1
|
Almadori A, Butler PEM. Scarring and Skin Fibrosis Reversal with Regenerative Surgery and Stem Cell Therapy. Cells 2024; 13:443. [PMID: 38474408 PMCID: PMC10930731 DOI: 10.3390/cells13050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Skin scarring and fibrosis affect millions of people worldwide, representing a serious clinical problem causing physical and psychological challenges for patients. Stem cell therapy and regenerative surgery represent a new area of treatment focused on promoting the body's natural ability to repair damaged tissue. Adipose-derived stem cells (ASCs) represent an optimal choice for practical regenerative medicine due to their abundance, autologous tissue origin, non-immunogenicity, and ease of access with minimal morbidity for patients. This review of the literature explores the current body of evidence around the use of ASCs-based regenerative strategies for the treatment of scarring and skin fibrosis, exploring the different surgical approaches and their application in multiple fibrotic skin conditions. Human, animal, and in vitro studies demonstrate that ASCs present potentialities in modifying scar tissue and fibrosis by suppressing extracellular matrix (ECM) synthesis and promoting the degradation of their constituents. Through softening skin fibrosis, function and overall quality of life may be considerably enhanced in different patient cohorts presenting with scar-related symptoms. The use of stem cell therapies for skin scar repair and regeneration represents a paradigm shift, offering potential alternative therapeutic avenues for fibrosis, a condition that currently lacks a cure.
Collapse
Affiliation(s)
- Aurora Almadori
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College of London, London NW3 2QG, UK;
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London NW3 2QG, UK
- The Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital Campus, University College of London, London NW3 2QG, UK
| | - Peter EM Butler
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College of London, London NW3 2QG, UK;
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London NW3 2QG, UK
- The Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital Campus, University College of London, London NW3 2QG, UK
| |
Collapse
|
2
|
Wang H, Shi J, Shi S, Bo R, Zhang X, Hu Y. Bibliometric analysis on the progress of chronic heart failure. Curr Probl Cardiol 2022; 47:101213. [PMID: 35525461 DOI: 10.1016/j.cpcardiol.2022.101213] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic heart failure (CHF) is the terminal stage of a variety of heart diseases with higher morbidity and mortality. Although CHF has been studied for decades, the comprehensive analysis by bibliometrics has not been done. So, we analyzed the scientific outputs of global chronic heart failureresearches, explored the current research status and hotpots from 2009 to 2019. METHODS Web of Science Core Collection (WOSCC) was the data source, and the data was retrieved on June 25, 2020, according to the set search strategy. Bibliometrics tools- CiteSpace V (Drexel university, Chaomei Chen) and VOS viewer (Leiden University, van Eck NJ)-were used for analyzing published literature and exploring research hotspots and frontier directions. RESULTS A total of 21,484 articles were included, and the rate of published articles increased from 2009 to 2019 annually. United States of America (USA) was the leading country, Duke University was the leading institution, and Stefan D Anker was the most productive researcher in this field. The analysis of keywords showed that mortality, risk, outcomes, association, and dysfunction were the main hotpots and frontier directions of CHF. CONCLUSION Bibliometric analysis of the outputs on CHF shows an overall view about the current status of the research on CHF. Clinical treatment and the associations among organs in the patients with CHF are the major research frontiers. However, further research and collaboration are still required worldwide. Our findings can help researchers grasp the research status of CHF and determine new directions for future researches as soon as possible.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Graduate School, Beijing University of Chinese Medicine
| | - Rongqiang Bo
- Graduate School, Beijing University of Chinese Medicine
| | - Xuesong Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Application of genetic cell-lineage tracing technology to study cardiovascular diseases. J Mol Cell Cardiol 2021; 156:57-68. [PMID: 33745891 DOI: 10.1016/j.yjmcc.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are leading causes that threaten people's life. To investigate cells that are involved in disease development and tissue repair, various technologies have been introduced. Among these technologies, lineage tracing is a powerful tool to track the fate of cells in vivo, providing deep insights into cellular behavior and plasticity. In cardiac diseases, newly formed cardiomyocytes and endothelial cells are found from proliferation of local cells, while fibroblasts and macrophages are originated from diverse cell sources. Similarly, in response to vascular injury, various sources of cells including media smooth muscle cells, endothelium, resident progenitors and bone marrow cells are involved in lesion formation and/or vessel regeneration. In summary, current review summarizes the development of lineage tracing techniques and their utilizations in investigating roles of different cell types in cardiovascular diseases.
