne, Melbourne, Australia
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Inserm, PARCC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Guillaume Assié
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
- Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris 75014, France
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigations Cliniques, Paris 9201, France
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Gian Paolo Rossi
- Internal and Emergency Medicine-ESH Specialized Hypertension Center, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Germany
- Department of Endocrinology, University Hospital Carl Gustav Carus, TU Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Maria-Christina Zennaro
- Université Paris Cité, Inserm, PARCC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Emily Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, United Kingdom
| | - Eleanor Davies
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
2
|
Llop D, Paredes S, Ibarretxe D, Taverner D, Plana N, Rosales R, Masana L, Vallvé JC. Plasma Expression of Carotid Plaque Presence-Related MicroRNAs Is Associated with Inflammation in Patients with Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15347. [PMID: 37895027 PMCID: PMC10607586 DOI: 10.3390/ijms242015347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is associated with problems beyond the joints such as cardiovascular (CV) disease. MicroRNA-24, -146 and -Let7a are associated with carotid plaque presence in RA patients. We evaluated whether these microRNAs were involved in the inflammatory state of RA, and we studied their gene targets to understand their role in inflammation and atherosclerosis. A total of 199 patients with RA were included. Inflammatory variables such as disease activity score 28 (DAS28) and erythrocyte sedimentation rate (ESR) were quantified. MicroRNAs were extracted from plasma and quantified with qPCR. Multivariate models and classification methods were used for analysis. The multivariate models showed that diminished expression of microRNA-146 was associated with inferior levels of DAS28-ESR, and the decreased expression of microRNA-24, -146 and -Let7a were associated with lowered ESR in the overall cohort. When microRNAs were evaluated globally, a global increase was associated with increased DAS28-ESR and ESR in the overall cohort. Sex-stratified analyses showed different associations of these microRNAs with the inflammatory variables. Finally, random forest models showed that microRNAs have a pivotal role in classifying patients with high and low inflammation. Plasmatic expressions of microRNA-24, -146 and -Let7a were associated with inflammatory markers of RA. These microRNAs are associated with both inflammation and atherosclerosis and are potential therapeutic targets for RA.
Collapse
Affiliation(s)
- Dídac Llop
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Silvia Paredes
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Sección de Reumatología, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Daiana Ibarretxe
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Delia Taverner
- Sección de Reumatología, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Núria Plana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Roser Rosales
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Lluís Masana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Joan Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
3
|
Zhang J, Li A, Gu R, Tong Y, Cheng J. Role and regulatory mechanism of microRNA mediated neuroinflammation in neuronal system diseases. Front Immunol 2023; 14:1238930. [PMID: 37637999 PMCID: PMC10457161 DOI: 10.3389/fimmu.2023.1238930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the unique ability to degrade or block specific RNAs and regulate many cellular processes. Neuroinflammation plays the pivotal role in the occurrence and development of multiple central nervous system (CNS) diseases. The ability of miRNAs to enhance or restrict neuroinflammatory signaling pathways in CNS diseases is an emerging and important research area, including neurodegenerative diseases, stroke, and traumatic brain injury (TBI). In this review, we summarize the roles and regulatory mechanisms of recently identified miRNAs involved in neuroinflammation-mediated CNS diseases, aiming to explore and provide a better understanding and direction for the treatment of CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
4
|
Chang J, Gao H, Su D, Li H, Chen Y. Is there a change in the appropriateness of admission after patients were admitted? Evidence from four county hospitals in rural China. Front Public Health 2023; 11:1106499. [PMID: 37304120 PMCID: PMC10248166 DOI: 10.3389/fpubh.2023.1106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Objective This study aims to investigate the changes in admission appropriateness after patients were admitted and provide a reference for physicians to make admission decisions and for the supervision of medical service behavior by the medical insurance regulatory department. Methods Medical records of 4,343 inpatients were obtained based on the largest and most capable public comprehensive hospital in four counties in central and western China for this retrospective study. The binary logistic regression model was employed to examine the determinants of changes in admission appropriateness. Results Nearly two-in-thirds (65.39%) of the 3,401 inappropriate admissions changed to appropriate at discharge. Age, type of medical insurance, medical service type, severity of the patient upon admission, and disease category were found to be associated with the changes in the appropriateness of admission. Older patients (OR = 3.658, 95% CI [2.462-5.435]; P < 0.001) were more likely to go from "inappropriate" to "appropriate" than younger counterparts. Compared with circulatory diseases, the case evaluated as "appropriate" at discharge was more frequent in the urinary diseases (OR = 1.709, 95% CI [1.019-2.865]; P = 0.042) and genital diseases (OR = 2.998, 95% CI [1.737-5.174]; P < 0.001), whereas the opposite finding was observed for patients with respiratory diseases (OR = 0.347, 95% CI [0.268-0.451]; P < 0.001) and skeletal and muscular diseases (OR = 0.556, 95% CI [0.355-0.873]; P = 0.011). Conclusions Many disease characteristics gradually emerged after the patient was admitted, thus the appropriateness of admission changed. Physicians and regulators need to take a dynamic view of disease progression and inappropriate admission. Aside from referring to the appropriateness evaluation protocol (AEP), they both should pay attention to individual and disease characteristics to make a comprehensive judgment, and strict control and attention should be paid to the admission of respiratory, skeletal, and muscular diseases.
Collapse
Affiliation(s)
- Jingjing Chang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxia Gao
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Rural Health Services, Hubei Province Key Research Institute of Humanities and Social Sciences, Wuhan, China
| | - Dai Su
- School of Public Health, Capital Medical University, Beijing, China
| | - Haomiao Li
- School of Political Science and Public Administration, Wuhan University, Wuhan, China
| | - Yingchun Chen
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Rural Health Services, Hubei Province Key Research Institute of Humanities and Social Sciences, Wuhan, China
| |
Collapse
|
5
|
Velasquez FC, Roman B, Hernández-Ochoa EO, Leppo MK, Truong SK, Steenbergen C, Schneider MF, Weiss RG, Das S. Contribution of skeletal muscle-specific microRNA-133b to insulin resistance in heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H598-H609. [PMID: 36827227 PMCID: PMC10069972 DOI: 10.1152/ajpheart.00250.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood. Herein, we hypothesize that HF upregulates miR-133b in SM and in turn alters glucose metabolism and the propensity toward IR. Mitochondria isolated from SM of mice with HF induced by transverse aortic constriction (TAC) showed lower respiration and downregulation of muscle-specific components of the tricarboxylic acid (TCA) cycle, AMP deaminase 1 (AMPD1), and fumarate compared with those from control animals. RNA-Seq and subsequent qPCR validation confirmed upregulation of SM-specific microRNA (miRNA), miR-133b, in TAC versus sham animals. miR-133b overexpression alone resulted in significantly lower mitochondrial respiration, cellular glucose uptake, and glycolysis along with lower ATP production and cellular energy reserve compared with the scramble (Scr) in C2C12 cells. miR-133b binds to the 3'-untranslated region (UTR) of KLF15, the transcription factor for the insulin-sensitive glucose transporter, GLUT4. Overexpression of miR-133b lowers GLUT4 and lowers pAkt in presence of insulin in C2C12 cells. Finally, lowering miR-133b in primary skeletal myocytes isolated from TAC mice using antagomir-133b reversed the changes in KLF15, GLUT4, and AMPD1 compared with the scramble-transfected myocytes. Taken together, these data demonstrate a role for SM miR-133b in altered glucose metabolism in HF and suggest the therapeutic potential in HF to improve glucose uptake and glycolysis by restoring GLUT4 abundance. The data uncover a novel mechanism for IR and ultimately SM metabolic abnormalities in patients with HF.NEW & NOTEWORTHY Heart failure is associated with systemic insulin resistance and abnormalities in glucose metabolism but the underlying mechanisms are poorly understood. In the skeletal muscle, the major peripheral site of glucose utilization, we observe an increase in miR-133b in heart failure mice, which reduces the insulin-sensitive glucose transporter (GLUT4), glucose uptake, and metabolism in C2C12 and in myocytes. The antagomir for miR-133b restores GLUT4 protein and markers of metabolism in skeletal myocytes from heart failure mice demonstrating that miR-133b is an exciting target for systemic insulin resistance in heart failure and an important player in the cross talk between the heart and the periphery in the heart failure syndrome.
Collapse
Affiliation(s)
- Fernanda Carrizo Velasquez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Barbara Roman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Michelle K Leppo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Sharon K Truong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Robert G Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Systems Biology in Chronic Heart Failure-Identification of Potential miRNA Regulators. Int J Mol Sci 2022; 23:ijms232315226. [PMID: 36499552 PMCID: PMC9740605 DOI: 10.3390/ijms232315226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR. In silico analysis of predicted targets by STRING protein-protein interaction networks revealed eight cluster networks (involving seven of the identified miRNAs) enriched in pathways related to cell cycle, Ras, chemokine, PI3K-AKT and TGF-β signaling. By ROC curve analysis, combined probabilities of these seven miRNAs (let-7a-5p, miR-107, miR-125a-5p, miR-139-5p, miR-150-5p, miR-30b-5p and miR-342-3p; clusters 1-4 [C:1-4]), discriminated between HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), and ischaemic and non-ischaemic aetiology. A combination of miR-107, miR-139-5p and miR-150-5p, involved in clusters 5 and 7 (C:5+7), discriminated HFpEF from HFrEF. Pathway enrichment analysis of miRNAs present in C:1-4 (let-7a-5p, miR-125a-5p, miR-30b-5p and miR-342-3p) revealed pathways related to HF pathogenesis. In conclusion, we have identified a differential signature of down-regulated miRNAs in the plasma of HF patients and propose novel cellular mechanisms involved in cHF pathogenesis.
