1
|
Liu Z, Pu X. Orosomucoid 1 interacts with S100A12 and activates ERK signalling to expedite the advancement of bladder cancer. Cell Adh Migr 2025; 19:1-11. [PMID: 39644201 PMCID: PMC11633163 DOI: 10.1080/19336918.2024.2434209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024] Open
Abstract
The research endeavors to expound the role of ORM1 in bladder cancer (BCa) and the implied response mechanism. RT-qPCR and Western blotting examined ORM1 and S100A12 expression. Functional experiments assessed the cellular phenotypes. HDOCK and Co-IP confirmed the interaction of ORM1 and S100A12. Western blotting tested apoptosis- and ERK signaling-associated proteins. ORM1 and S100A12 were abundant in the BCa cells. ORM1 or S100A12 loss impaired cell proliferation, migration, and invasion, and aggravated cell apoptosis. ORM1 interacted with S100A12. ORM1 knockdown down-regulated S100A12 expression and inactivated ERK signaling.S100A12 overexpression or ERK activator reversed the impacts of ORM1 interference on ERK signaling and BCa cells. ORM1 mightdrive BCa via binding to S100A12 and activating ERK signaling.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Urology, Wuxi No. 2 People’s Hospital (Jiangnan University Medical Center), Wuxi, China
| | - Xiaofeng Pu
- Department of Urology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Ou WT, Tan RJ, Zhai JW, Sun LJ, Xu FP, Huang XJ, Quan ZH, Zhou CJ. Silencing GDI2 inhibits proliferation, migration and invasion of colorectal cancer through activation of p53 signaling pathway. Heliyon 2024; 10:e37770. [PMID: 39323841 PMCID: PMC11422032 DOI: 10.1016/j.heliyon.2024.e37770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Objective To investigate the effect of silencing GDP dissociation inhibitor 2 (GDI2) on colorectal cancer development and possible mechanisms based on transcriptomic analysis. Methods The differences in the expression levels of GDI2 in normal colorectal tissues and tumor tissues of colorectal cancer (CRC) patients were detected. The correlation of GDI2 expression levels with survival and clinical characteristics of CRC patients was analyzed. The effects of GDI2 expression levels on the biological functions of CRC cells were examined by CCK-8 assay, plate clone formation assay, wound healing assay, and Transwell assay. The effect of GDI2 on the proliferation and growth of xenograft tumors was investigated by a xenograft tumor model of CRC in nude mice. Based on transcriptomics, we explored the possible mechanisms and associated pathways of the effect of silencing GDI2 on CRC cells. Cellular experiments and Western blot assays were performed to verify the potential mechanisms and related pathway of GDI2 action on CRC. Results The expression levels of GDI2 in CRC tissues and cells were higher than those in normal tissues and cells. The expression level of GDI2 correlated with clinical characteristics such as lymphatic metastasis, tumor stage, tumor volume, and lymphocyte count. Silencing of GDI2 reduced the proliferative activity and migration and invasion ability of CRC cells, as well as inhibited the proliferation of CRC xenograft tumors. The differentially expressed genes were significantly enriched in biological processes such as cell cycle arrest and the p53 signaling pathway after GDI2 silencing. The percentage of G0/G1 phase cells in CRC cells was increased after silencing GDI2 as verified by flow cytometry. RAB5A was highly associated with the p53 pathway and could interact with TP53 via the ZFYVE20 protein. The mutual binding between GDI2 protein and RAB5A protein was verified by immunoprecipitation assay. Silencing GDI2 while overexpressing RAB5A reversed the reduced proliferation, migration, and invasion ability as well as cell cycle arrest of CRC cells. Meanwhile, the addition of p53 signaling pathway inhibitor Pifithrin-α (PFT-α) also reversed the biological effects of silencing GDI2 on CRC cells. The p-p21 and p-p53 protein expression levels were significantly greater in the sh-GDI2 group than in the sh-NC group. However, the p-p21 and p-p53 protein expression levels were reduced after silencing GDI2 while overexpressing RAB5A. Conclusion Silencing GDI2 activates the p53 signaling pathway by regulating RAB5A expression levels, which in turn induces cell cycle arrest and ultimately affects the proliferative activity, migration, and invasive ability of CRC cells.
