1
|
Sex-dependent deterioration of cardiac function and molecular alterations in age- and disease-associated RAGE overexpression. Mech Ageing Dev 2022; 203:111635. [DOI: 10.1016/j.mad.2022.111635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
|
2
|
Wu J, You J, Wang X, Wang S, Huang J, Xie Q, Gong B, Ding Z, Ye Y, Wang C, Kang L, Xu R, Li Y, Chen R, Sun A, Yang X, Jiang H, Yang F, Backx PH, Ge J, Zou Y. Left ventricular response in the transition from hypertrophy to failure recapitulates distinct roles of Akt, β-arrestin-2, and CaMKII in mice with aortic regurgitation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:219. [PMID: 32309366 PMCID: PMC7154424 DOI: 10.21037/atm.2020.01.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Although aortic regurgitation (AR) is a clinically important condition that is becoming increasingly common, few relevant murine models and mechanistic studies exist for this condition. In this study, we attempted to delineate the pathological and molecular changes and address the roles of some potentially relevant molecules in an animal model of surgically induced AR. Methods AR was induced by puncturing the aortic valve leaflets in C57BL/6J mice under echocardiographic guidance. Results As early as 1 week following AR, the left ventricles (LV) displayed marked impairments in diastolic function and coronary flow reserve (CFR), as well as cardiac hypertrophy and chamber dilatation at both end-systole and end-diastole. LV free wall thickening and cardiomyocyte hypertrophy in LV were observed 2 weeks following of AR while a decline in ejection fraction was not seen until after 4 weeks. Nppa (natriuretic peptide A) and Nppb (natriuretic peptide B) increased over time, in conjunction with prominent Akt activation as well as slight CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation and biphasic changes in β-arrestin-2 expression. Treatment of AR mice with Akt inhibition exacerbated the eccentric hypertrophy, while neither inhibition of CaMKII nor β-arrestin-2 overexpression influenced the response to AR. Conclusions Our structural, functional, molecular and therapeutic analyses reveal that Akt, but not CaMKII or β-arrestin-2, plays a regulatory role in the development of LV remodeling after AR in Mice. These results may shed important light on therapeutic targets for volume overloaded cardiomyopathy.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jieyun You
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayuan Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qihai Xie
- Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai 201800, China
| | - Baoyong Gong
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yong Ye
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Le Kang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Fenghua Yang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, China
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Division of Cardiology, Peter Munk Heart Centre, University Health Network, Toronto, ON, Canada
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA. Interaction Between Sacubitril and Valsartan in Preventing Heart Failure Induced by Aortic Valve Insufficiency in Rats. J Card Fail 2019; 25:921-931. [PMID: 31539619 DOI: 10.1016/j.cardfail.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/03/2019] [Accepted: 09/12/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Synergistic interactions between neprilysin inhibition (NEPi) with sacubitril and angiotensin receptor type1 blockade (ARB) with valsartan have been implicated in improvement of left ventricular (LV) contractility, relaxation, exercise tolerance, and fibrosis in preexisting heart failure (HF) induced by aortic valve insufficiency (AVI). It is not known whether this pharmacologic synergy can prevent cardiovascular pathology in a similar AVI model. Our aim was to investigate the pharmacology of sacubitril/valsartan in an experimental setting with therapy beginning immediately after creation of AVI. METHODS HF was induced through partial disruption of the aortic valve in rats. Therapy began 3 hours after valve disruption and lasted 8 weeks. Sacubitril/valsartan (68 mg/kg), valsartan (31 mg/kg), sacubitril (31 mg/kg), or vehicle were administered daily via oral gavage (N=8 in each group). Hemodynamic assessments were conducted using Millar technology, and an exercise tolerance test was conducted using a rodent treadmill. RESULTS Only sacubitril/valsartan increased total arterial compliance and ejection fraction (EF). Therapies with sacubitril/valsartan and valsartan similarly improved load-dependent (dP/dtmax) and load independent indices (Ees) of LV contractility, and exercise tolerance, whereas sacubitril did not. None of the therapies improved LV relaxation (dP/dtmin), whereas all reduced myocardial fibrosis. CONCLUSIONS 1) The synergistic interaction between NEPi and ARB in early therapy with sacubitril/valsartan leads to increased total arterial compliance and EF. 2) Improvement in indices of LV contractility, and exercise tolerance with sacubitril/valsartan is likely because of ARB effect of valsartan. 3) All three therapies provided antifibrotic effects, suggesting both ARB and NEPi are capable of reducing myocardial fibrosis.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts.