Collapse
|
7
|
Contemporary Biomarkers in Pulmonary Embolism Diagnosis: Moving beyond D-Dimers. J Pers Med 2022; 12:jpm12101604. [PMID: 36294744 PMCID: PMC9604705 DOI: 10.3390/jpm12101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
Pulmonary embolism (PE) is a rather common cardiovascular disorder constituting one of the major manifestations of venous thromboembolism (VTE). It is associated with high mortality and substantial recurrence rates, and its diagnosis may be challenging, especially in patients with respiratory comorbidities. Therefore, providing a prompt and accurate diagnosis for PE through developing highly sensitive and specific diagnostic algorithms would be of paramount importance. There is sound evidence supporting the use of biomarkers to enhance the diagnosis and predict the recurrence risk in patients with PE. Therefore, several novel biomarkers, such as factor VIII, Ischemia Modified Albumin, and fibrinogen, as well as several MicroRNAs and microparticles, have been investigated for the diagnosis of this clinical entity. The present review targets to comprehensively present the literature regarding the novel diagnostic biomarkers for PE, as well as to discuss the evidence for their use in daily routine.
Collapse
|
8
|
Makowska M, Smolarz B, Romanowicz H. microRNAs in Subarachnoid Hemorrhage (Review of Literature). J Clin Med 2022; 11:jcm11154630. [PMID: 35956244 PMCID: PMC9369929 DOI: 10.3390/jcm11154630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, many studies have shown that microRNAs (miRNAs) in extracellular bioliquids are strongly associated with subarachnoid hemorrhage (SAH) and its complications. The article presents issues related to the occurrence of subarachnoid hemorrhage (epidemiology, symptoms, differential diagnosis, examination, and treatment of the patient) and a review of current research on the correlation between miRNAs and the complications of SAH. The potential use of miRNAs as biomarkers in the treatment of SAH is presented.
Collapse
Affiliation(s)
- Marianna Makowska
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
- Correspondence: ; Tel.: +48-42-271-12-90
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
9
|
Wang T, Tang X, Zhang Y, Wang X, Shi H, Yin R, Pan C. Delivery of miR-654-5p via SonoVue Microbubble Ultrasound Inhibits Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells and Arterial Thrombosis and Stenosis through Targeting TCF21. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4757081. [PMID: 35910838 PMCID: PMC9325610 DOI: 10.1155/2022/4757081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
Background Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important cause of vascular stenosis. The study explored the mechanism of inhibition of vascular stenosis through the molecular mechanism of smooth muscle cell phenotype transformation. Methods Coronary heart disease-related genes were screened by bioinformatics, and the target genes of miR-654-5p were predicted by dual-luciferase method and immunofluorescence method. miR-654-5p mimic stimulation and transfection of TCF21 and MTAP into cells. SonoVue microbubble sonication was used to deliver miR-654-5p into cells. Cell proliferation, migration, and invasion were detected by CCK-8, wound scratch, and Transwell. HE and IHC staining were performed to study the effect of miR-654-5p delivery via SonoVue microbubble ultrasound on vessel stenosis in a model of arterial injury. Gene expression was determined by qRT-PCR and WB. Results TCF21 and MTAP were predicted as the target genes of miR-654-5p. Cytokines induced smooth muscle cell proliferation, migration, and invasion and promoted miR-654-5p downregulation; noticeably, downregulated miR-654-5p was positively associated with the cell proliferation and migration. Overexpression of TCF21 promoted proliferation, invasion, and migration, and mimic reversed such effects. miR-654-5p overexpression delivered by SonoVue microbubble ultrasound inhibited proliferation, migration, and invasion of cells. Moreover, in arterial injury model, we found that SonoVue microbubble ultrasound transmitted miR-654-5p into the arterial wall to inhibit arterial thrombosis and stenosis, while TCF21 was inhibited. Conclusion Ultrasound delivery of miR-654-5p via SonoVue microbubbles was able to inhibit arterial thrombosis and stenosis by targeting TCF21.
Collapse
Affiliation(s)
- Tao Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqiang Tang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Yong Zhang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqin Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Haifeng Shi
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Ruohan Yin
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Changjie Pan
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| |
Collapse
|
10
|
Circulating Non-coding RNAs as Potential Biomarkers for Ischemic Stroke: A Systematic Review. J Mol Neurosci 2022; 72:1572-1585. [DOI: 10.1007/s12031-022-01991-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
|
11
|
Chekka LMS, Langaee T, Johnson JA. Comparison of Data Normalization Strategies for Array-Based MicroRNA Profiling Experiments and Identification and Validation of Circulating MicroRNAs as Endogenous Controls in Hypertension. Front Genet 2022; 13:836636. [PMID: 35432462 PMCID: PMC9008777 DOI: 10.3389/fgene.2022.836636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Introduction: MicroRNAs are small noncoding RNAs with potential regulatory roles in hypertension and drug response. The presence of many of these RNAs in biofluids has spurred investigation into their role as possible biomarkers for use in precision approaches to healthcare. One of the major challenges in clinical translation of circulating miRNA biomarkers is the limited replication across studies due to lack of standards for data normalization techniques for array-based approaches and a lack of consensus on an endogenous control normalizer for qPCR-based candidate miRNA profiling studies. Methods: We conducted genome-wide profiling of 754 miRNAs in baseline plasma of 36 European American individuals with uncomplicated hypertension selected from the PEAR clinical trial, who had been untreated for hypertension for at least one month prior to sample collection. After appropriate quality control with amplification score and missingness filters, we tested different normalization strategies such as normalization with global mean of imputed and unimputed data, mean of restricted set of miRNAs, quantile normalization, and endogenous control miRNA normalization to identify the method that best reduces the technical/experimental variability in the data. We identified best endogenous control candidates with expression pattern closest to the mean miRNA expression in the sample, as well as by assessing their stability using a combination of NormFinder, geNorm, Best Keeper and Delta Ct algorithms under the Reffinder software. The suitability of the four best endogenous controls was validated in 50 hypertensive African Americans from the same trial with reverse-transcription–qPCR and by evaluating their stability ranking in that cohort. Results: Among the compared normalization strategies, quantile normalization and global mean normalization performed better than others in terms of reducing the standard deviation of miRNAs across samples in the array-based data. Among the four strongest candidate miRNAs from our selection process (miR-223-3p, 19b, 106a, and 126-5p), miR-223-3p and miR-126-5p were consistently expressed with the best stability ranking in the validation cohort. Furthermore, the combination of miR-223-3p and 126-5p showed better stability ranking when compared to single miRNAs. Conclusion: We identified quantile normalization followed by global mean normalization to be the best methods in reducing the variance in the data. We identified the combination of miR-223-3p and 126-5p as potential endogenous control in studies of hypertension.
Collapse
Affiliation(s)
- Lakshmi Manasa S. Chekka
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Julie A. Johnson,
| |
Collapse
|
12
|
Schuchardt EL, Miyamoto SD, Crombleholme T, Karimpour-Fard A, Korst A, Neltner B, Howley LW, Cuneo B, Sucharov CC. Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy-Identification of Differences and Predicting Demise. J Cardiovasc Dev Dis 2022; 9:37. [PMID: 35200691 PMCID: PMC8878714 DOI: 10.3390/jcdd9020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Twin-twin transfusion syndrome (TTTS) is a rare but serious cause of fetal cardiomyopathy with poorly understood pathophysiology and challenging prognostication. This study sought a nonbiased, comprehensive assessment of amniotic fluid (AF) microRNAs from TTTS pregnancies and associations of these miRNAs with clinical characteristics. For the discovery cohort, AF from ten fetuses with severe TTTS cardiomyopathy were selected and compared to ten normal singleton AF. Array panels assessing 384 microRNAs were performed on the discovery cohort and controls. Using a stringent q < 0.0025, arrays identified 32 miRNAs with differential expression. Top three microRNAs were miR-99b, miR-370 and miR-375. Forty distinct TTTS subjects were selected for a validation cohort. RT-PCR targeted six differentially-expressed microRNAs in the discovery and validation cohorts. Expression differences by array were confirmed by RT-PCR with high fidelity. The ability of these miRNAs to predict clinical differences, such as cardiac findings and later demise, was evaluated on TTTS subjects. Down-regulation of miRNA-127-3p, miRNA-375-3p and miRNA-886 were associated with demise. Our results indicate AF microRNAs have potential as a diagnostic and prognostic biomarker in TTTS. The top microRNAs have previously demonstrated roles in angiogenesis, cardiomyocyte stress response and hypertrophy. Further studies of the mechanism of actions and potential targets is warranted.
