1
|
Jeanne F, Pilet S, Bernay B, Lagadu S, Delépée R, Dufour S, Sourdaine P. Characterization of a direct role of GnRHs in the control of spermiogenesis and steroidogenesis in the small-spotted catshark Scyliorhinus canicula. Gen Comp Endocrinol 2025:114734. [PMID: 40254036 DOI: 10.1016/j.ygcen.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) regulates the production of gonadotropins, which control reproduction. In elasmobranchs, unlike other gnathostomes, GnRH is released into the systemic circulation to stimulate gonadotrope cells located in the ventral lobe of the pituitary. The aim of this study was to investigate the potential role of systemic GnRH in the regulation of the testis in Scyliorhinus canicula. Phylogeny and synteny analyses identified three GnRHs and four GnRH receptor (ScGnRHR-I1, -IIa1, -IIa2 and -IIb2). In vitro functional hormone-receptor interactions using synthetic ScGnRHs showed that all ScGnRHs were effective at receptors, except ScGnRHRIIa2, at femtomolar to nanomolar concentrations, with lower efficiency for ScGnRH1/ScGnRHRIIb2. Real-time PCR analyses in a wide range of tissues, including male and female reproductive tracts, showed that all three gnrh were expressed mainly in the brain and all four gnrhr were expressed in the testis, particularly during spermiogenesis. Testicular explants containing cysts with spermatids were treated with ScGnRHs and their protein content analyzed by NanoLC-ESI-MS/MS, highlighting 1677 significantly differentially expressed proteins. Among them, the growth hormone receptor (GHR) and proteins involved in cholesterol and steroid metabolism, including several HSD17bs, were upregulated. In situ hybridization showed that ghr, hsd17b3 and hsd17b12 transcripts were localized in Sertoli cells, which are the main testicular steroidogenic cells in S. canicula. Fifteen steroids were assayed in the culture media, using LC-ESI-HRMS/MS, and an increase in 17β-estradiol concentrations was observed, consistent with hsd17b expressions. Furthermore, proteins involved in transcription and DNA structure were downregulated in response to GnRHs. In conclusion, this study showed that ScGnRHs may play a direct role in the regulation of elasmobranch testes by promoting spermiogenesis and modulating steroidogenesis.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, Marine Ecosystems and Organisms Research Lab (MERSEA), UR 7482, 14032 Caen Cedex 5, France
| | - Stanislas Pilet
- Université de Caen Normandie, Marine Ecosystems and Organisms Research Lab (MERSEA), UR 7482, 14032 Caen Cedex 5, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen Cedex 5, France
| | - Stéphanie Lagadu
- INSERM U1086 "ANTICIPE" Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers, Centre de Lutte Contre le Cancer Francois Baclesse, 3 Av. Général Harris, 14076 CAEN Cedex 05, France
| | - Raphaël Delépée
- INSERM U1086 "ANTICIPE" Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers, Centre de Lutte Contre le Cancer Francois Baclesse, 3 Av. Général Harris, 14076 CAEN Cedex 05, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle (MNHN), UCN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 43, rue Cuvier, CP 26, 75231 Paris Cedex 05, France
| | - Pascal Sourdaine
- Université de Caen Normandie, Marine Ecosystems and Organisms Research Lab (MERSEA), UR 7482, 14032 Caen Cedex 5, France.