| | - Stephan Foianini
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| | - Dita Mayer
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| | - Michael V Orlov
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Cardiology, Boston, Massachusetts
| | - Mark A Lovich
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| |
Collapse
|
4
|
Beaumont C, Walsh‐Wilkinson É, Drolet M, Roussel É, Melançon N, Fortier É, Harpin G, Beaudoin J, Arsenault M, Couet J. Testosterone deficiency reduces cardiac hypertrophy in a rat model of severe volume overload. Physiol Rep 2019; 7:e14088. [PMID: 31054220 PMCID: PMC6499867 DOI: 10.14814/phy2.14088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to characterize if the development of cardiac hypertrophy (CH) caused by severe left ventricle (LV) volume overload (VO) from chronic aortic valve regurgitation (AR) in male rats was influenced by androgens. We studied Wistar rats with/without orchiectomy (Ocx) either sham-operated (S) or with severe AR for 26 weeks. Loss of testosterone induced by Ocx decreased general body growth. Cardiac hypertrophy resulting from AR was relatively more important in intact (non-Ocx) animals than in Ocx ones compared to their respective S group (60% vs. 40%; P = 0.019). The intact AR group had more LV dilation, end-diastolic LV diameter being increased by 37% over S group and by 17% in AROcx rats (P < 0.0001). Fractional shortening (an index of systolic function) decreased only by 15% in AROcx compared to 26% for intact AR animals (P = 0.029). Changes in LV gene expression resulting from CH were more marked in intact rats than in AROcx animals, especially for genes linked to extracellular matrix remodeling and energy metabolism. The ratio of hydroxyacyl-Coenzyme A dehydrogenase activity over hexokinase activity, an index of the shift of myocardial substrate use toward glucose from the preferred fatty acids, was significantly decreased in the AR group but not in AROcx. Finally, pJnk2 LV protein content was more abundant in AR than in AROcx rats, indicating decreased activation of this stress pathway in the absence of androgens. In summary, testosterone deficiency in rats with severe LV VO resulted in less CH and a normalization of the LV gene expression profile.
Collapse
Affiliation(s)
- Catherine Beaumont
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Élisabeth Walsh‐Wilkinson
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Marie‐Claude Drolet
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Élise Roussel
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Nicolas Melançon
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Émile Fortier
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Geneviève Harpin
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Jonathan Beaudoin
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Marie Arsenault
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Jacques Couet
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| |
Collapse
|
5
|
Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA. Synergy between sacubitril and valsartan leads to hemodynamic, antifibrotic, and exercise tolerance benefits in rats with preexisting heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H289-H297. [PMID: 30461302 DOI: 10.1152/ajpheart.00579.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Simultaneous neprilysin inhibition (NEPi) and angiotensin receptor blockade (ARB) with sacubitril/valsartan improves cardiac function and exercise tolerance in patients with heart failure. However, it is not known whether these therapeutic benefits are primarily due to NEPi with sacubitril or ARB with valsartan or their combination. Therefore, the aim of the present study was to investigate the potential contribution of sacubitril and valsartan to the benefits of the combination therapy on left ventricular (LV) function and exercise tolerance. Heart failure was induced by volume overload via partial disruption of the aortic valve in rats. Therapy began 4 wk after valve disruption and lasted through 8 wk. Drugs were administered daily via oral gavage [sacubitril/valsartan (68 mg/kg), valsartan (31 mg/kg), and sacubitril (31 mg/kg)]. Hemodynamic assessments were conducted using Millar technology, and an exercise tolerance test was conducted using a rodent treadmill. Therapy with sacubitril/valsartan improved load-dependent indexes of LV contractility (dP/d tmax) and relaxation (dP/d tmin), exercise tolerance, and mitigated myocardial fibrosis, whereas monotherapies with valsartan, or sacubitril did not. Both sacubitril/valsartan and valsartan similarly improved a load-independent index of contractility [slope of the end-systolic pressure-volume relationship ( Ees)]. Sacubitril did not improve Ees. First, synergy of NEPi with sacubitril and ARB with valsartan leads to the improvement of load-dependent LV contractility and relaxation, exercise tolerance, and reduction of myocardial collagen content. Second, the improvement in load-independent LV contractility with sacubitril/valsartan appears to be solely due to ARB with valsartan constituent. NEW & NOTEWORTHY Our data suggest the following explanation for the effects of sacubitril/valsartan: 1) synergy of sacubitril and valsartan leads to the improvement of load-dependent left ventricular contractility and relaxation, exercise tolerance, and reduction of myocardial fibrosis and 2) improvement in load-independent left ventricular contractility is solely due to the valsartan constituent. The findings offer a better understanding of the outcomes observed in clinical studies and might facilitate the continuing development of the next generations of angiotensin receptor neprilysin inhibitors.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Stephan Foianini
