1
|
Zhu Y, Shi H, Tang T, Li Q, Peng Y, Bermudez LE, Hu C, Chen H, Guo A, Chen Y. Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase fadD33 Promotes Bacillus Calmette-Guérin Survival in Hostile Extracellular and Intracellular Microenvironments in the Host. Cells 2023; 12:2610. [PMID: 37998345 PMCID: PMC10670722 DOI: 10.3390/cells12222610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), remains a significant global health challenge. The survival of M. tb in hostile extracellular and intracellular microenvironments is crucial for its pathogenicity. In this study, we discovered a Bacillus Calmette-Guérin (BCG) mutant B1033 that potentially affected mycobacterium pathogenicity. This mutant contained an insertion mutation gene, fadD33, which is involved in lipid metabolism; however, its direct role in regulating M. tb infection is not well understood. Here, we found that the absence of fadD33 reduced BCG adhesion and invasion into human pulmonary alveolar epithelial cells and increased the permeability of the mycobacterial cell wall, allowing M. tb to survive in the low pH and membrane pressure extracellular microenvironment of the host cells. The absence of fadD33 also inhibited the survival of BCG in macrophages by promoting the release of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumors necrosis factor-α, through the mitogen-activated protein kinase p38 signaling pathway. Overall, these findings provide new insights into M. tb mechanisms to evade host defenses and might contribute to identifying potential therapeutic and vaccine targets for tuberculosis prevention.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongling Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang Y, Yang J, Liu P, Zhang RJ, Li JD, Bi YH, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacol Res 2022; 185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
3
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
5
|
Rohani N, Ahmadi Moughari F, Eslahchi C. DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods. PeerJ 2021; 9:e10505. [PMID: 33680575 PMCID: PMC7919535 DOI: 10.7717/peerj.10505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023] Open
Abstract
The ongoing pandemic of a novel coronavirus (SARS-CoV-2) leads to international concern; thus, emergency interventions need to be taken. Due to the time-consuming experimental methods for proposing useful treatments, computational approaches facilitate investigating thousands of alternatives simultaneously and narrow down the cases for experimental validation. Herein, we conducted four independent analyses for RNA interference (RNAi)-based therapy with computational and bioinformatic methods. The aim is to target the evolutionarily conserved regions in the SARS-CoV-2 genome in order to down-regulate or silence its RNA. miRNAs are denoted to play an important role in the resistance of some species to viral infections. A comprehensive analysis of the miRNAs available in the body of humans, as well as the miRNAs in bats and many other species, were done to find efficient candidates with low side effects in the human body. Moreover, the evolutionarily conserved regions in the SARS-CoV-2 genome were considered for designing novel significant siRNA that are target-specific. A small set of miRNAs and five siRNAs were suggested as the possible efficient candidates with a high affinity to the SARS-CoV-2 genome and low side effects. The suggested candidates are promising therapeutics for the experimental evaluations and may speed up the procedure of treatment design. Materials and implementations are available at: https://github.com/nrohani/SARS-CoV-2.
Collapse
Affiliation(s)
- Narjes Rohani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Ahmadi Moughari
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
6
|
Zhu Y, Xiao Y, Kong D, Liu H, Chen X, Chen Y, Zhu T, Peng Y, Zhai W, Hu C, Chen H, Suo Lang SZ, Guo A, Niu J. Down-Regulation of miR-378d Increased Rab10 Expression to Help Clearance of Mycobacterium tuberculosis in Macrophages. Front Cell Infect Microbiol 2020; 10:108. [PMID: 32257967 PMCID: PMC7094154 DOI: 10.3389/fcimb.2020.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) can survive in the hostile microenvironment of cells by escaping host surveillance, but the molecular mechanisms are far from being fully understood. MicroRNAs might be involved in regulation of this intracellular process. By RNAseq of M. tb-infected PMA-differentiated THP-1 macrophages, we previously discovered down-regulation of miR-378d during M. tb infection. This study aimed to investigate the roles of miR-378d in M. tb infection of THP-1 cells by using a miR-378d mimic and inhibitor. First, M. tb infection was confirmed to decrease miR-378d expression in THP-1 and Raw 264.7 macrophages. Then, it was demonstrated that miR-378d mimic promoted, while its inhibitor decreased, M. tb survival in THP-1 cells. Further, the miR-378d mimic suppressed, while its inhibitor enhanced the protein production of IL-1β, TNF-α, IL-6, and Rab10 expression. By using siRNA of Rab10 (siRab10) to knock-down the Rab10 gene in THP-1 with or without miR-378d inhibitor transfection, Rab10 was determined to be a miR-378d target during M. tb infection. In addition, a dual luciferase reporter assay with the Rab10 wild-type sequence and mutant for miR-378d binding sites confirmed Rab10 as the target of miR-378d associated with M. tb infection. The involvement of four signal pathways NF-κB, P38, JNK, and ERK in miR-378d regulation was determined by detecting the effect of their respective inhibitors on miR-378d expression, and miR-378d inhibitor on activation of these four signal pathways. As a result, activation of the NF-κB signaling pathway was associated with the down-regulation of miR-378d. In conclusion, during M. tb infection of macrophages, miR-378d was down-regulated and functioned on decreasing M. tb intracellular survival by targeting Rab10 and the process was regulated by activation of the NF-κB and induction of pro-inflammatory cytokines IL-1β, TNF-α, IL-6. These findings shed light on further understanding the defense mechanisms in macrophages against M. tb infection.