| |
Collapse
|
2
|
Desaulniers AT, Ross CE, Cederberg RA, Lovercamp KW, Lents CA, White BR. Gonadotropin-releasing hormone II and its receptor regulate motility, morphology, and kinematics of porcine spermatozoa in vitro. Gen Comp Endocrinol 2025; 361:114653. [PMID: 39667624 DOI: 10.1016/j.ygcen.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
The second form of gonadotropin-releasing hormone (GnRH-II) and its receptor (GnRHR-II) are abundantly produced within the porcine testis and immunolocalize within the seminiferous tubules, suggesting a role in spermatogenesis and/or sperm function. The objective of this study was to quantify GnRH-II and GnRHR-II abundance within boar reproductive tract tissues and examine their role in porcine sperm function. Immunoblotting revealed GnRHR-II abundance was 12-fold greater (P < 0.0001) within the testis compared with other reproductive organs. Within seminiferous tubules, GnRHR-II prominently immunolocalized to elongating spermatids. In ejaculated spermatozoa, GnRHR-II immunolocalized to the connecting piece. GnRH-II was also detected in seminal plasma, likely originating from the testis as GnRH-II concentrations were greatest in testicular homogenates (P < 0.0001) compared with other reproductive tissues. To assess the effects of GnRH-II/GnRHR-II on sperm function, extended semen samples were treated with GnRHR-II analogues and evaluated via computer-assisted sperm analysis (CASA). In Experiment 1, semen treatment with increasing concentrations of GnRHR-II agonist (D-ala6 GnRH-II) revealed that two concentrations (0.1 and 100 µM) tended to decrease the percentage of bent sperm tails versus vehicle-treated semen (P < 0.10). In Experiment 2, semen treatment with increasing concentrations of GnRHR antagonist (SB-75/Cetrorelix) indicated that only 10 µM SB-75 impaired CASA metrics compared with vehicle-treated samples (P < 0.05). In Experiment 3, semen treatment with both 100 µM D-ala6 GnRH-II and 10 µM SB-75 partially rescued sperm motility and morphology measures. These data suggest that GnRH-II and its receptor regulate porcine sperm function in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- A T Desaulniers
- University of Nebraska-Lincoln, Department of Animal Science, Lincoln, NE 68583-0908, United States
| | - C E Ross
- University of Nebraska-Lincoln, Department of Animal Science, Lincoln, NE 68583-0908, United States
| | - R A Cederberg
- University of Nebraska-Lincoln, Department of Animal Science, Lincoln, NE 68583-0908, United States
| | - K W Lovercamp
- University of Central Missouri, Department of Agriculture, Warrensburg, MO 64093-0266, United States
| | - C A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, United States
| | - B R White
- University of Nebraska-Lincoln, Department of Animal Science, Lincoln, NE 68583-0908, United States.
| |
Collapse
|
3
|
Marino M, D’Auria R, Mele E, Pastorino GMG, Di Pietro P, D’Angelo S, Della Rocca N, Operto FF, Vecchione C, Fasano S, Pierantoni R, Viggiano A, Meccariello R, Santoro A. The interplay between kisspeptin and endocannabinoid systems modulates male hypothalamic and gonadic control of reproduction in vivo. Front Endocrinol (Lausanne) 2023; 14:1269334. [PMID: 37900144 PMCID: PMC10602894 DOI: 10.3389/fendo.2023.1269334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Raffaella D’Auria
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Grazia Maria Giovanna Pastorino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
- Unità Operativa Complessa (U.O.C.) Neuropsichiatria Infantile, Azienda Ospedaliero Universitaria San Giovanni di Dio Ruggi d’Aragona, “Scuola Medica Salernitana”, Salerno, Italy
| | - Paola Di Pietro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Stefania D’Angelo
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Natalia Della Rocca
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | | | - Carmine Vecchione
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| |
Collapse
|
4
|
Lahimer M, Djekkoun N, Tricotteaux-Zarqaoui S, Corona A, Lafosse I, Ali HB, Ajina M, Bach V, Benkhalifa M, Khorsi-Cauet H. Impact of Perinatal Coexposure to Chlorpyrifos and a High-Fat Diet on Kisspeptin and GnRHR Presence and Reproductive Organs. TOXICS 2023; 11:789. [PMID: 37755799 PMCID: PMC10534599 DOI: 10.3390/toxics11090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Emerging evidence has indicated the involvement of extrahypothalamic Kisspeptin and GnRHR in reproductive function. In this study, we evaluate if maternal exposure to the pesticide chlorpyrifos (CPF) and/or a high-fat diet (HFD) has an impact on the expression of Kisspeptin and GnRHR in the reproductive organs of rats' offspring. A total of 16 pregnant rats are divided into four groups: a control group (n = 4), CPF group (4 rats exposed daily to 1/mg/kg/day), HFD group (4 rats randomly fed a 5.25 kcal/g HFD), and coexposed group (4 rats exposed to CPF and HDF). At postnatal development postnatal day (PND) 60, male and female offspring were sacrificed. The reproductive organs (ovary and testis) were removed, and histological and immunohistological analysis and in silico quantification (TissueGnostics software 6.0.1.102, TissueFAXS, HistoQuest) were applied to investigate the impact of different treatments on Kisspeptin and GnRHR expression in reproductive organs. The main outcomes of the study showed a significant decrease in rat offspring's body weight in the CPF group from PND30 and PND60 (p < 0.05 and p < 0.01, respectively). Histological analysis showed a significant increase in the atretic follicle and abnormal testis structure with germ cell desquamation in the CPF-exposed group. The immunodetection quantification of protein shows a significant decrease in GnRHR and Kisspeptin in the HFD and CPF exposed groups, respectively, in testis rat offspring. Perinatal exposure to CPF and HFD exposure affect the reproduction function of rat offspring.