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Dita Mayer
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Michael V Orlov
- Department of Cardiology, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Mark A Lovich
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| |
Collapse
|
6
|
Pfleger J, Gross P, Johnson J, Carter RL, Gao E, Tilley DG, Houser SR, Koch WJ. G protein-coupled receptor kinase 2 contributes to impaired fatty acid metabolism in the failing heart. J Mol Cell Cardiol 2018; 123:108-117. [PMID: 30171848 DOI: 10.1016/j.yjmcc.2018.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Increased G protein-coupled receptor kinase (GRK)2 is central to heart failure (HF) pathogenesis, via desensitization of β-adrenergic receptors and loss of contractile reserve. Since GRK2 has been shown to compromise fatty acid (FA) oxidation, this kinase may link metabolic and contractile defects in HF. The aim of this study was to investigate the mechanistic role of GRK2 in FA metabolism and bioenergetics in the heart. For that purpose, we measured FA uptake and cluster of differentiation (CD)36 expression, phosphorylation, and ubiquitination in mice with cardiac-specific overexpression of GRK2 (TgGRK2) or expression of its c-terminus (GRK2 inhibitor- TgβARKct) or in global heterozygous GRK2 knockout (GRK2+/-) mice. Cellular bioenergetics were also measured in isolated cardiomyocytes following adenoviral delivery of exogenous GRK2, βARKct, or short hairpin GRK2 (shGRK2). Additionally, CD36 expression and phosphorylation were evaluated following transverse aortic constriction (TAC) in wild type (WT) and GRK2+/- mice. Our results show a 33% ± 0.81 reduction in FA uptake rate, accompanied by 51% ± 0.17 lower CD36 protein, and 70% ± 0.23 and 69% ± 0.18 increases in CD36 phosphorylation and ubiquitination, respectively, in the TgGRK2 mice. Moreover, an in vitro kinase assay suggests that GRK2 directly phosphorylates CD36. In isolated cardiomyocytes, GRK2 overexpression induced a 26% ± 2.21 decrease in maximal respiration, which was enhanced (20% ± 4.02-5.14) with inhibition of the kinase. Importantly, in hearts with systolic dysfunction, notable reductions in CD36 mRNA and protein, as well as a significant increase in CD36 phosphorylation were normalized in the GRK2+/- mice post-TAC. Thus, we propose that GRK2 up-regulation in HF is, at least partly, responsible for reduced FA uptake and oxidation and may be a nodal link between metabolic and contractile defects.
Collapse
Affiliation(s)
- Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Polina Gross
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jaslyn Johnson
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
7
|
Roussel E, Drolet MC, Lavigne AM, Arsenault M, Couet J. Multiple short-chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy. FEBS Open Bio 2018; 8:1624-1635. [PMID: 30338214 PMCID: PMC6168690 DOI: 10.1002/2211-5463.12506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/04/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiac hypertrophy (CH) is an important and independent predictor of morbidity and mortality. Through expression profiling, we recently identified a subset of genes (Dhrs7c, Decr, Dhrs11, Dhrs4, Hsd11b1, Hsd17b10, Hsd17b8, Blvrb, Pecr), all of which are members of the short‐chain dehydrogenase/reductase (SDR) superfamily and are highly expressed in the heart, that were significantly dysregulated in a rat model of CH caused by severe aortic valve regurgitation (AR). Here, we studied their expression in various models of CH, as well as factors influencing their regulation. Among the nine SDR genes studied, all but Hsd11b1 were down‐regulated in CH models (AR rats or mice infused with either isoproterenol or angiotensin II). This regulation showed a clear sex dimorphism, being more evident in males than in females irrespective of CH levels. In neonatal rat cardiomyocytes, we observed that treatment with the α1‐adrenergic receptor agonist phenylephrine mostly reproduced the observations made in CH animals models. Retinoic acid, on the other hand, stimulated the expression of most of the SDR genes studied, suggesting that their expression may be related to cardiomyocyte differentiation. Indeed, levels of expression were found to be higher in the hearts of adult animals than in neonatal cardiomyocytes. In conclusion, we identified a group of genes modulated in animal models of CH and mostly in males. This could be related to the activation of the fetal gene expression program in pathological CH situations, in which these highly expressed genes are down‐regulated in the adult heart.