Collapse
Affiliation(s)
- Yifan Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Delai Kong
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongchong Peng
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Zhai
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si Zhu Suo Lang
- Department of Animal Sciences, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqiang Niu
- Department of Animal Sciences, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| |
Collapse
|
7
|
MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8010065. [PMID: 32028575 PMCID: PMC7158662 DOI: 10.3390/vaccines8010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The miRNA-based strategy has been used to develop live attenuated influenza vaccines. In this study, the nucleoprotein (NP) genome segment of the influenza virus was inserted by different perfect miRNA-192-5p target sites, and the virus was rescued by standard reverse genetics method, so as to verify the virulence and protective efficacy of live attenuated vaccine in cells and mice. The results showed there was no significant attenuation in 192t virus with one perfect miRNA-192-5p target site, and 192t-3 virus with three perfect miRNA target sites. However, 192t-6 virus with 6 perfect miRNA target sites and 192t-9 virus with 9 perfect miRNA target sites were both significantly attenuated after infection, and their virulence were similar to that of temperature-sensitive (TS) influenza A virus (IAV) which is a temperature-sensitive live attenuated influenza vaccine. Mice were immunized with different doses of 192t-6, 192t-9, and TS IAV. Four weeks after immunization, the IgG in serum and IgA in lung homogenate were increased in the 192t-6, 192t-9, and TS IAV groups, and the numbers of IFN-γ secreting splenocytes were also increased in a dose-dependent manner. Finally, 192t-6, and 192t-9 can protect the mice against the challenge of homologous PR8 H1N1 virus and heterosubtypic H3N2 influenza virus. MiRNA targeted viruses 192t-6 and 192t-9 were significantly attenuated and showed the same virulence as TS IAV and played a role in the cross-protection.
Collapse
|
8
|
Genetic, Molecular, and Pathogenic Characterization of the H9N2 Avian Influenza Viruses Currently Circulating in South China. Viruses 2019; 11:v11111040. [PMID: 31717393 PMCID: PMC6893773 DOI: 10.3390/v11111040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
The prevalence and variation of the H9N2 avian influenza virus (AIV) pose a threat to public health. A total of eight viruses isolated from farmed poultry in South China during 2017–2018 were selected as representative strains for further systematic study. Phylogenetic analyses indicated that these prevalent viruses belong to the Y280-like lineage and that the internal genes are highly similar to those of recently circulating human H7N9 viruses. The receptor-binding assay showed that most of the H9N2 isolates preferentially bound to the human-like receptor, increasing the risk of them crossing the species barrier and causing human infection. Our in vitro, multi-step growth curve results indicate these viruses can effectively replicate in mammalian cells. Infection in mice showed that three viruses effectively replicated in the lung of mice. Infection in swine revealed that the viruses readily replicated in the upper respiratory tract of pig and effectively induced viral shedding. Our findings suggested that the H9N2 AIVs circulating in poultry recently acquired an enhanced ability to transmit from avian to mammalians, including humans. Based on our findings, we propose that it is essential to strengthen the efforts to surveil and test the pathogenicity of H9N2 AIVs.
Collapse
|
9
|
Nguyen TH, Liu X, Su ZZ, Hsu ACY, Foster PS, Yang M. Potential Role of MicroRNAs in the Regulation of Antiviral Responses to Influenza Infection. Front Immunol 2018; 9:1541. [PMID: 30022983 PMCID: PMC6039551 DOI: 10.3389/fimmu.2018.01541] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza is a major health burden worldwide and is caused by influenza viruses that are enveloped and negative stranded RNA viruses. Little progress has been achieved in targeted intervention, either at a population level or at an individual level (to treat the cause), due to the toxicity of drugs and ineffective vaccines against influenza viruses. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene expression, cell differentiation, and tissue development and have been shown to silence viral replication in a sequence-specific manner. Investigation of these small endogenous nucleotides may lead to new therapeutics against influenza virus infection. Here, we describe our current understanding of the role of miRNAs in host defense response against influenza virus, as well as their potential and limitation as new therapeutic approaches.