Collapse
|
4
|
Rong SL, Wang ZK, Zhou XD, Wang XL, Yang ZM, Li B. Efficacy and safety of stem cell therapy in patients with dilated cardiomyopathy: a systematic appraisal and meta-analysis. J Transl Med 2019; 17:221. [PMID: 31296244 PMCID: PMC6624954 DOI: 10.1186/s12967-019-1966-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The clinical significance of stem cell therapy in the treatment of dilated cardiomyopathy remains unclear. This systemic appraisal and meta-analysis aimed to assess the efficacy and safety of stem cell therapy in patients with dilated cardiomyopathy. After searching the PubMed, Embase, and Cochrane library databases until November 2017, we conducted a meta-analysis to evaluate the efficacy and safety of stem cell therapy in patients with dilated cardiomyopathy. METHODS The weighted mean difference (WMD), standard mean difference (SMD), relative risk (RR), and 95% confidence interval (CI) were summarized in this meta-analysis. Both fixed effects and random effects models were used to combine the data. Sensitivity analyses were conducted to evaluate the impact of an individual dataset on the pooled results. RESULTS A total of eight randomized controlled trials, which involved 531 participants, met the inclusion criteria in this systematic appraisal and meta-analysis. Our meta-analysis showed that stem cell therapy improves left ventricular ejection fraction (SMD = 1.09, 95% CI 0.29 to 1.90, I2 = 92%) and reduces left ventricular end-systolic volume (SMD = - 0.36, 95% CI - 0.61 to - 0.10, I2 = 20.5%) and left ventricular end-diastolic chamber size (SMD = - 0.48, 95% CI - 0.89 to - 0.07, I2 = 64.8%) in patients with dilated cardiomyopathy. However, stem cell therapy has no effect on mortality (RR = 0.72, 95% CI 0.50 to 1.02, I2 = 30.2%) and 6-min-walk test (WMD = 51.52, 95% CI - 24.52 to 127.55, I2 = 94.8%). CONCLUSIONS This meta-analysis suggests that stem cell therapy improves left ventricular ejection fraction and reduces left ventricular end-systolic volume and left ventricular end-diastolic chamber size in patients with dilated cardiomyopathy. However, future well-designed large studies might be necessary to clarify the effect of stem cell therapy in patients with dilated cardiomyopathy.
Collapse
Affiliation(s)
- Shu-Ling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi People’s Republic of China
| | - Ze-Kun Wang
- State Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan People’s Republic of China
| | - Xiao-Lin Wang
- Department of Neonatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi People’s Republic of China
| | - Zhi-Ming Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi People’s Republic of China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi People’s Republic of China
| |
Collapse
|
5
|
Chen S, Dong C, Zhang J, Tang B, Xi Z, Cai F, Gong Y, Xu J, Qi L, Wang Q, Chen J. Human menstrual blood-derived stem cells protect H9c2 cells against hydrogen peroxide-associated apoptosis. In Vitro Cell Dev Biol Anim 2019; 55:104-112. [PMID: 30617572 DOI: 10.1007/s11626-018-0311-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/09/2018] [Indexed: 01/03/2023]
Abstract
Human menstrual blood-derived mesenchymal stem cells (MenSCs) hold great promise for regenerative medicine. Here, H2O2-associated damage in H9c2 cells was employed as an in vitro ischemia-reperfusion model, and the transwell system was used to explore the beneficial effects of MenSCs on the H2O2-induced damage of myocardial H9c2 cells. H2O2 treatment resulted in decreased viability and migration rate, with increased apoptosis levels in cells. By contrast, upon co-culture with MenSCs, H9c2 cell viability and migration were increased, whereas the apoptotic rate decreased. Additionally, western blot and qRT-PCR showed that MenSCs mediated the anti-apoptotic role by downregulating the pro-apoptotic genes Bax and caspase-3, while upregulating the anti-apoptotic effector Bcl-2. Furthermore, co-culture with MenSCs resulted in elevated expression of N-cadherin after H2O2 treatment. These findings indicate that MenSCs protect H9c2 cells against H2O2-associated programmed cell death and would help develop therapeutic tools for cardiomyocyte apoptosis associated with oxidative stress.
Collapse
Affiliation(s)
- Song Chen
- Department of Cardiology, Nantong Maternal and Child Health Care Hospital, No. 399 Century Avenue, Nantong, 226001, Jiangsu, China
| | - Chuanming Dong
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jinyun Zhang
- Department of Cardiology, Nantong Maternal and Child Health Care Hospital, No. 399 Century Avenue, Nantong, 226001, Jiangsu, China
| | - Baohua Tang
- Department of Cardiology, Nantong Maternal and Child Health Care Hospital, No. 399 Century Avenue, Nantong, 226001, Jiangsu, China
| | - Zhengrong Xi
- Department of Emergency, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu, China
| | - Fei Cai
- Department of Cardiology, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Yachi Gong
- Department of Geriatric Medicine, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Jianru Xu
- Department of Emergency, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Longju Qi
- Department of Interventional Therapy, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Qinghua Wang
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jian Chen
- Department of Cardiology, Nantong Maternal and Child Health Care Hospital, No. 399 Century Avenue, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Ivey MJ, Kuwabara JT, Pai JT, Moore RE, Sun Z, Tallquist MD. Resident fibroblast expansion during cardiac growth and remodeling. J Mol Cell Cardiol 2017; 114:161-174. [PMID: 29158033 DOI: 10.1016/j.yjmcc.2017.11.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/25/2017] [Accepted: 11/16/2017] [Indexed: 01/18/2023]
Abstract
Cardiac fibrosis, denoted by the deposition of extracellular matrix, manifests with a variety of diseases such as hypertension, diabetes, and myocardial infarction. Underlying this pathological extracellular matrix secretion is an expansion of fibroblasts. The mouse is now a common experimental model system for the study of cardiovascular remodeling and elucidation of fibroblast responses to cardiac growth and stress is vital for understanding disease processes. Here, using diverse but fibroblast specific markers, we report murine fibroblast distribution and proliferation in early postnatal, adult, and injured hearts. We find that perinatal fibroblasts and endothelial cells proliferate at similar rates. Furthermore, regardless of the injury model, fibroblast proliferation peaks within the first week after injury, a time window similar to the period of the inflammatory phase. In addition, fibroblast densities remain high weeks after the initial insult. These results provide detailed information regarding fibroblast distribution and proliferation in experimental methods of heart injury.