Collapse
Affiliation(s)
- Elise Roussel
- Groupe de recherche sur les valvulopathies Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec Université Laval Quebec City Canada
| | - Marie-Claude Drolet
- Groupe de recherche sur les valvulopathies Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec Université Laval Quebec City Canada
| | - Anne-Marie Lavigne
- Groupe de recherche sur les valvulopathies Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec Université Laval Quebec City Canada
| | - Marie Arsenault
- Groupe de recherche sur les valvulopathies Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec Université Laval Quebec City Canada
| | - Jacques Couet
- Groupe de recherche sur les valvulopathies Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec Université Laval Quebec City Canada
| |
Collapse
|
8
|
Abushouk AI, El-Husseny MWA, Bahbah EI, Elmaraezy A, Ali AA, Ashraf A, Abdel-Daim MM. Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 2017; 95:692-700. [PMID: 28886529 DOI: 10.1016/j.biopha.2017.08.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a common clinical syndrome that affects more than 23 million individuals worldwide. Despite the marked advances in its management, the mortality rates in HF patients have remained unacceptably high. Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription regulators, involved in the regulation of fatty acid and glucose metabolism. PPAR agonists are currently used for the treatment of type II diabetes mellitus and hyperlipidemia; however, their role as therapeutic agents for HF remains under investigation. Preclinical studies have shown that pharmacological modulation of PPARs can upregulate the expression of fatty acid oxidation genes in cardiomyocytes. Moreover, PPAR agonists were proven able to improve ventricular contractility and reduce cardiac remodelling in animal models through their anti-inflammatory, anti-oxidant, anti-fibrotic, and anti-apoptotic activities. Whether these effects can be replicated in humans is yet to be proven. This article reviews the interactions of PPARs with the pathophysiological mechanisms of HF and how the pharmacological modulation of these receptors can be of benefit for HF patients.
Collapse
Affiliation(s)
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aya Ashraf Ali
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Asmaa Ashraf
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
9
|
Female rats with severe left ventricle volume overload exhibit more cardiac hypertrophy but fewer myocardial transcriptional changes than males. Sci Rep 2017; 7:729. [PMID: 28389667 PMCID: PMC5429715 DOI: 10.1038/s41598-017-00855-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/15/2017] [Indexed: 11/08/2022] Open
Abstract
Aortic valve regurgitation (AR) imposes a volume overload (VO) to the left ventricle (LV). Male rats with a pathological heart overload usually progress more quickly towards heart failure than females. We examined whether a sexual dimorphism exists in the myocardial transcriptional adaptations to AR. Adult Wistar male and female rats either underwent a sham operation or were induced with AR and then followed for 26 weeks. Female AR rats gained relatively more LV mass than males (75 vs. 42%). They had a similar increase in LV chamber dimensions compared to males but more wall thickening. On the other hand, fatty acid oxidation (FAO)-related LV enzyme activity was only decreased in AR males. The expression of genes encoding FAO-related enzymes was only reduced in AR males and not in females. A similar situation was observed for the expression of genes involved in mitochondrial biogenesis or function as well as for genes encoding for transcription factors implicated in the control of bioenergetics and mitochondrial function (Errα, Errγ or Pgc1α). Although females develop more LV hypertrophy from severe VO, their myocardial gene expression remains closer to normal. This could provide survival benefits for females with severe VO.
Collapse
|