Collapse
Affiliation(s)
- Eleanor L. Schuchardt
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
- Department of Pediatrics, Rady Children’s Hospital, School of Medicine, University of California San Diego, San Diego, CA 92123, USA
| | - Shelley D. Miyamoto
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
| | - Timothy Crombleholme
- Fetal Care Center Dallas, Medical City Children’s Hospital, Dallas, TX 75230, USA;
| | - Anis Karimpour-Fard
- Department of Pharmacology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Armin Korst
- Research Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Bonnie Neltner
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Lisa W. Howley
- Division of Cardiology, Department of Pediatrics, The Children’s Heart Clinic, Children’s Minnesota, Minneapolis, MN 55404, USA;
| | - Bettina Cuneo
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| |
Collapse
|
13
|
Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022; 23:ijms23020786. [PMID: 35054972 PMCID: PMC8775991 DOI: 10.3390/ijms23020786] [Citation(s) in RCA: 638] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic syndrome (MetS) forms a cluster of metabolic dysregulations including insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension. The pathogenesis of MetS encompasses multiple genetic and acquired entities that fall under the umbrella of insulin resistance and chronic low-grade inflammation. If left untreated, MetS is significantly associated with an increased risk of developing diabetes and cardiovascular diseases (CVDs). Given that CVDs constitute by far the leading cause of morbidity and mortality worldwide, it has become essential to investigate the role played by MetS in this context to reduce the heavy burden of the disease. As such, and while MetS relatively constitutes a novel clinical entity, the extent of research about the disease has been exponentially growing in the past few decades. However, many aspects of this clinical entity are still not completely understood, and many questions remain unanswered to date. In this review, we provide a historical background and highlight the epidemiology of MetS. We also discuss the current and latest knowledge about the histopathology and pathophysiology of the disease. Finally, we summarize the most recent updates about the management and the prevention of this clinical syndrome.
Collapse
|
14
|
La Rosa F, Mancuso R, Agostini S, Piancone F, Marventano I, Saresella M, Hernis A, Fenoglio C, Galimberti D, Scarpini E, Clerici M. Pharmacological and Epigenetic Regulators of NLRP3 Inflammasome Activation in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14111187. [PMID: 34832969 PMCID: PMC8623160 DOI: 10.3390/ph14111187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Activation of the NLRP3 inflammasome complex results in the production of IL-18, Caspase-1 and IL-1β. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status is a negative factor in human pathologies including Alzheimer’s Disease (AD). MicroRNAs (miR-NAs) target the 3′UTR region of NLRP3, preventing the activation of the inflammasome and inhibiting cytokine production. Because Stavudine (D4T), an antiretroviral drug, was recently shown to reduce inflammasome activation, we verified whether its effect is mediated by miR-7-5p, miR-22-3p, miR-30e-5p and miR-223-3p: miRNAs that bind the NLRP3-mRNA-UTR region and interfere with protein translation, reducing NLRP3 activation. Peripheral blood mononuclear cells (PBMCs) of twenty AD patients and ten sex-matched Healthy Controls (HC) were stimulated with Lipopolysaccharides (LPS)+Amyloid-beta (Aβ42) in the absence/presence of D4T. Expression of genes within the inflammasome complex and of miRNAs was evaluated by RT-PCR; cytokines and caspase-1 production was measured by ELISA. Results have shown that: NLRP3, ASC, IL-1β and IL-18 expression, as well as IL-18, IL-1β and caspase-1 production, were significantly augmented (p < 0.05) in LPS+Aβ42-stimulated PBMCs of AD patients compared to HC. D4T reduced the expression of inflammasome genes and cytokine production (p < 0.005). miR-7-5p and miR-223-3p expression was significantly increased in LPS+Aβ42-stimulated PBMCs of AD patients (p < 0.05), and it was reduced by D4T in AD alone. In conclusion: miR-223-3p and mir-7-5p expression is increased in AD, but this does not result in down-regulation of NLRP3 inflammasome expression and of IL-1β and IL-18 production. D4T increased miRNA expression in HC but had an opposite effect in AD, suggesting that miRNA regulatory mechanisms are altered in AD.
Collapse
Affiliation(s)
- Francesca La Rosa
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
- Correspondence:
| | - Roberta Mancuso
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Simone Agostini
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Federica Piancone
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Ivana Marventano
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Marina Saresella
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Ambra Hernis
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Daniela Galimberti
- Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.G.); (E.S.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Elio Scarpini
- Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.G.); (E.S.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
15
|
Differential miRNA Expression in Osteoporotic Elderly Patients with Hip Fractures Compared to Young Patients. Indian J Orthop 2021; 56:399-411. [PMID: 35251503 PMCID: PMC8854460 DOI: 10.1007/s43465-021-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The expression pattern of micro-RNAs (miRNA) has been implicated in the pathomechanism of various bone disorders, and has a role in differentiation of osteoblasts and osteoclasts. The purpose of the study was to investigate the differential miRNA profiles of osteoporotic hip fractures compared to young patients with hip fractures. METHODS Blood samples from ten osteoporosis patients and ten young, healthy patients, presenting with acute hip fractures were collected and subjected to an initial miRNA profiling to detect those miRNAs with significant variations between the two groups based on polymerase chain reactions performed in duplicate. A real-time quantitative polymerase chain reaction-based analysis was then performed for validation of specific miRNAs that were significantly different between the two groups. RESULTS A total of 182 miRNAs were analyzed. Thirty-nine of them showed significant differences between the two groups in the initial miRNA profiling. The validation results suggested that five miRNAs related to bone metabolism had significantly different expression among the osteoporotic hip fracture group compared to the young, healthy group: miR-23b-3p and miR-140-3p were up-regulated; miR-21-5p, miR-122-5p and miR-125b-5p were down-regulated. CONCLUSIONS Differential expression of selected miRNAs in patients with osteoporotic hip fracture suggests a possible role of miRNAs as potential biomarkers in prevention or timely prediction of osteoporotic fractures in the elderly. Further research is required to elucidate the mechanism of their involvement in osteoporosis. LEVEL OF EVIDENCE Not applicable.
Collapse
|
16
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
17
|
Zapater A, Santamaria-Martos F, Targa A, Pinilla L, Sánchez-de-la-Torre A, Benítez ID, Martínez-García MÁ, Barbé F, Sánchez-de-la-Torre M. Canonical Pathways Associated with Blood Pressure Response to Sleep Apnea Treatment: A Post Hoc Analysis. Respiration 2021; 100:298-307. [PMID: 33550282 DOI: 10.1159/000511963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several studies have reported an association between microRNAs (miRNAs) and hypertension or cardiovascular disease (CVD). In a previous study performed on a group of 38 patients, we observed a cluster of 3 miRNAs (miR-378a-3p, miR-100-5p, and miR-486-5p) that were functionally associated with the cardiovascular system that predicted a favorable blood pressure (BP) response to continuous positive airway pressure (CPAP) treatment in patients with resistant hypertension (RH) and obstructive sleep apnea (OSA) (HIPARCO score). However, little is known regarding the molecular mechanisms underlying this phenomenon. OBJECTIVES The aim of the study was to perform a post hoc analysis to investigate the genes, functions, and pathways related to the previously found HIPARCO score miRNAs. METHODS We performed an enrichment analysis using Ingenuity pathway analysis. The genes potentially associated with the miRNAs were filtered based on their confidence level. Particularly for CVD, only the genes regulated by at least 2 of the miRNAs were studied. RESULTS We observed that the miRNAs studied regulate 200-249 molecules associated with several functions and diseases, including extracranial solid tumors and abdominal neoplasms, among others. The cardiac hypertrophy and NF-kB signaling pathways were identified as the cardiovascular pathways most influenced by these 3 miRNAs. CONCLUSIONS The mechanisms by which CPAP treatment decreases the BP in OSA patients with RH could be related to the cardiac hypertrophy and NF-kB signaling pathways. Further investigations will be necessary to confirm these findings, contributing to the elucidation of new therapeutic targets in patients who do not respond to CPAP treatment.
Collapse
Affiliation(s)
- Andrea Zapater
- Group of Precision Medicine in Chronic Diseases, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Fernando Santamaria-Martos
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | - Adriano Targa
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | - Lucía Pinilla
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | - Alicia Sánchez-de-la-Torre
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | - Iván David Benítez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | | | - Ferran Barbé
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Hospital Universitari Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain, .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain,
| |
Collapse
|
18
|
Gareev I, Beylerli O, Yang G, Izmailov A, Shi H, Sun J, Zhao B, Liu B, Zhao S. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms. Neurosurg Rev 2020; 44:2025-2039. [PMID: 33094424 DOI: 10.1007/s10143-020-01427-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Intracranial aneurysm (IA) is an abnormal focal dilation of an artery in the brain that results from a weakening of the inner muscular layer of a blood vessel wall. IAs represent the most common etiology of nontraumatic subarachnoid hemorrhage (SAH). Despite technological advances in the treatment and use of new diagnostic methods for IAs, they continue to pose a significant risk of mortality and disability. Thus, early recognition of IA with a high risk of rupture is crucial for the stratification of patients with such a formidable disease. MicroRNAs (miRNA) are endogenous noncoding RNAs of 18-22 nucleotides that regulate gene expression at the post-transcriptional level through interaction with 3'-untranslated regions (3'UTRs) of the target mRNAs. MiRNAs are involved in the pathogenesis of IAs, including in the mechanisms of formation, growth, and rupture. It is known that in many biological fluids of the human body, such as blood or cerebrospinal fluid (CSF), numerous miRNAs, called circulating miRNAs, have been detected. The expression profile of circulating miRNAs represents a certain part of the cells in which they are modified and secreted in accordance with the physiological or pathological conditions of these cells. Circulating miRNAs can be secreted from cells into human biological fluids in extracellular vesicles or can be bound to Ago2 protein, which makes them resistant to the effects of RNAse. Therefore, circulating miRNAs are considered as new potential biomarkers of interest in many diseases, including IA.