Collapse
Affiliation(s)
- Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiaoming Liu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Zhen Zhong Su
- Department of Respiratory Medicine, The Second Hospital, Jilin University, ChangChun, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
10
|
Genome-wide profiling of microRNAs reveals novel insights into the interactions between H9N2 avian influenza virus and avian dendritic cells. Oncogene 2018; 37:4562-4580. [DOI: 10.1038/s41388-018-0279-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022]
|
11
|
Peng S, Wang J, Wei S, Li C, Zhou K, Hu J, Ye X, Yan J, Liu W, Gao GF, Fang M, Meng S. Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:361-375. [PMID: 29499948 PMCID: PMC5862538 DOI: 10.1016/j.omtn.2017.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Abstract
The reciprocal interaction between influenza virus and host microRNAs (miRNAs) has been implicated in the regulation of viral replication and host tropism. However, the global roles of the cellular miRNA repertoire and the mechanisms of miRNA-mediated antiviral defense await further elucidation. In this study, we systematically screened 297 cellular miRNAs from human and mouse epithelial cells and identified five inhibitory miRNAs that efficiently inhibited influenza virus replication in vitro and in vivo. Among these miRNAs, hsa-mir-127-3p, hsa-mir-486-5p, hsa-mir-593-5p, and mmu-mir-487b-5p were found to target at least one viral gene segment of both the human seasonal influenza H3N2 and the attenuated PR8 (H1N1) virus, whereas hsa-miR-1-3p inhibited viral replication by targeting the supportive host factor ATP6V1A. Moreover, the number of miRNA binding sites in viral RNA segments was positively associated with the activity of host miRNA-induced antiviral defense. Treatment with a combination of the five miRNAs through agomir delivery pronouncedly suppressed viral replication and effectively improved protection against lethal challenge with PR8 in mice. These data suggest that the highly expressed miRNAs in respiratory epithelial cells elicit effective antiviral defenses against influenza A viruses and will be useful for designing miRNA-based therapies against viral infection.
Collapse
Affiliation(s)
- Shanxin Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Songtao Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kai Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; International College, University of Chinese Academy of Sciences, Beijing, China.
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
MicroRNA-134 regulates poliovirus replication by IRES targeting. Sci Rep 2017; 7:12664. [PMID: 28978937 PMCID: PMC5627394 DOI: 10.1038/s41598-017-12860-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Global poliovirus eradication efforts include high vaccination coverage with live oral polio vaccine (OPV), surveillance for acute flaccid paralysis, and OPV “mop-up” campaigns. An important objective involves host-directed strategies to reduce PV replication to diminish viral shedding in OPV recipients. In this study, we show that microRNA-134-5p (miR-134) can regulate Sabin-1 replication but not Sabin-2 or Sabin-3 via direct interaction with the PV 5′UTR. Hypochromicity data showed miR-134 binding to Sabin-1 and 3 but not Sabin-2 IRES. Transfection of a miR-134 mimic repressed translation of Sabin-1 5′UTR driven luciferase validating the mechanism of miR-134-mediated repression of Sabin-1. Further, site directed mutagenesis of the miR-134 binding site in Sabin-1 IRES relieved miR-134-mediated repression indicating that these regulatory molecules have an important role in regulating the host gene response to PV. Binding of miR-134 to Sabin-1 IRES caused degradation of the IRES transcript in a miR-134 and sequence specific manner. The miR-134 binding site was found to be highly conserved in wild type PV-1 as well as EV71 strains indicating that miR-134 may regulate function of these IRES sequences in circulation.