Collapse
Affiliation(s)
- Marwa Lahimer
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
| | - Narimane Djekkoun
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Sophian Tricotteaux-Zarqaoui
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Aurélie Corona
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Isabelle Lafosse
- MP3CV—UPJV—UR 7517, Jules Verne University of Picardie, 80025 Amiens, France;
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse 4000, Tunisia;
| | - Mounir Ajina
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse 4000, Tunisia
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| |
Collapse
|
5
|
Zhao W, Adjei M, Zhang Z, Yuan Z, Cisang Z, Song T. The role of GnRH in Tibetan male sheep and goat reproduction. Reprod Domest Anim 2023; 58:1179-1187. [PMID: 37492901 DOI: 10.1111/rda.14432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis connects the hypothalamus, pituitary gland, and gonads. The regulation of reproductive processes includes integrating various factors from structural functions and environmental conditions in the HPG axis, with the outcome indication of these processes being the pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. These factors include feed consumption and nutritional condition, sex steroids, season/photoperiod, pheromones, age, and stress. GnRH pulsatile secretion affects the pattern of gonadotropin secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which then regulates both endocrine function and gamete maturation in the gonads. This regulates gonadotropins and testosterone (T) production. There is evidence that in males, GnRH participates in a variety of host behavioural and physiological processes such as the release of reproductive hormones, progression of spermatogenesis and sperm function, aggressive behaviour, and physiological metabolism. GnRH activates receptors expressed on Leydig cells and Sertoli cells, respectively to stimulate T secretion and spermatogenesis in the testis. Photoperiod affects the reproductive system of the hypothalamic-pituitary axis via rhythmic diurnal melatonin secretion. Increased release of melatonin promotes sexual activity, GnRH production, LH stimulation, and T production. This induces testicular functions, spermatogenesis, and puberty. GnRH reduces the release of LH by the pituitary through the cascade effect and decreases plasma concentration of T. Gut microbiota maintain sex steroid homeostasis and may induce reduction in reproduction productivity. Recently, findings of kisspeptin-neurokinin-dynorphin neuronal network in the brain have resulted in fast advances in how GnRH secretion is controlled. Emerging studies have also indicated that other neuropeptide analogues could be used in control reproduction procedures in various goat and sheep breeds. The Tibetan male sheep and goats reproduce on a seasonal basis and have high reproductive performance. This is a review for the role of GnRH in Tibetan male sheep and goats reproduction. This is intended to enhance reproductive knowledge for understanding the key roles of GnRH relating to male reproductive efficiency of Tibetan sheep or goats.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Michael Adjei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhenzhen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhenjie Yuan
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Zhuoma Cisang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
6
|
de Villiers C, van der Horst G, Chauke C, Magwebu Z. The expression of type I and II gonadotropin-releasing hormone receptors transcripts in Vervet monkey (Chlorocebus aethiops) spermatozoa. Gen Comp Endocrinol 2021; 310:113819. [PMID: 34015343 DOI: 10.1016/j.ygcen.2021.113819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
Gonadotropin-Releasing Hormone (GnRH), acting via the GnRH receptor (GnRHR), and a member of G-protein coupled receptor (GPCR), plays an essential role in the control of reproduction while operating primarily at the hypothalamic level of the gonadotropic axis. GnRH and its receptor are co-expressed in certain specific cells, suggesting an autocrine regulation of such cells. In the male reproductive system, two forms of GnRH (I and II) and its receptors (GnRHR) are present in the human and non-human primate (NHP) testis, prostate, epididymis, seminal vesicle, and human spermatozoa. In humans, the GnRHR-II receptor gene is disrupted by a frameshift in exon 1 and a stop codon in exon 2, rendering the receptor non-functional, whereas a fully functional GnRHR-II receptor is present in New-World and Old-World monkeys. There is no evidence of the existence of a GnRH receptor in NHP sperm. Since the NHP has a phylogenetic relationship to man and is often used as models in reproductive physiology, this present study aimed to determine GnRHR-I and GnRHR-II in Vervet monkey (Chlorocebus aethiops) spermatozoa. A total of 24 semen samples were obtained from four adult Vervet monkeys through electro-ejaculation and utilized for genotyping and gene expression analysis of GnRHR-I and II. Here we report that both receptors were successfully identified in the Vervet monkey sperm with the abundance of GnRHR-I gene expression compared to GnRHR-II. In comparison to the human, there is no evidence of such a stop codon at position 179 in exon 2 of the Vervet GnRHR-II. These findings suggest that both receptors are transcriptionally functional in Vervet spermatozoa.