Collapse
Affiliation(s)
| | | | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| | - Adel Izmailov
- Republican Clinical Oncological Dispensary, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Binbing Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| |
Collapse
|
19
|
Circulating miRNA-23b and miRNA-143 Are Potential Biomarkers for In-Stent Restenosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2509039. [PMID: 33015157 PMCID: PMC7519453 DOI: 10.1155/2020/2509039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
In-stent restenosis (ISR) is one of the main complications in patients undergoing percutaneous coronary angioplasty, and microRNAs participate in the contractile-to-synthetic phenotypic switch of vascular smooth muscle cells, a hallmark of restenosis development. MicroRNAs (miRNAs) can be released into circulation from injured tissues, enticing a potential role as noninvasive biomarkers. We aimed to evaluate circulating levels of miRNA-23b, miRNA-143, and miRNA-145 as diagnostic markers of ISR. 142 patients with coronary artery disease undergoing successful angioplasty and a follow-up angiography were included. Subjects were classified according to the degree of obstruction at the angioplasty site into cases (≥50%) or controls (<50%). Total RNA was isolated from plasma to quantify circulating miRNAs levels, and the ROC curves were constructed. Among circulating miRNAs assessed, miRNA-23b and miRNA-143 were significantly lower in cases (miRNA-23b: 18.4x10−5 and miRNA-143: 13.7x10−5) than controls (miRNA-23b: 5.2x10−5, p < 0.0001; miRNA-143: 4.0x10−5, p < 0.0001). Plasma levels of miRNA-145 showed no significant differences. The analysis of the ROC curves showed an area under the curve for miRNA-23b of 0.71 (95% CI: 0.62-0.80, p < 0.0001) and 0.69 for miRNA-143 (95% CI: 0.60-0.78; p < 0.0001). Our data suggest that plasma levels of miRNA-23b and miRNA-143 could be useful as noninvasive biomarkers of ISR.
Collapse
|
20
|
Kalani MYS, Alsop E, Meechoovet B, Beecroft T, Agrawal K, Whitsett TG, Huentelman MJ, Spetzler RF, Nakaji P, Kim S, Van Keuren-Jensen K. Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. J Extracell Vesicles 2020; 9:1713540. [PMID: 32128071 PMCID: PMC7034450 DOI: 10.1080/20013078.2020.1713540] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Rapid identification of patients suffering from cerebral ischaemia, while excluding intracerebral haemorrhage, can assist with patient triage and expand patient access to chemical and mechanical revascularization. We sought to identify blood-based, extracellular microRNAs 15 (ex-miRNAs) derived from extracellular vesicles associated with major stroke subtypes using clinical samples from subjects with spontaneous intraparenchymal haemorrhage (IPH), aneurysmal subarachnoid haemorrhage (SAH) and ischaemic stroke due to cerebral vessel occlusion. We collected blood from patients presenting with IPH (n = 19), SAH (n = 17) and ischaemic stroke (n = 21). We isolated extracellular vesicles from plasma, extracted RNA cargo, 20 sequenced the small RNAs and performed bioinformatic analyses to identify ex-miRNA biomarkers predictive of the stroke subtypes. Sixty-seven miRNAs were significantly variant across the stroke subtypes. A subset of exmiRNAs differed between haemorrhagic and ischaemic strokes, and LASSO analysis could distinguish SAH from the other subtypes with an accuracy of 0.972 ± 0.002. Further analyses predicted 25 miRNA classifiers that stratify IPH from ischaemic stroke with an accuracy of 0.811 ± 0.004 and distinguish haemorrhagic from ischaemic stroke with an accuracy of 0.813 ± 0.003. Blood-based, ex-miRNAs have predictive value, and could be capable of distinguishing between major stroke subtypes with refinement and validation. Such a biomarker could one day aid in the triage of patients to expand the pool eligible for effective treatment.
Collapse
Affiliation(s)
- M Yashar S Kalani
- Departments of Neurological Surgery and Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eric Alsop
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Bessie Meechoovet
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Taylor Beecroft
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Komal Agrawal
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Matthew J Huentelman
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Robert F Spetzler
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner Heath and University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry College of Engineering, Prairie View A & M University, Prairie View, TX, USA
| | | |
Collapse
|
21
|
Plasma miR-208b and miR-499: Potential Biomarkers for Severity of Coronary Artery Disease. DISEASE MARKERS 2019; 2019:9842427. [PMID: 31885748 PMCID: PMC6893238 DOI: 10.1155/2019/9842427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
Aims MicroRNAs (miRNAs) are associated with the pathogenesis of coronary artery disease (CAD). The objective of this study is to explore plasma levels of miR-208b and miR-499 in CAD and analyze its association with the severity of CAD. Materials and Methods 195 consecutive CAD patients who underwent coronary angiography were enrolled in this study. Severity of coronary lesions was evaluated by the synergy between percutaneous coronary intervention with taxus and cardiac surgery score (SYNTAX) score (SS). Plasma levels of miR-208b and miR-499 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between miR-208b and miR-499 and SS was analyzed. Results The qRT-PCR results showed that plasma levels of miR-208b and miR-499 in SS > 32 (high SS) group was higher than those in low (SS ≤ 22) and intermediate (22 < SS ≤ 32) groups. Meanwhile, plasma miR-208b and miR-499 levels were significantly positive correlated with the SS (Spearman's r = 0.535 and r = 0.407, respectively; both p < 0.001). Multivariate logistic analysis results showed that miR-208b (odds ratio [OR]: 2.069; 95% confidence interval [CI]: 1.351-3.167; p = 0.001) and miR-499 (OR: 1.652; 95% CI: 1.222-2.233; p = 0.001) were independent predictors of high SS. In receiver operating characteristic curve, the area under the curve of miR-208b and miR-499 in prediction of high SS was 0.775 and 0.713, respectively. Conclusions Higher plasma levels of miR-208b and miR-499 were positively associated with the severity of CAD, and plasma miR-208b and miR-499 can act as potential biomarkers for estimating the severity of CAD.
Collapse
|
22
|
Gruzieva O, Merid SK, Chen S, Mukherjee N, Hedman AM, Almqvist C, Andolf E, Jiang Y, Kere J, Scheynius A, Söderhäll C, Ullemar V, Karmaus W, Melén E, Arshad SH, Pershagen G. DNA Methylation Trajectories During Pregnancy. Epigenet Insights 2019; 12:2516865719867090. [PMID: 31453433 PMCID: PMC6696836 DOI: 10.1177/2516865719867090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 01/03/2023] Open
Abstract
There is emerging evidence on DNA methylation (DNAm) variability over time; however, little is known about dynamics of DNAm patterns during pregnancy. We performed an epigenome-wide longitudinal DNAm study of a well-characterized sample of young women from the Swedish Born into Life study, with repeated blood sampling before, during and after pregnancy (n = 21), using the Illumina Infinium MethylationEPIC array. We conducted a replication in the Isle of Wight third-generation birth cohort (n = 27), using the Infinium HumanMethylation450k BeadChip. We identified 196 CpG sites displaying intra-individual longitudinal change in DNAm with a false discovery rate (FDR) P < .05. Most of these (91%) showed a decrease in average methylation levels over the studied period. We observed several genes represented by ⩾3 differentially methylated CpGs: HOXB3, AVP, LOC100996291, and MicroRNA 10a. Of 36 CpGs available in the replication cohort, 17 were replicated, all but 2 with the same direction of association (replication P < .05). Biological pathway analysis demonstrated that FDR-significant CpGs belong to genes overrepresented in metabolism-related pathways, such as adipose tissue development, regulation of insulin receptor signaling, and mammary gland fat development. These results contribute to a better understanding of the biological mechanisms underlying important physiological alterations and adaptations for pregnancy and lactation.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden,Olena Gruzieva, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77 Stockholm, Sweden.
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Su Chen
- Division of Epidemiology, Biostatistics, and Environmental Health Science, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health Science, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Division of Obstetrics and Gynaecology, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health Science, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland,School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Annika Scheynius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden,Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden,Clinical Genomics, Science for Life Laboratory, Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden,Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Science, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden,Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Syed Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, Newport, UK,Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
23
|
Cipollini V, Troili F, Giubilei F. Emerging Biomarkers in Vascular Cognitive Impairment and Dementia: From Pathophysiological Pathways to Clinical Application. Int J Mol Sci 2019; 20:ijms20112812. [PMID: 31181792 PMCID: PMC6600494 DOI: 10.3390/ijms20112812] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Vascular pathology is the second most common neuropathology of dementia after Alzheimer’s disease (AD), with small vessels disease (SVD) being considered the major cause of vascular cognitive impairment and dementia (VCID). This review aims to evaluate pathophysiological pathways underlying a diagnosis of VCID. Firstly, we will discuss the role of endothelial dysfunction, blood-brain barrier disruption and neuroinflammation in its pathogenesis. Then, we will analyse different biomarkers including the ones of inflammatory responses to central nervous system tissue injuries, of coagulation and thrombosis and of circulating microRNA. Evidences on peripheral biomarkers for VCID are still poor and large-scale, prospectively designed studies are needed to translate these findings into clinical practice, in order to set different combinations of biomarkers to use for differential diagnosis among types of dementia.