Collapse
|
13
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
14
|
Peng F, He J, Loo JFC, Kong SK, Li B, Gu D. Identification of serum MicroRNAs as diagnostic biomarkers for influenza H7N9 infection. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.virep.2016.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Deng Y, Yan Y, Tan KS, Liu J, Chow VT, Tao ZZ, Wang DY. MicroRNA-146a induction during influenza H3N2 virus infection targets and regulates TRAF6 levels in human nasal epithelial cells (hNECs). Exp Cell Res 2017; 352:184-192. [PMID: 28131813 DOI: 10.1016/j.yexcr.2017.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 12/25/2022]
Abstract
We have previously shown that human nasal epithelial cells (hNECs) are highly permissive cells for respiratory viruses including influenza A virus (IAV) and respiratory syncytial virus. Recent studies have indicated that microRNAs (miRNAs) are involved in virus-host relationship, and this led us to investigate its essential roles in the in vitro hNECs model derived from multiple donors. By comparing the differential expression of miRNAs upon IAV infection among animal and cell line studies, candidates were selected with focus on the initial immune response. After infection of influenza H3N2 virus, hNECs showed constant increase virus titer at 24-72h post-infection (hpi); accompanied with a significantly elevated level of miR-146a-5p at 72 hpi. The exponential elevation of progeny virus titer correlated with a key influenza sensing Toll-like receptor (TLR)7 pathway. TLR7 downstream gene transcripts, myeloid differentiation primary response gene 88 (MyD88), interferon regulator factor 7 (IRF7), and interferon-β (IFN-β) were significantly upregulated at 48 and 72 hpi, while interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor associated factor-6 (TRAF6) were unchanged. Interestingly, when miR-146a was overexpressed with miRNA mimics prior to H3N2 infection, further decreased transcripts of TRAF6, but not IRAK1, were detected. By using the in vitro hNEC model, we demonstrated that H3N2-induced miR-146a specifically targets and regulates TRAF6 expression; but not IRAK expression in the nasal epithelium. We also found that unlike the cell model studies that lead to our studies, when ran across a heterogeneous model of different individual, miRNA signals were highly varied and the expression of most miRNAs, including miR-146a-5p, was more subdued compared to homogenous cell line model, highlighting a need for a more thorough analysis of miRNA signals and targets in a model more mimicking a clinical influenza infection.
Collapse
Affiliation(s)
- Yuqin Deng
- Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ze-Zhang Tao
- Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus. Int J Mol Sci 2016; 18:ijms18010039. [PMID: 28035991 PMCID: PMC5297674 DOI: 10.3390/ijms18010039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a new type of regulators that play important roles in various cellular processes, including cell growth, differentiation, survival, and apoptosis. ncRNAs, including small non-coding RNAs (e.g., microRNAs, small interfering RNAs) and long non-coding RNAs (lncRNAs), are pervasively transcribed in human and mammalian cells. Recently, it has been recognized that these ncRNAs are critically implicated in the virus-host interaction as key regulators of transcription or post-transcription during viral infection. Influenza A virus (IAV) is still a major threat to human health. Hundreds of ncRNAs are differentially expressed in response to infection with IAV, such as infection by pandemic H1N1 and highly pathogenic avian strains. There is increasing evidence demonstrating functional involvement of these regulatory microRNAs, vault RNAs (vtRNAs) and lncRNAs in pathogenesis of influenza virus, including a variety of host immune responses. For example, it has been shown that ncRNAs regulate activation of pattern recognition receptor (PRR)-associated signaling and transcription factors (nuclear factor κ-light-chain-enhancer of activated B cells, NF-κB), as well as production of interferons (IFNs) and cytokines, and expression of critical IFN-stimulated genes (ISGs). The vital functions of IAV-regulated ncRNAs either to against defend viral invasion or to promote progeny viron production are summarized in this review. In addition, we also highlight the potentials of ncRNAs as therapeutic targets and diagnostic biomarkers.
Collapse
|
17
|
Feng C, Tan M, Sun W, Shi Y, Xing Z. Attenuation of the influenza virus by microRNA response element in vivo and protective efficacy against 2009 pandemic H1N1 virus in mice. Int J Infect Dis 2015; 38:146-52. [PMID: 26163223 DOI: 10.1016/j.ijid.2015.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The 2009 influenza pandemics underscored the need for effective vaccines to block the spread of influenza virus infection. Most live attenuated vaccines utilize cold-adapted, temperature-sensitive virus. An alternative to live attenuated virus is presented here, based on microRNA-induced gene silencing. METHODS In this study, miR-let-7b target sequences were inserted into the H1N1 genome to engineer a recombinant virus - miRT-H1N1. Female BALB/c mice were vaccinated intranasally with the miRT-H1N1 and challenged with a lethal dose of homologous virus. RESULTS This miRT-H1N1 virus was attenuated in mice, while it exhibited wild-type characteristics in chicken embryos. Mice vaccinated intranasally with the miRT-H1N1 responded with robust immunity that protected the vaccinated mice from a lethal challenge with the wild-type 2009 pandemic H1N1 virus. CONCLUSIONS These results indicate that the influenza virus containing microRNA response elements (MREs) is attenuated in vivo and can be used to design a live attenuated vaccine.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Mingming Tan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Wenkui Sun
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China.
| | - Zheng Xing
- The Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing, China; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, USA.
| |
Collapse
|