Collapse
Affiliation(s)
- Wen-Ting Ou
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Rong-Jian Tan
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Jia-Wei Zhai
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Li-Jun Sun
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Fei-Peng Xu
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Xian-Jin Huang
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Zhen-Hao Quan
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Cai-Jin Zhou
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| |
Collapse
|
3
|
Alhosani F, Ilce BY, Alhamidi RS, Bhamidimarri PM, Hamad AM, Alkhayyal N, Künstner A, Khandanpour C, Busch H, Al-Ramadi B, Sayed K, AlFazari A, Bendardaf R, Hamoudi R. Transcriptome Profiling Associated with CARD11 Overexpression in Colorectal Cancer Implicates a Potential Role for Tumor Immune Microenvironment and Cancer Pathways Modulation via NF-κB. Int J Mol Sci 2024; 25:10367. [PMID: 39408697 PMCID: PMC11476988 DOI: 10.3390/ijms251910367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11- overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11-) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4.
Collapse
Affiliation(s)
- Faisal Alhosani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
- Forensic Laboratory Department, Sharjah Police Headquarters, Sharjah P.O. Box 1965, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Poorna Manasa Bhamidimarri
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Alaa Mohamed Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Noura Alkhayyal
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany;
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kadria Sayed
- Department of Pathology and Laboratory Medicine, American Hospital Dubai, Dubai P.O. Box 3050, United Arab Emirates;
| | - Ali AlFazari
- Mediclinic Welcare Hospital, Dubai P.O. Box 31500, United Arab Emirates;
| | - Riyad Bendardaf
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Arif SH. Correlation of S100A4 and S100A14 Expression With Clinico-Pathological Features and Tumor Location in Colorectal Cancer Patients. Cureus 2024; 16:e65615. [PMID: 39205741 PMCID: PMC11350396 DOI: 10.7759/cureus.65615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Colorectal cancer (CRC) remains a major cause of morbidity and mortality worldwide. Understanding the clinical and pathological characteristics of CRC patients is essential for improving diagnosis, treatment, and prognostication. S100 proteins play a crucial role in CRC by promoting tumor growth, metastasis, and inflammation through their involvement in various cellular processes such as proliferation, migration, and immune response modulation. Elevated levels of specific S100 proteins have been associated with poor prognosis and serve as potential biomarkers for early detection and therapeutic targets in CRC. This study aims to analyze the general and medical characteristics of CRC patients, with a particular focus on the expression patterns of S100A4 and S100A14 proteins and their correlation with tumor location and various clinical parameters. Methods This cross-sectional study included 98 CRC patients aged 21 to 92 years. Clinical data were collected from Vajeen Hospital (Duhok/ Iraq), including age, gender, and presenting symptoms. Pathological data such as tumor site, tumor size, tumor, node, and metastasis (TNM) stage, tumor grade angio-lymphatic invasion, perineural invasion, and metastasis were analyzed. The expression of S100A4 and S100A14 proteins was assessed using immunohistochemistry, and their correlation with clinico-pathological features and tumor location was evaluated using statistical analysis. Results The 98 patients with a mean age of 57.27 years. The majority were over 50 years old (68, 69.39%) with a nearly equal gender distribution. The most common symptom was bleeding per rectum (36, 36.74%). TNM staging revealed 25.51% (n=25) of patients at stage I, 32.65% (n=32) at stage II, 24.49% (n=24) at stage III, and 17.35% (n=17) at stage IV. Angio-lymphatic invasion was present in 65.31% (n=64) of patients, and lymph node invasion in 38.78% (n=38). All tumors were adenocarcinomas, with 82.65% (n=81) being intermediate grade. S100A4 expression was low in early-stage tumors but significantly higher in advanced stages (P < 0.0001). High S100A4 expression was associated with vascular invasion (P = 0.0006), perineural invasion (P = 0.0002), lymph node invasion (P < 0.0001), and metastasis (P = 0.0010). S100A14 expression was inversely correlated with disease severity. Low S100A14 expression was more common in advanced stages (P < 0.0001) and was associated with higher rates of vascular invasion (P = 0.0018), lymph node invasion (P < 0.0001), and metastasis (P = 0.0001). Conclusion This study highlights significant correlations between S100A4 and S100A14 expression with various clinico-pathological features in CRC patients. High S100A4 expression is linked with tumor aggressiveness, whereas low S100A14 expression is associated with advanced disease stages and increased metastasis. However, there is no observed correlation between the expression of these proteins and the tumor site.