Collapse
Affiliation(s)
- Virginia Cipollini
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| | - Fernanda Troili
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| | - Franco Giubilei
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| |
Collapse
|
24
|
Ye Y, Yang J, Lv W, Lu Y, Zhang L, Zhang Y, Musha Z, Fan P, Yang B, Zhou X, Tang B. Screening of differentially expressed microRNAs of essential hypertension in Uyghur population. Lipids Health Dis 2019; 18:98. [PMID: 30975221 PMCID: PMC6460779 DOI: 10.1186/s12944-019-1028-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background Essential hypertension can cause many kinds of cardiovascular diseases. The pathogenesis of essential hypertension is very complex, and the mechanism is still unclear. The microRNAs have been identified as novel biomarkers for pre-diagnosis and prognosis of hypertension. However, the kinds of microRNAs that can be used as specific biomarkers for hypertension are unknown. Methods and results Plasma samples were isolated from Uyghur subjects with essential hypertension and the healthy individuals. Microarray was used to identify differentially expressed microRNAs. The microarray data were clustered and annotated with online software. The target genes of differentially expressed microRNAs were also analyzed. The microarray results were further verified by quantitative real-time PCR. We identified 257 microRNAs that were differentially expressed between patients with essential hypertension and the healthy individuals. These microRNAs had a total of 6580 target genes. The 47 microRNAs that had target genes, including 24 up-regulated and 23 down-regulated microRNAs, were further screened out to construct a reference set of potential microRNA biomarkers. Most of the 47 microRNAs were located at chromosome 19 (40 microRNAs) and chromosome 1 (45 microRNAs). Their target genes were mainly enriched in metal ion binding, transcription regulation, cell adhesion and junction, indicating that these candidate microRNAs may regulate mineral ion binding and cell communication process of essential hypertension. The quantitative real-time PCR results of miR-198 and miR-1183 (which were the two most significantly up-regulated microRNAs by microarray), and, miR-30e-5p and miR-144-3p (which were the two most significantly down-regulated microRNAs by microarray) were consistent with the microarray results. Conclusions A reference set of potential microRNA biomarkers that may be involved in essential hypertension is constructed. Our study may provide experimental evidence for further studying the mechanism of essential hypertension. Electronic supplementary material The online version of this article (10.1186/s12944-019-1028-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanzheng Ye
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Jianzhong Yang
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Wenkui Lv
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Yanmei Lu
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Ling Zhang
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Ying Zhang
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Zulifeiya Musha
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Ping Fan
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Bin Yang
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Xianhui Zhou
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China.
| | - Baopeng Tang
- Heart Center, the First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
25
|
The MicroRNA Family Both in Normal Development and in Different Diseases: The miR-17-92 Cluster. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9450240. [PMID: 30854399 PMCID: PMC6378081 DOI: 10.1155/2019/9450240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/27/2018] [Accepted: 01/13/2019] [Indexed: 01/29/2023]
Abstract
An increasing number of research studies over recent years have focused on the function of microRNA (miRNA) molecules which have unique characteristics in terms of structure and function. They represent a class of endogenous noncoding single-strand small molecules. An abundance of miRNA clusters has been found in the genomes of various organisms often located in a polycistron. The miR-17-92 family is among the most famous miRNAs and has been identified as an oncogene. The functions of this cluster, together with the seven individual molecules that it comprises, are most related to cancers, so it would not be surprising that they are considered to have involvement in the development of tumors. The miR-17-92 cluster is therefore expected not only to be a tumor marker, but also to perform an important role in the early diagnosis of those diseases and possibly also be a target for tumor biotherapy. The miR-17-92 cluster affects the development of disease by regulating many related cellular processes and multiple target genes. Interestingly, it also has important roles that cannot be ignored in disease of the nervous system and circulation and modulates the growth and development of bone. Therefore, it provides new opportunities for disease prevention, clinical diagnosis, prognosis, and targeted therapy. Here we review the role of the miR-17-92 cluster that has received little attention in relation to neurological diseases, cardiac diseases, and the development of bone and tumors.
Collapse
|
26
|
Gui Y, Xu Z, Jin T, Zhang L, Chen L, Hong B, Xie F, Lv W, Hu X. Using Extracellular Circulating microRNAs to Classify the Etiological Subtypes of Ischemic Stroke. Transl Stroke Res 2018; 10:352-361. [PMID: 30178428 DOI: 10.1007/s12975-018-0659-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
There is no effective biological method to classify ischemic stroke subtypes. In this study, we first performed a systematical gene array study on serum microRNAs with different ischemic stroke subtypes including 13 normal control subjects (NCs) and 87 ischemic stroke (IS) patients including 23 cardioembolism (CARD), 26 large artery atherosclerosis (LAA), 27 lacunar infarct (LAC), and 11 stroke of undetermined etiology (SUE). Validation was performed by using an independent cohort of 20 NCs and 85 IS patients including 28 CARD, 23 LAA, 18 LAC, and 16 SUE. In the pilot discovery gene array study, we found specific serum microRNA signatures between different ischemic stroke subtypes (CARD, LAA, LAC, and SUE). We further validated 6 microRNAs [miR-125b, miR-125a, let-7b, let-7e, miR-7-2-3p, miR-1908] in a different group of ischemic stroke subtypes by using an independent cohort of 20 NCs, 28 CARD, 23 LAA, 18 LAC, and 16 SUE. Moreover, these circulating miRNAs were further detected to be differentially expressed between pre- vs. post-stroke in different ischemic stroke subtypes. The ROC analysis showed that miR-125b, miR-125a, let-7b, and let-7e could discriminate CARD patients from normal controls and other subtypes. Furthermore, ROC curves shown that miR-7-2-3p and miR-1908 showed significant area-under-the-curve values in both LAA and LAC patients. In conclusion, these results demonstrated that circulating miRNAs in sera could be potentially novel risk factors that involve in the pathogenesis of ischemic stroke subtypes.
Collapse
Affiliation(s)
- YaXing Gui
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China.
| | - ZhongPing Xu
- Washington University School of Medicine, St. Louis, MO, USA
| | - Tao Jin
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - LiSan Zhang
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - LiLi Chen
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Bin Hong
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Wen Lv
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - XingYue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, #3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| |
Collapse
|
27
|
Zhao G. Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases. J Med Genet 2018; 55:713-720. [PMID: 30177556 PMCID: PMC6252363 DOI: 10.1136/jmedgenet-2018-105387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Heart failure, coronary artery disease and myocardial infarction are the most prominent cardiovascular diseases contributing significantly to death worldwide. In the majority of situations, except for surgical interventions and transplantation, there are no reliable therapeutic approaches available to address these health problem. Despite several advances that led to the development of biomarkers and therapies based on the renin–angiotensin system, adrenergic pathways, etc, more definitive and consistent biomarkers and specific target based molecular therapies are still being sought. Recent advances in the field of genomic research has helped in identifying non-coding RNAs, including circular RNAs, piRNAs, micro RNAs, and long non-coding RNAs, that play a significant role in the regulation of gene expression and function and have direct impact on pathophysiological mechanisms. This new knowledge is currently being explored with much hope for the development of novel treatments and biomarkers. Circular RNAs and micro RNAs have been described in myocardium and aortic valves and were shown to be involved in the regulation of pathophysiological processes that potentially contribute to cardiovascular diseases. Approximately 32 000 human exonic circular RNAs have been catalogued and their functions are still being ascertained. In the heart, circular RNAs were shown to bind micro RNAs in a specific manner and regulate the expression of transcription factors and stress response genes, and expression of these non-coding RNAs were found to change in conditions such as cardiac hypertrophy, heart failure and cardiac remodelling, reflecting their significance as diagnostic and prognostic biomarkers. In this review, we address the present state of understanding on the biogenesis, regulation and pathophysiological roles of micro and circular RNAs in cardiovascular diseases, and on the potential future perspectives on their use as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Guoan Zhao
- The Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
28
|
Dai ZW, Wang H, Xu WJ, Wang ZH, Xu SQ, Wang B, Ye DQ. Diagnostic accuracy of miRNAs as potential biomarkers for systemic lupus erythematosus: a meta-analysis. Clin Rheumatol 2018; 37:2999-3007. [PMID: 29980876 DOI: 10.1007/s10067-018-4189-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/30/2018] [Accepted: 06/24/2018] [Indexed: 02/01/2023]
Abstract
To systematically evaluate the diagnostic accuracy of miRNAs as potential biomarkers for systemic lupus erythematosus (SLE). Studies were searched in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and China Biology Medicine (CBM) disc database, and languages were limited in English and Chinese. QUADAS-2 tool was applied to assess the quality of eligible studies. Random-effect model was applied to calculate pooled effects of miRNAs on diagnosing SLE. Subgroup analysis was used to explore the sources of heterogeneity. All data were calculated and analyzed by Meta-Disc 1.4 and RevMan 5.3 software. Six eligible studies were included in this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio of miRNAs were 0.75(95% CI 0.71-0.79), 0.72(95% CI 0.66-0.78), and 8.79(95% CI 4.91-15.73), respectively. The pooled positive likelihood ratio was 2.71(95% CI 2.20-3.33) and negative likelihood ratio was 0.34(95% CI 0.24-0.48). The area under the curve was 0.787. The subgroup analysis showed that the number of healthy controls might be the sources of heterogeneity. MiRNAs in blood have moderate accuracy and influence on diagnosing SLE, and the exact diagnostic value should be confirmed by further studies.