Collapse
Affiliation(s)
- Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Jonathan T Pai
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Richard E Moore
- Department of Molecular Biochemistry and Bioengineering, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Zuyue Sun
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States.
| |
Collapse
|
7
|
Lu Y, Wang Y, Lin M, Zhou J, Wang Z, Jiang M, He B. A systematic review of randomised controlled trials examining the therapeutic effects of adult bone marrow-derived stem cells for non-ischaemic dilated cardiomyopathy. Stem Cell Res Ther 2016; 7:186. [PMID: 27938412 PMCID: PMC5148892 DOI: 10.1186/s13287-016-0441-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/28/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Certain early-phase clinical trials have suggested that bone marrow-derived stem cell transplantation might improve left ventricular function in patients with non-ischaemic dilated cardiomyopathy (NIDCM), whereas others trials have revealed no benefit from this approach. We sought to evaluate the therapeutic effects of bone marrow-derived stem cell therapy on NIDCM. METHODS We searched the PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases (through February 2016) for randomised controlled clinical trials that reported on bone marrow-derived stem cell transplantation for patients with NIDCM with a follow-up period ≥12 months. The co-primary endpoints were changes in mortality rate and left ventricular ejection fraction (LVEF); the secondary endpoints were changes in the 6-minute-walk test (6MWT) and left ventricular chamber size. Seven trials involving bone marrow-derived stem cell therapy that included 482 patients satisfied the inclusion and exclusion criteria. RESULTS Subjects who received bone marrow-derived stem cell therapy exhibited a significant reduction in mortality rate (19.7% in the cell group vs. 27.1% in the control group; 95% confidence interval (CI) -0.16 to -0.00, I 2 = 52%, p = 0.04). Bone marrow-derived stem cell therapy tended to produce LVEF improvement within 6 months (1.83% increase; 95% CI -0.27 to 3.94, I 2 = 74%, p = 0.09) and significantly improved LVEF after mid-term (6-12 months) follow-up (3.53% increase; 95% CI 0.76 to 6.29, I 2 = 88%, p = 0.01). However, this therapy produced no significant benefit in the 6MWT (p = 0.18). Finally, the transplantation of increased numbers of stem cells resulted in no observable additional benefit with respect to LVEF. CONCLUSIONS Bone marrow-derived stem cell therapy might have improved prognoses and appeared to provide moderate benefits in cardiac systolic function at mid-term follow-up. However, this therapy produced no observed improvement in exercise tolerance.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Yiqin Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Menglu Lin
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jiale Zhou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Zi Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Ben He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
8
|
Trindade F, Leite-Moreira A, Ferreira-Martins J, Ferreira R, Falcão-Pires I, Vitorino R. Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. Int J Cardiol 2016; 228:465-480. [PMID: 27870978 DOI: 10.1016/j.ijcard.2016.11.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Today there is an increasing demand for heart transplantations for patients diagnosed with heart failure. Though, shortage of donors as well as the large number of ineligible patients hurdle such treatment option. This, in addition to the considerable number of transplant rejections, has driven the clinical research towards the field of regenerative medicine. Nonetheless, to date, several stem cell therapies tested in animal models fall by the wayside and when they meet the criteria to clinical trials, subjects often exhibit modest improvements. A main issue slowing down the admission of such therapies in the domain of human trials is the lack of protocol standardization between research groups, which hampers comparison between different approaches as well as the lack of thought regarding the clinical translation. In this sense, given the large amount of reports on stem cell therapy studies in animal models reported in the last 3years, we sought to evaluate their advantages and limitations towards the clinical setting and provide some suggestions for the forthcoming investigations. We expect, with this review, to start a new paradigm on regenerative medicine, by evoking the debate on how to plan novel stem cell therapy studies with animal models in order to achieve more consistent scientific production and accelerate the admission of stem cell therapies in the clinical setting.
Collapse
Affiliation(s)
- Fábio Trindade
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | - Rui Vitorino
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|