Collapse
Affiliation(s)
- Charon de Villiers
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa.
| | - Gerhard van der Horst
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Chesa Chauke
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
| | - Zandisiwe Magwebu
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
7
|
The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. Int J Mol Sci 2021; 22:ijms22020972. [PMID: 33478092 PMCID: PMC7835826 DOI: 10.3390/ijms22020972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is a lipid cell signaling system involved in the physiology and homeostasis of the brain and peripheral tissues. Synaptic plasticity, neuroendocrine functions, reproduction, and immune response among others all require the activity of functional ECS, with the onset of disease in case of ECS impairment. Estrogens, classically considered as female steroid hormones, regulate growth, differentiation, and many other functions in a broad range of target tissues and both sexes through the activation of nuclear and membrane estrogen receptors (ERs), which leads to genomic and non-genomic cell responses. Since ECS function overlaps or integrates with many other cell signaling systems, this review aims at updating the knowledge about the possible crosstalk between ECS and estrogen system (ES) at both central and peripheral level, with focuses on the central nervous system, reproduction, and cancer.
Collapse
|
8
|
Genome-wide identification of estrogen receptor binding sites reveals novel estrogen-responsive pathways in adult male germ cells. Biochem J 2020; 477:2115-2131. [DOI: 10.1042/bcj20190946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Spermatogenesis occurs in the seminiferous epithelium that shows the presence of estrogen receptors alpha (ERα) and beta (ERβ), both of which regulate gene transcription by binding to the DNA. Estrogen responsive phases of spermatogenesis are well documented; however, the genes regulated remain inexplicit. To study the regulation of genes by estrogen in male germ cells, we performed chromatin immunoprecipitation (ChIP) sequencing for ERα and ERβ under normal physiological conditions. A total of 27 221 DNA binding regions were enriched with ERα and 20 926 binding sites with ERβ. Majority of the peaks were present in the intronic regions and located 20 kb upstream or downstream from the transcription start site (TSS). Pathway analysis of the genes enriched by ChIP-Seq showed involvement in several biological pathways. Genes involved in pathways whose role in spermatogenesis is unexplored were validated; these included prolactin, GnRH, and oxytocin signaling. All the selected genes showed the presence of estrogen response elements (EREs) in their binding region and were also found to be significantly enriched by ChIP-qPCR. Functional validation using seminiferous tubule culture after treatment with estrogen receptor subtype-specific agonist and antagonist confirmed the regulation of these genes by estrogen through its receptors. The genes involved in these pathways were also found to be regulated by the respective receptor subtypes at the testicular level in our in vivo estrogen receptor agonist rat models. Our study provides a genome-wide map of ERα and ERβ binding sites and identifies the genes regulated by them in the male germ cells under normal physiological conditions.