Collapse
Affiliation(s)
- Zi-Wei Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wen-Juan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhi-Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sheng-Qian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
29
|
Xu W, Gao L, Zheng J, Li T, Shao A, Reis C, Chen S, Zhang J. The Roles of MicroRNAs in Stroke: Possible Therapeutic Targets. Cell Transplant 2018; 27:1778-1788. [PMID: 29871520 PMCID: PMC6300776 DOI: 10.1177/0963689718773361] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stroke is one of the most devastating diseases worldwide. In recent years, a great number of studies have focused on the effects of microRNAs (miRNAs) on stroke and the results demonstrated that the expressions of miRNAs are associated with the prognosis of stroke. In the present study, we review relevant articles regarding miRNAs and stroke and will explain the complex link between both. The miRNAs participate extensively in the pathophysiology following the stroke, including apoptosis, neuroinflammation, oxidative stress, blood–brain barrier (BBB) disruption and brain edema. The information about the stroke–miRNA system may be helpful for therapeutic and diagnostic methods in stroke treatment.
Collapse
Affiliation(s)
- Weilin Xu
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cesar Reis
- 4 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,2 Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,3 Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Li YH, Yang Y, Yan YT, Xu LW, Ma HY, Shao YX, Cao CJ, Wu X, Qi MJ, Wu YY, Chen R, Hong Y, Tan XH, Yang L. Analysis of serum microRNA expression in male workers with occupational noise-induced hearing loss. ACTA ACUST UNITED AC 2018; 51:e6426. [PMID: 29340520 PMCID: PMC5769754 DOI: 10.1590/1414-431x20176426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023]
Abstract
Occupational noise-induced hearing loss (ONIHL) is a prevalent occupational disorder that impairs auditory function in workers exposed to prolonged noise. However, serum microRNA expression in ONIHL subjects has not yet been studied. We aimed to compare the serum microRNA expression profiles in male workers of ONIHL subjects and controls. MicroRNA microarray analysis revealed that four serum microRNAs were differentially expressed between controls (n=3) and ONIHL subjects (n=3). Among these microRNAs, three were upregulated (hsa-miR-3162-5p, hsa-miR-4484, hsa-miR-1229-5p) and one was downregulated (hsa-miR-4652-3p) in the ONIHL group (fold change >1.5 and Pbon value <0.05). Real time quantitative PCR was conducted for validation of the microRNA expression. Significantly increased serum levels of miR-1229-5p were found in ONIHL subjects compared to controls (n=10 for each group; P<0.05). A total of 659 (27.0%) genes were predicted as the target genes of miR-1229-5p. These genes were involved in various pathways, such as mitogen-activated protein kinase (MAPK) signaling pathway. Overexpression of miR-1229-5p dramatically inhibited the luciferase activity of 3′ UTR segment of MAPK1 (P<0.01). Compared to the negative control, HEK293T cells expressing miR-1229-5p mimics showed a significant decline in mRNA levels of MAPK1 (P<0.05). This preliminary study indicated that serum miR-1229-5p was significantly elevated in ONIHL subjects. Increased miR-1229-5p may participate in the pathogenesis of ONIHL through repressing MAPK1 signaling.
Collapse
Affiliation(s)
- Y H Li
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Y Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Y T Yan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - L W Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - H Y Ma
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Y X Shao
- Hangzhou Hospital for the Prevention and Treatment of Occupational Diseases, Hangzhou, Zhejiang, China
| | - C J Cao
- Hangzhou Hospital for the Prevention and Treatment of Occupational Diseases, Hangzhou, Zhejiang, China
| | - X Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - M J Qi
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Y Y Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - R Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Y Hong
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - X H Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - L Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
31
|
Lemcke H, Voronina N, Steinhoff G, David R. Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy. J Vis Exp 2017. [PMID: 28654065 DOI: 10.3791/55870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.
Collapse
Affiliation(s)
- Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock;
| | - Natalia Voronina
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock;
| |
Collapse
|
32
|
|
33
|
Duggal B, Gupta MK, Naga Prasad SV. Potential Role of microRNAs in Cardiovascular Disease: Are They up to Their Hype? Curr Cardiol Rev 2016; 12:304-310. [PMID: 26926293 PMCID: PMC5304257 DOI: 10.2174/1573403x12666160301120642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE OF REVIEW Cardiovascular diseases remain the foremost cause of mortality globally. As molecular medicine unravels the alterations in genomic expression and regulation of the underlying atherosclerotic process, it opens new vistas for discovering novel diagnostic biomarkers and therapeutics for limiting the disease process. miRNAs have emerged as powerful regulators of protein translation by regulating gene expression at the post-transcriptional level. RECENT FINDINGS Overexpression and under-expression of specific miRNAs are being evaluated as a novel approach to diagnosis and treatment of cardiovascular disease. This review sheds light on the current knowledge of the miRNA evaluated in cardiovascular disease. CONCLUSION In this review we summarize the data, including the more recent data, regarding miRNAs in cardiovascular disease and their potential role in future in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Bhanu Duggal
- Department of Cardiology, 4th floor, Main Building, Grant Medical College & Sir JJ Group of Hospitals, Mumbai, 400008, India.
| | | | | |
Collapse
|
34
|
Deng HY, Li G, Luo J, Wang ZQ, Yang XY, Lin YD, Liu LX. MicroRNAs are novel non-invasive diagnostic biomarkers for pulmonary embolism: a meta-analysis. J Thorac Dis 2016; 8:3580-3587. [PMID: 28149552 DOI: 10.21037/jtd.2016.12.98] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUNDS The diagnosis of pulmonary embolism (PE) still remains difficult in clinical practice. MicroRNAs (miRNAs) have been widely investigated as biomarkers for various diseases. However, the diagnostic biomarker value of miRNAs in the diagnosis of PE is unclear. Therefore, we conducted this meta-analysis to establish the diagnostic power of miRNAs for PE diagnosis. METHODS A systematic literature search in PubMed and Embase was conducted to identify relevant studies dated up to July 22, 2016. Data on sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were pooled from those included studies. Summary receiver operating characteristic (SROC) curves were used to summarize overall diagnostic power of miRNAs for PE diagnosis. RESULTS A total of three studies with five types of miRNAs covering 254 participants were included in our meta-analysis. The overall pooled results for sensitivity, specificity, PLR, NLR, and DOR of miRNAs for PE diagnosis were 0.83 [95% confidence intervals (CI): 0.67-0.92], 0.85 (95% CI: 0.72-0.92), 5.4 (95% CI: 2.7-10.9), 0.20 (95% CI: 0.10-0.44), and 26.00 (95% CI: 7.00-101.00), respectively. The area under the SROC curve was 0.90 (95% CI: 0.87-0.92). Even though heterogeneity was observed in the analysis of sensitivity, there was no evidence of publication bias. CONCLUSIONS MiRNAs could serve as novel non-invasive diagnostic biomarkers of PE with a relatively high diagnostic power. More researches, however, are needed to explore the diagnostic as well as therapeutic values of miRNAs for PE.
Collapse
Affiliation(s)
- Han-Yu Deng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Gang Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zhi-Qiang Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-Yan Yang
- Information Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Dan Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lun-Xu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Xu G, Cui Y, Jia Z, Yue Y, Yang S. The Values of Coronary Circulating miRNAs in Patients with Atrial Fibrillation. PLoS One 2016; 11:e0166235. [PMID: 27855199 PMCID: PMC5113910 DOI: 10.1371/journal.pone.0166235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/25/2016] [Indexed: 12/03/2022] Open
Abstract
The mechanism of miRNA regulation in atrial fibrillation (AF) occurrence and development is still unclear, especially, the regulating values of coronary circulating miRNAs has not been reported. Based on our AF radiofrequency ablation clinical practice and previous miRNA study, we proposed a hypothesis that the coronary circulating miRNA might much better reflect the regulating state and metabolic level of myocardial miRNA in AF patient. To investigate the regulating values of coronary circulation miRNA, 90 AF patients were selected and compared with 90 healthy subjects, the changes of coronary circulating miRNA differential expression profile in the whole genome were observed in this study. We found out that compared with autologous peripheral blood (PB), 6 miRNAs were upregulated and 8 miRNA downregulated in AF patients' coronary sinus blood (CSB) significantly, especially, the expression of miR-1266, miR-4279 and miR-4666a-3p were obviously increased. Compared with normal donors' peripheral blood, 16 miRNAs were upregulated and 24 miRNAs downregulated dramatically in patients' peripheral blood, among them, the miR-3171 decreased, but miR-892a and miR-3149 increased significantly from the early to end stages of AF. Our results indicated that the coronary circulating miRNA can really reflect the regulating values of miRNA in AF patient; the level of miRNA change in 3 types of AF may reflect the severity of AF clinical and pathophysiological advance; The miR-892a, miR-3171 and miR-3149 may be used as biomarkers for earlier diagnosis, while miR-1266, miR-4279 and miR-4666a-3p may serve as potential intervening targets for AF patient in future.
