1
|
Getz TE, Chrenek MA, Papania JT, Shelton DA, Markand S, Iuvone PM, Kozmik Z, Boatright JH, Nickerson JM. Conditional Knockouts of Interphotoreceptor Retinoid Binding Protein Suggest Two Independent Mechanisms for Retinal Degeneration and Myopia. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 38904640 PMCID: PMC11193143 DOI: 10.1167/iovs.65.6.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose Interphotoreceptor retinoid-binding protein's (IRBP) role in eye growth and its involvement in cell homeostasis remain poorly understood. One hypothesis proposes early conditional deletion of the IRBP gene could lead to a myopic response with retinal degeneration, whereas late conditional deletion (after eye size is determined) could cause retinal degeneration without myopia. Here, we sought to understand if prior myopia was required for subsequent retinal degeneration in the absence of IRBP. This study investigates if any cell type or developmental stage is more important in myopia or retinal degeneration. Methods IBRPfl/fl mice were bred with 5 Cre-driver lines: HRGP-Cre, Chx10-Cre, Rho-iCre75, HRGP-Cre Rho-iCre75, and Rx-Cre. Mice were analyzed for IRBP gene expression through digital droplet PCR (ddPCR). Young adult (P30) mice were tested for retinal degeneration and morphology using spectral-domain optical coherence tomography (SD-OCT) and hematoxylin and eosin (H&E) staining. Function was analyzed using electroretinograms (ERGs). Eye sizes and axial lengths were compared through external eye measurements and whole eye biometry. Results Across all outcome measures, when bred to IRBPfl/fl, HRGP-Cre and Chx10-Cre lines showed no differences from IRBPfl/fl alone. With the Rho-iCre75 line, small but significant reductions were seen in retinal thickness with SD-OCT imaging and postmortem H&E staining without increased axial length. Both the HRGP-Cre+Rho-iCre75 and the Rx-Cre lines showed significant decreases in retinal thickness and outer nuclear layer cell counts. Using external eye measurements and SD-OCT imaging, both lines showed an increase in eye size. Finally, function in both lines was roughly halved across scotopic, photopic, and flicker ERGs. Conclusions Our studies support hypotheses that for both eye size determination and retinal homeostasis, there are two critical timing windows when IRBP must be expressed in rods or cones to prevent myopia (P7-P12) and degeneration (P21 and later). The rod-specific IRBP knockout (Rho-iCre75) showed significant retinal functional losses without myopia, indicating that the two phenotypes are independent. IRBP is needed for early development of photoreceptors and eye size, whereas Rho-iCre75 IRBPfl/fl knockout results in retinal degeneration without myopia.
Collapse
Affiliation(s)
- Tatiana E. Getz
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Jack T. Papania
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Debresha A. Shelton
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Shanu Markand
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, United States
| | - P. Michael Iuvone
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Jeffrey H. Boatright
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| |
Collapse
|
2
|
Iwagawa T, Saita K, Sagara H, Watanabe S. Downregulation of VEGF in the retinal pigment epithelium followed by choriocapillaris atrophy after NaIO3 treatment in mice. Exp Eye Res 2023; 234:109598. [PMID: 37479076 DOI: 10.1016/j.exer.2023.109598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Sodium iodate (NaIO3) induces retinal pigment epithelium (RPE) dysfunction, which leads to photoreceptor degeneration. Previously, we used electron microscopy to show that the administration of NaIO3 resulted in the accumulation of cell debris in the subretinal space, which was thought to be caused by failed phagocytosis in the outer segment of the photoreceptor due to RPE dysfunction. We further analyzed the pathological changes in the retina and choroid of NaIO3-injected mice, and found that the expression of OTX2, an RPE marker, disappeared from central part of the RPE 1 day after NaIO3 administration. Furthermore, fenestrated capillaries (choriocapillaris, CC) adjacent to the RPE could not be identified only 2 days after NaIO3 administration. An examination of the expression of the CC-specific protein plasmalemma vesicle-associated protein (PLVAP), in sections and flat-mount retina/choroid specimens showed destruction of the CC, and complete disappearance of the PLVAP signal 7 days after NaIO3 administration. In contrast, CD31 flat-mount immunohistochemistry of the retina indicated no difference in retinal vessels between NaIO3-treated mice and controls. Electron microscopy showed that the fenestrated capillaries in the kidney and duodenum were morphologically indistinguishable between control and NaIO3-treated mice. We examined cytokine production in the retina and RPE, and found that the Vegfa transcript level in the RPE decreased starting 1 day after NaIO3 administration. Taken together, these observations show that NaIO3 reduces the CC in the early stages of the pathology, which is accompanied by a rapid decrease in Vegfa expression in the RPE.