Collapse
|
9
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
10
|
Moustafa A. Effect of Light-Dark Cycle Misalignment on the Hypothalamic-Pituitary-Gonadal Axis, Testicular Oxidative Stress, and Expression of Clock Genes in Adult Male Rats. Int J Endocrinol 2020; 2020:1426846. [PMID: 33204259 PMCID: PMC7666629 DOI: 10.1155/2020/1426846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/18/2023] Open
Abstract
This study investigated the influence of circadian misalignment on the male reproductive system. Adult Sprague-Dawley male rats were exposed to prolonged light (20 h light : 4 h dark) or prolonged darkness (4 h light : 20 h dark) for 12 consecutive weeks. The somatic index of seminal vesicles and prostates increased due to prolonged light exposure. Sperm count and motility were enhanced solely by prolonged light exposure, whereas the percentage of sperm abnormalities was reduced by both prolonged light and darkness. The serum levels of reproductive hormones (follicle-stimulating hormone, luteinizing hormone, testosterone, and prolactin) were elevated, and the estradiol level was reduced by long-term light and dark exposure. Testicular total antioxidant capacity and antioxidant enzyme activities were improved, and lipid peroxidation was inhibited following chronic exposure to light or dark. Chronic light exposure increased, but chronic darkness decreased, testicular nitric oxide production. The mRNA expression of the hypothalamic and testicular clock genes including PER1-2, CRY1-2, BMAL1, CLOCK, and Rev-Erbα was altered by circadian disruption. Prolonged light exposure decreased the levels of thyroid hormones and suppressed the mRNA expression of adiponectin receptors 1 and 2. The immunohistochemical expression of proliferating cell nuclear antigen was decreased only by chronic darkness. The present study thus provides new insights into the physiological changes associated with long-term exposure to light or darkness, in which the expression levels of various clock gene mRNAs are modulated, reproductive hormones are increased, and the antioxidant enzyme system is ameliorated as mechanisms of adaptation to chronic circadian disruption.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
11
|
Rahdar P, Khazali H. Central Substance P Attenuates RF-amid-related Peptide-3 Impacts on the Serum Level of Luteinizing Hormone in Wistar Rats. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019. [DOI: 10.15171/ijbsm.2019.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: It is well-established that gonadotropin-inhibitory hormone (GnIH) and its mammalian orthologues (RFRP: RF-amid related peptides) can decrease gonadotrophin secretion. Moreover, substance P (SP) is another modulator of the secretion of gonadotropins in a species-dependent manner. This study aimed to find out the impacts of concomitant infusion of RFRP-3 and SP on luteinizing hormone (LH) concentration. Methods: Forty-two rats were arbitrarily assigned to 7 groups (n=6 per group). Animals in the experimental groups were intracerebroventricularly injected with saline +DMSO, SP, RFRP-3, SP + RFRP-3, SP + RF9 (RFRP-3 receptor antagonist), SP + P234 (kisspeptin receptor antagonist) + RFRP-3 and SP + CP-96,345 (SP receptor antagonist) + RFRP-3 in a final volume of 3 µL. Blood samples were collected at 30-minute intervals after injections, and serum was used to measure the LH concentration by radioimmunoassay. Results: According to the results, injections led to the elevation of LH serum concentration at 30-minute post injection (P<0.05) in the SP and SP+RF9 groups. Moreover, administration of either RFRP-3 or SP + RFRP-3 + SP receptor antagonist strikingly decreased the LH mean serum concentration at 30-minute after injections (P<0.05). On the contrary, the infusion of SP+RFRP-3 and SP+RFRP-3+P234 caused no dramatic changes in the LH mean serum concentration. Conclusion: In general, the data showed that SP suppresses the impacts of RFRP-3 on the serum levels of LH.
Collapse
Affiliation(s)
- Parastoo Rahdar
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
12
|
Boonthum C, Namdee K, Khongkow M, Temisak S, Chatdarong K, Sajomsang W, Ponglowhapan S, Yata T. Gonadotropin-releasing hormone-modified chitosan as a safe and efficient gene delivery vector for spermatogonia cells. Reprod Domest Anim 2018; 53 Suppl 3:23-28. [DOI: 10.1111/rda.13346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chatwalee Boonthum
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Katawut Namdee
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Sasithont Temisak
- Bio Analysis Group, Chemical Metrology and Biometry Department; National Institute of Metrology (NIMT); Pathumthani Thailand
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Warayuth Sajomsang
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Suppawiwat Ponglowhapan
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Teerapong Yata