Collapse
Affiliation(s)
- Guiyu Xu
- The Department of Cardiology, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Yuxia Cui
- The Department of Cardiology, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Zhenghua Jia
- The Dept. of Cardiology, Hebei Medical University Affiliated Yiling Hospital, Hebei, China
| | - Yunan Yue
- The Department of Cardiology, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Shuixiang Yang
- The Department of Cardiology, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- The Dept. of Cardiology, Hebei Medical University Affiliated Yiling Hospital, Hebei, China
| |
Collapse
|
36
|
Muntean I, Togănel R, Benedek T. Genetics of Congenital Heart Disease: Past and Present. Biochem Genet 2016; 55:105-123. [PMID: 27807680 DOI: 10.1007/s10528-016-9780-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
Abstract
Congenital heart disease is the most common congenital anomaly, representing an important cause of infant morbidity and mortality. Congenital heart disease represents a group of heart anomalies that include septal defects, valve defects, and outflow tract anomalies. The exact genetic, epigenetic, or environmental basis of congenital heart disease remains poorly understood, although the exact mechanism is likely multifactorial. However, the development of new technologies including copy number variants, single-nucleotide polymorphism, next-generation sequencing are accelerating the detection of genetic causes of heart anomalies. Recent studies suggest a role of small non-coding RNAs, micro RNA, in congenital heart disease. The recently described epigenetic factors have also been found to contribute to cardiac morphogenesis. In this review, we present past and recent genetic discoveries in congenital heart disease.
Collapse
Affiliation(s)
- Iolanda Muntean
- Institute of Cardiovascular Diseases and Transplantation, Clinic of Pediatric Cardiology, University of Medicine and Pharmacy Tîrgu Mureş, 50 Gh Marinescu St, 540136, Tirgu Mures, Romania
| | - Rodica Togănel
- Institute of Cardiovascular Diseases and Transplantation, Clinic of Pediatric Cardiology, University of Medicine and Pharmacy Tîrgu Mureş, 50 Gh Marinescu St, 540136, Tirgu Mures, Romania.
| | - Theodora Benedek
- Clinic of Cardiology, University of Medicine and Pharmacy Tîrgu Mureş, Tirgu Mures, Romania
| |
Collapse
|
37
|
Hecksteden A, Leidinger P, Backes C, Rheinheimer S, Pfeiffer M, Ferrauti A, Kellmann M, Sedaghat-Hamedani F, Meder B, Meese E, Meyer T, Keller A. miRNAs and sports: tracking training status and potentially confounding diagnoses. J Transl Med 2016; 14:219. [PMID: 27456854 PMCID: PMC4960671 DOI: 10.1186/s12967-016-0974-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/11/2016] [Indexed: 11/27/2022] Open
Abstract
Background The dependency of miRNA abundance from physiological processes such as exercises remains partially understood. We set out to analyze the effect of physical exercises on miRNA profiles in blood and plasma of endurance and strength athletes in a systematic manner and correlated differentially abundant miRNAs in athletes to disease miRNAs biomarkers towards a better understanding of how physical exercise may confound disease diagnosis by miRNAs. Methods We profiled blood and plasma of 29 athletes before and after exercise. With four samples analyzed for each individual we analyzed 116 full miRNomes. The study set-up enabled paired analyses of individuals. Affected miRNAs were investigated for known disease associations using network analysis. Results MiRNA patterns in blood and plasma of endurance and strength athletes vary significantly with differences in blood outreaching variations in plasma. We found only moderate differences between the miRNA levels before training and the RNA levels after training as compared to the more obvious variations found between strength athletes and endurance athletes. We observed significant variations in the abundance of miR-140-3p that is a known circulating disease markers (raw and adjusted p value of 5 × 10−12 and 4 × 10−7). Similarly, the levels of miR-140-5p and miR-650, both of which have been reported as makers for a wide range of human pathologies significantly depend on the training mode. Among the most affected disease categories we found acute myocardial infarction. MiRNAs, which are up-regulated in endurance athletes inhibit VEGFA as shown by systems biology analysis of experimentally validated target genes. Conclusion We provide evidence that the mode and the extent of training are important confounding factors for a miRNA based disease diagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0974-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Hecksteden
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Petra Leidinger
- Department of Human Genetics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Medical Department, Saarland University, Building E2.1, 66125, Saarbrücken, Germany
| | | | - Mark Pfeiffer
- Department of Theory and Practice of Sports, Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Michael Kellmann
- Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany.,School of Human Movement Studies, The University of Queensland, St Lucia, Australia
| | | | - Benjamin Meder
- Internal Medicine, Heidelberg University, Heidelberg, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Saarbrücken, Germany
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Medical Department, Saarland University, Building E2.1, 66125, Saarbrücken, Germany.
| |
Collapse
|
38
|
Polivka J, Polivka J, Krakorova K, Peterka M, Topolcan O. Current status of biomarker research in neurology. EPMA J 2016; 7:14. [PMID: 27379174 PMCID: PMC4931703 DOI: 10.1186/s13167-016-0063-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 06/02/2016] [Indexed: 01/18/2023]
Abstract
Neurology is one of the typical disciplines where personalized medicine has been recently becoming an important part of clinical practice. In this article, the brief overview and a number of examples of the use of biomarkers and personalized medicine in neurology are described. The various issues in neurology are described in relation to the personalized medicine and diagnostic, prognostic as well as predictive blood and cerebrospinal fluid biomarkers. Such neurological domains discussed in this work are neuro-oncology and primary brain tumors glioblastoma and oligodendroglioma, cerebrovascular diseases focusing on stroke, neurodegenerative disorders especially Alzheimer's and Parkinson's diseases and demyelinating diseases such as multiple sclerosis. Actual state of the art and future perspectives in diagnostics and personalized treatment in diverse domains of neurology are given.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Neurology, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Department of Neurology, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| | - Jiri Polivka
- Department of Histology and Embryology, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Biomedical Centre, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic
| | - Kristyna Krakorova
- Department of Neurology, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Department of Neurology, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| | - Marek Peterka
- Department of Neurology, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Department of Neurology, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| | - Ondrej Topolcan
- Central Imunoanalytical Laboratory, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| |
Collapse
|
39
|
Xie WQ, Zhou L, Chen Y, Ni B. Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med 2016; 7:85-9. [PMID: 27313801 DOI: 10.5847/wjem.j.1920-8642.2016.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs are small non-coding RNAs of approximately 22 nucleotides in length, and play important regulatory roles in normal heart development and the pathogenesis of heart diseases. Recently, a few prospective studies have implicated the diagnostic role of microRNAs in congenital heart defects (CHD). DATA RESOURCES This review retrieved the research articles in PubMed focusing on the altered microRNAs in cardiac tissue or serum of patients with CHD versus healthy normal controls, as well as the studies exploring circulating microRNAs as potential biomarkers for (fetal) CHD. RESULTS Most of the studies of interest were conducted in recent years, implicating that the topic in this review is a newly emerging field and is drawing much attention. Moreover, a number of differentially expressed microRNAs between CHD specimens and normal controls have been reported. CONCLUSION Circulating microRNAs may serve as potential biomarkers for diagnosis of CHD in the future, with more efforts paving the road to the aim.
Collapse
Affiliation(s)
- Wan-Qin Xie
- Family Planning Research Institute of Hunan Province, Changsha 410126, China
| | - Lin Zhou
- Family Planning Research Institute of Hunan Province, Changsha 410126, China
| | - Yong Chen
- Family Planning Research Institute of Hunan Province, Changsha 410126, China
| | - Bin Ni
- Family Planning Research Institute of Hunan Province, Changsha 410126, China
| |
Collapse
|
40
|
Plasma miR-10a: A Potential Biomarker for Coronary Artery Disease. DISEASE MARKERS 2016; 2016:3841927. [PMID: 27313333 PMCID: PMC4893451 DOI: 10.1155/2016/3841927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/29/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
Aims. MicroRNAs (miRNAs) are involved in the pathogenesis of coronary artery disease (CAD). The objective of this study is to determine plasma levels of miR-10a in CAD and analyze its association with the severity of CAD. Materials and Methods. Plasma miR-10a levels in 60 CAD patients including stable angina pectoris (SAP) (n = 29), unstable angina pectoris (UAP) or non-ST elevation myocardial infarction (MI) (NSTEMI) (n = 17), or ST elevation MI (STEMI) (n = 14) and 20 non-CAD subjects were assessed by real-time polymerase chain reaction (qRT-PCR), and associations of miR-10a levels with risk factors of CAD and its severity were analyzed. Results. The qRT-PCR results showed that plasma miR-10a levels were decreased in CAD patients, and CAD with high SYNTAX scores or STEMI was significantly associated with lower miR-10a levels. Conclusions. Lower plasma miR-10a levels were negatively associated with the presence as well as severity of CAD, and plasma miR-10a can act as a potential biomarker for estimating the presence and severity of CAD.