Collapse
Affiliation(s)
- Toshiro Iwagawa
- Department of Retinal Biology and Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kosuke Saita
- Department of Retinal Biology and Pathology, Graduate School of Medicine, The University of Tokyo, Japan; Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Japan
| | - Sumiko Watanabe
- Department of Retinal Biology and Pathology, Graduate School of Medicine, The University of Tokyo, Japan.
| |
Collapse
|
3
|
Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int J Mol Sci 2023; 24:ijms24054408. [PMID: 36901838 PMCID: PMC10002987 DOI: 10.3390/ijms24054408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident. Thus, there has been a constant search for effective biomarkers that could signal the onset of DR. There is evidence that early detection and prompt disease control are effective in preventing or slowing DR progression. Here, we review some of the molecular changes that occur before clinical manifestations are observable. As a possible new biomarker, we focus on retinol binding protein 3 (RBP3). We argue that it displays unique features that make it a very good biomarker for non-invasive, early-stage DR detection. Linking chemistry to biological function and focusing on new developments in eye imaging and two-photon technology, we describe a new potential diagnostic tool that would allow rapid and effective quantification of RBP3 in the retina. Moreover, this tool would also be useful in the future to monitor therapeutic effectiveness if levels of RBP3 are elevated by DR treatments.
Collapse
|
4
|
Zeng S, Zhang T, Madigan MC, Fernando N, Aggio-Bruce R, Zhou F, Pierce M, Chen Y, Huang L, Natoli R, Gillies MC, Zhu L. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front Cell Neurosci 2020; 14:577935. [PMID: 33328889 PMCID: PMC7710524 DOI: 10.3389/fncel.2020.577935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases. We have reviewed here the latest research on IRBP in both retinal health and disease, including the function and regulation of IRBP under retinal stress in both animal models and the human retina. We have also explored the therapeutic potential of targeting IRBP in retinal diseases. Although some technical barriers remain, it is possible that manipulating the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in many retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Pierce
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yingying Chen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lianlin Huang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Hongisto H, Jylhä A, Nättinen J, Rieck J, Ilmarinen T, Veréb Z, Aapola U, Beuerman R, Petrovski G, Uusitalo H, Skottman H. Comparative proteomic analysis of human embryonic stem cell-derived and primary human retinal pigment epithelium. Sci Rep 2017; 7:6016. [PMID: 28729539 PMCID: PMC5519552 DOI: 10.1038/s41598-017-06233-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/12/2017] [Indexed: 01/28/2023] Open
Abstract
Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) provide an unlimited cell source for retinal cell replacement therapies. Clinical trials using hESC-RPE to treat diseases such as age-related macular degeneration (AMD) are currently underway. Human ESC-RPE cells have been thoroughly characterized at the gene level but their protein expression profile has not been studied at larger scale. In this study, proteomic analysis was used to compare hESC-RPE cells differentiated from two independent hESC lines, to primary human RPE (hRPE) using Isobaric tags for relative quantitation (iTRAQ). 1041 common proteins were present in both hESC-RPE cells and native hRPE with majority of the proteins similarly regulated. The hESC-RPE proteome reflected that of normal hRPE with a large number of metabolic, mitochondrial, cytoskeletal, and transport proteins expressed. No signs of increased stress, apoptosis, immune response, proliferation, or retinal degeneration related changes were noted in hESC-RPE, while important RPE specific proteins involved in key RPE functions such as visual cycle and phagocytosis, could be detected in the hESC-RPE. Overall, the results indicated that the proteome of the hESC-RPE cells closely resembled that of their native counterparts.
Collapse
Affiliation(s)
- Heidi Hongisto
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Antti Jylhä
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Jochen Rieck
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tanja Ilmarinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ulla Aapola
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Roger Beuerman
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Singapore Eye Research Institute and Duke-NUS School of Medicine, Singapore, Singapore
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hannu Uusitalo
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Tampere University Hospital Eye Center, University of Tampere, Tampere, Finland
| | - Heli Skottman
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|