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| |
Collapse
|
13
|
Chen D, Yang W, Han S, Yang H, Cen X, Liu J, Zhang L, Zhang W. A Type IIb, but Not Type IIa, GnRH Receptor Mediates GnRH-Induced Release of Growth Hormone in the Ricefield Eel. Front Endocrinol (Lausanne) 2018; 9:721. [PMID: 30555419 PMCID: PMC6283897 DOI: 10.3389/fendo.2018.00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple gonadotropin-releasing hormone receptors (GnRHRs) are present in vertebrates, but their differential physiological relevances remain to be clarified. In the present study, we identified three GnRH ligands GnRH1 (pjGnRH), GnRH2 (cGnRH-II), and GnRH3 (sGnRH) from the brain, and two GnRH receptors GnRHR1 (GnRHR IIa) and GnRHR2 (GnRHR IIb) from the pituitary of the ricefield eel Monopterus albus. GnRH1 and GnRH3 but not GnRH2 immunoreactive neurons were detected in the pre-optic area, hypothalamus, and pituitary, suggesting that GnRH1 and GnRH3 may exert hypophysiotropic roles in ricefield eels. gnrhr1 mRNA was mainly detected in the pituitary, whereas gnrhr2 mRNA broadly in tissues of both females and males. In the pituitary, GnRHR1 and GnRHR2 immunoreactive cells were differentially distributed, with GnRHR1 immunoreactive cells mainly in peripheral areas of the adenohypophysis whereas GnRHR2 immunoreactive cells in the multicellular layers of adenohypophysis adjacent to the neurohypophysis. Dual-label fluorescent immunostaining showed that GnRHR2 but not GnRHR1 was localized to somatotropes, and all somatotropes are GnRHR2-positive cells and vice versa at all stages examined. GnRH1 and GnRH3 were shown to stimulate growth hormone (Gh) release from primary culture of pituitary cells, and to decrease Gh contents in the pituitary of ricefield eels 12 h post injection. GnRH1 and GnRH3 stimulated Gh release probably via PLC/IP3/PKC and Ca2+ pathways. These results, as a whole, suggested that GnRHs may bind to GnRHR2 but not GnRHR1 to trigger Gh release in ricefield eels, and provided novel information on differential roles of multiple GnRH receptors in vertebrates.
Collapse
Affiliation(s)
- Dong Chen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiying Han
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huiyi Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Cen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Lihong Zhang
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Weimin Zhang
| |
Collapse
|
14
|
Active immunization against GnRH in pre-pubertal domestic mammals: testicular morphometry, histopathology and endocrine responses in rabbits, guinea pigs and ram lambs. Animal 2018; 12:784-793. [DOI: 10.1017/s1751731117002129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
15
|
Testicular Dnmt3 expression and global DNA methylation are down-regulated by gonadotropin releasing hormones in the ricefield eel Monopterus albus. Sci Rep 2017; 7:43158. [PMID: 28225069 PMCID: PMC5320511 DOI: 10.1038/srep43158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, DNA methyltransferase 3 (Dnmt3) homologues are responsible for de novo DNA methylation and play important roles in germ cell development. In the present study, four dnmt3 genes, dnmt3aa, dnmt3ab, dnmt3ba and dnmt3bb.1, were identified in ricefield eels. Real-time quantitative PCR analysis showed that all four dnmt3 mRNAs were detected broadly in tissues examined, with testicular expression at relatively high levels. In the testis, immunostaining for all four Dnmt3 forms was mainly localized to spermatocytes, which also contained highly methylated DNA. All three forms of Gonadotropin-releasing hormone (Gnrh) in the ricefield eel were shown to decrease the expression of dnmt3 genes in the in vitro incubated testicular fragments through cAMP and IP3/Ca2+ pathways. Moreover, in vivo treatment of male fish with three forms of Gnrh decreased significantly the testicular Dnmt3 expression at both mRNA and protein levels, and the global DNA methylation levels. These results suggest that the expression of Dnmt3 and global DNA methylation in the testis of ricefield eels are potentially down-regulated by Gnrh, and reveal a novel regulatory mechanism of testicular Dnmt3 expression in vertebrates.
Collapse
|
16
|
Bulldan A, Shihan M, Goericke-Pesch S, Scheiner-Bobis G. Signaling events associated with gonadotropin releasing hormone-agonist-induced hormonal castration and its reversal in canines. Mol Reprod Dev 2016; 83:1092-1101. [DOI: 10.1002/mrd.22751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed Bulldan
- Institute for Veterinary Physiology and Biochemistry; Giessen Germany
| | - Mazen Shihan
- Institute for Veterinary Physiology and Biochemistry; Giessen Germany
| | - Sandra Goericke-Pesch
- Clinic for Obstetrics, Gynecology, and Andrology of Large and Small Animals, Justus-Liebig-University; Giessen Germany
| | | |
Collapse
|