Collapse
|
41
|
Ragusa M, Bosco P, Tamburello L, Barbagallo C, Condorelli AG, Tornitore M, Spada RS, Barbagallo D, Scalia M, Elia M, Di Pietro C, Purrello M. miRNAs Plasma Profiles in Vascular Dementia: Biomolecular Data and Biomedical Implications. Front Cell Neurosci 2016; 10:51. [PMID: 26973465 PMCID: PMC4771726 DOI: 10.3389/fncel.2016.00051] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/15/2016] [Indexed: 11/23/2022] Open
Abstract
Vascular dementia (VaD) is a pathogenetically heterogeneous neuropsychiatric syndrome, mainly characterized by cognitive impairment. Among dementias, it is second by incidence after Alzheimer’s dementia (AD). VaD biomolecular bases have been poorly characterized, but vascular-linked factors affecting the CNS and its functions are generally hypothesized to perform a major role, together with cardiovascular and immunological factors. miRNAs, which perform critically important biomolecular roles within cell networks, are also found in biological fluids as circulating miRNAs (cmiRNAs). We hypothesized that differentially expressed (DE) cmiRNAs in plasma from VaD patients could be applied to diagnose VaD through liquid biopsies; these profiles also could allow to start investigating VaD molecular bases. By exploiting TaqMan Low-Density Arrays and single TaqMan assays, miR-10b*, miR29a-3p, and miR-130b-3p were discovered and validated as significantly downregulated DE cmiRNAs in VaD patients compared to unaffected controls (NCs). These miRNAs also were found to be significantly downregulated in a matched cohort of AD patients, but miR-130b-3p levels were lower in AD than in VaD. A negative correlation was detected between miR-29a and miR-130b expression and cognitive impairment in VaD and AD, respectively. Receiver operating characteristic curves demonstrated that decreased plasma levels of miR-10b*, miR29a-3p, and miR-130b-3p allow to discriminate VaD and AD patients from NCs. Furthermore, the concurrent downregulation of both miR-10b* and miR-130b-3p in VaD showed an area under the curve (AUC) of 0.789 (p < 0.0001) with 75% of sensitivity and 72% of specificity, whereas an AUC of 0.789 (p < 0.0001) with 92% of sensitivity and 81% of specificity was found for both in AD. The miRNAs profiles reported in this paper pave the way to translational applications to molecular VaD diagnosis, but they also should allow to further investigate on its molecular bases.
Collapse
Affiliation(s)
- Marco Ragusa
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Paolo Bosco
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per il Ritardo Mentale e l'Involuzione Cerebrale Senile Oasi Maria SS , Troina, Enna , Italy
| | - Lucia Tamburello
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Angelo G Condorelli
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Mariangela Tornitore
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Rosario S Spada
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per il Ritardo Mentale e l'Involuzione Cerebrale Senile Oasi Maria SS , Troina, Enna , Italy
| | - Davide Barbagallo
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Marina Scalia
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Maurizio Elia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per il Ritardo Mentale e l'Involuzione Cerebrale Senile Oasi Maria SS , Troina, Enna , Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| | - Michele Purrello
- Section of Biology and Genetics G Sichel, BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS), Department of BioMedical Sciences and BioTechnology, University of Catania , Catania , Italy
| |
Collapse
|
42
|
Franco D, Lozano-Velasco E, Aranega A. Gene regulatory networks in atrial fibrillation. World J Med Genet 2016; 6:1-16. [DOI: 10.5496/wjmg.v6.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic syndrome in humans. With an estimate incidence of 1%-2% in the general population, AF raises up to almost 10%-12% in 80+ years. Thus, AF represents nowadays a highly prevalent medical problem generating a large economic burden. At the electrophysiological level, distinct mechanisms have been elucidated. Yet, despite its prevalence, the genetic and molecular culprits of this pandemic cardiac electrophysiological abnormality have remained largely obscure. Molecular genetics of AF familiar cases have demonstrated that single nucleotide mutations in distinct genes encoding for ion channels underlie the onset of AF, albeit such alterations only explain a minor subset of patients with AF. In recent years, analyses by means of genome-wide association studies have unraveled a more complex picture of the etiology of AF, pointing out to distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Furthermore a new layer of regulatory mechanisms have emerged, i.e., post-transcriptional regulation mediated by non-coding RNA, which have been demonstrated to exert pivotal roles in cardiac electrophysiology. In this manuscript, we aim to provide a comprehensive review of the genetic regulatory networks that if impaired exert electrophysiological abnormalities that contribute to the onset, and subsequently, on self-perpetuation of AF.
Collapse
|
43
|
Wegman DW, Ghasemi F, Stasheuski AS, Khorshidi A, Yang BB, Liu SK, Yousef GM, Krylov SN. Achieving Single-Nucleotide Specificity in Direct Quantitative Analysis of Multiple MicroRNAs (DQAMmiR). Anal Chem 2016; 88:2472-7. [PMID: 26756139 DOI: 10.1021/acs.analchem.5b04682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Direct quantitative analysis of multiple miRNAs (DQAMmiR) utilizes CE with fluorescence detection for fast, accurate, and sensitive quantitation of multiple miRNAs. Here we report on achieving single-nucleotide specificity and, thus, overcoming a principle obstacle on the way of DQAMmiR becoming a practical miRNA analysis tool. In general, sequence specificity is reached by raising the temperature to the level at which the probe-miRNA hybrids with mismatches melt while the matches remain intact. This elevated temperature is used as the hybridization temperature. Practical implementation of this apparently trivial approach in DQAMmiR has two major challenges. First, melting temperatures of all mismatched hybrids should be similar to each other and should not reach the melting temperature of any of the matched hybrids. Second, the elevated hybridization temperature should not deteriorate CE separation of the hybrids from the excess probes and the hybrids from each other. The second problem is further complicated by the reliance of separation in DQAMmiR on single-strand DNA binding protein (SSB) whose native structure and binding properties may be drastically affected by the elevated temperature. These problems were solved by two approaches. First, locked nucleic acid (LNA) bases were incorporated into the probes to normalize the melting temperatures of all target miRNA hybrids allowing for a single hybridization temperature; binding of SSB was not affected by LNA bases. Second, a dual-temperature CE was developed in which separation started with a high capillary temperature required for proper hybridization and continued at a low capillary temperature required for quality electrophoretic separation of the hybrids from excess probes and the hybrids from each other. The developed approach was sufficiently robust to allow its integration with sample preconcentration by isotachophoresis to achieve a limit of detection below 10 pM.
Collapse
Affiliation(s)
- David W Wegman
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Farhad Ghasemi
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Alexander S Stasheuski
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Anna Khorshidi
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Burton B Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Stanley K Liu
- Sunnybrook-Odette Cancer Centre , 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - George M Yousef
- Keenan Research Centre, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
44
|
de Queiroz MT, Pereira VG, do Nascimento CC, D’Almeida V. The Underexploited Role of Non-Coding RNAs in Lysosomal Storage Diseases. Front Endocrinol (Lausanne) 2016; 7:133. [PMID: 27708618 PMCID: PMC5030823 DOI: 10.3389/fendo.2016.00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a functional class of RNA involved in the regulation of several cellular processes which may modulate disease onset, progression, and prognosis. Lysosomal storage diseases (LSD) are a group of rare disorders caused by mutations of genes encoding specific hydrolases or non-enzymatic proteins, characterized by a wide spectrum of manifestations. The alteration of ncRNA levels is well established in several human diseases such as cancer and auto-immune disorders; however, there is a lack of information focused on the role of ncRNA in rare diseases. Recent reports related to changes in ncRNA expression and its consequences on LSD physiopathology show us the importance to keep advancing in this field. This article will summarize recent findings and provide key points for further studies on LSD and ncRNA association.
Collapse
Affiliation(s)
- Matheus Trovão de Queiroz
- Laboratório de Erros Inatos do Metabolismo, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vanessa Gonçalves Pereira
- Laboratório de Erros Inatos do Metabolismo, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cinthia Castro do Nascimento
- Laboratório de Erros Inatos do Metabolismo, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vânia D’Almeida
- Laboratório de Erros Inatos do Metabolismo, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Vânia D’Almeida,
| |
Collapse
|
45
|
Role and Function of MicroRNAs in Extracellular Vesicles in Cardiovascular Biology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:161393. [PMID: 26558258 PMCID: PMC4618108 DOI: 10.1155/2015/161393] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
Intercellular communication mediated by extracellular vesicles is crucial for preserving vascular integrity and in the development of cardiovascular disease. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes that can be found in almost every fluid compartment of the body like blood, saliva, and urine. In the recent years, a lot of reports came up suggesting that major cardiovascular and metabolic pathologies like atherogenesis, heart failure, or diabetes are highly influenced by transfer of microRNAs via extracellular vesicles leading to altered protein expression and phenotypes of recipient cells. The following review will summarize the fast developing field of intercellular signaling in cardiovascular biology by microRNA-containing extracellular vesicles.
Collapse
|