Collapse
Affiliation(s)
- Sardar H Arif
- Surgery, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
5
|
Wei R, Feng O, Hui Y, Huang X, Ping L. Prognostic value of the S100 calcium-binding protein family members in hepatocellular carcinoma. Biosci Rep 2023; 43:BSR20222523. [PMID: 37133437 PMCID: PMC10326192 DOI: 10.1042/bsr20222523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a crucial public health problem around the world, and the outlook remains bleak. More accurate prediction models are urgently needed because of the great heterogeneity of HCC. The S100 protein family contains over 20 differentially expressed members, which are commonly dysregulated in cancers. In the present study, we analyzed the expression profile of S100 family members in patients with HCC based on the TCGA database. A novel prognostic risk score model, based on S100 family members, was developed using the least absolute shrinkage and selection operator regression algorithm, to analyze the clinical outcome. Our prediction model showed a powerful predictive value (1-year AUC: 0.738; 3-year AUC: 0.746; 5-year AUC: 0.813), while two former prediction models had less excellent performances than ours. And the S100 family members-based subtypes reveal the heterogeneity in many aspects, including gene mutations, phenotypic traits, tumor immune infiltration, and predictive therapeutic efficacy. We further investigated the role of S100A9, one member with the highest coefficient in the risk score model, which was mainly expressed in para-tumoral tissues. Using the Single-Sample Gene Set Enrichment Analysis algorithm and immunofluorescence staining of tumor tissue sections, we found that S100A9 may be associated with macrophages. These findings provide a new potential risk score model for HCC and support further study of S100 family members in patients, especially S100A9.
Collapse
Affiliation(s)
- Ran Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Ou Qi Feng
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yao Ze Hui
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaohui Huang
- General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Li Sheng Ping
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
6
|
Lau BT, Almeda A, Schauer M, McNamara M, Bai X, Meng Q, Partha M, Grimes SM, Lee H, Heestand GM, Ji HP. Single-molecule methylation profiles of cell-free DNA in cancer with nanopore sequencing. Genome Med 2023; 15:33. [PMID: 37138315 PMCID: PMC10155347 DOI: 10.1186/s13073-023-01178-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Epigenetic characterization of cell-free DNA (cfDNA) is an emerging approach for detecting and characterizing diseases such as cancer. We developed a strategy using nanopore-based single-molecule sequencing to measure cfDNA methylomes. This approach generated up to 200 million reads for a single cfDNA sample from cancer patients, an order of magnitude improvement over existing nanopore sequencing methods. We developed a single-molecule classifier to determine whether individual reads originated from a tumor or immune cells. Leveraging methylomes of matched tumors and immune cells, we characterized cfDNA methylomes of cancer patients for longitudinal monitoring during treatment.
Collapse
Affiliation(s)
- Billy T Lau
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Alison Almeda
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Marie Schauer
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Madeline McNamara
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Qingxi Meng
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Mira Partha
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Gregory M Heestand
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
S100 as Serum Tumor Marker in Advanced Uveal Melanoma. Biomolecules 2023; 13:biom13030529. [PMID: 36979464 PMCID: PMC10046712 DOI: 10.3390/biom13030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
S100 protein is routinely used as a serum tumor marker in advanced cutaneous melanoma. However, there is scarce and inconclusive evidence on its value in monitoring disease progression of uveal melanoma. In this monocenter study, we retrospectively assessed the connection between documented S100 protein levels of patients suffering from stage IV uveal melanoma and the clinical course of disease. Where available, we analyzed expression of S100 in melanoma metastases by immunohistochemistry. A total of 101 patients were included, 98 had available serum S100 levels, and in 83 cases, sufficient data were available to assess a potential link of S100 with the clinical course of the uveal melanoma. Only 12 of 58 (20.7%) patients had elevated serum levels at first diagnosis of stage IV disease. During progressive disease, 54% of patients showed rising serum S100 levels, while 46% of patients did not. Tumor material of 56 patients was stained for S100. Here, 26 (46.4%) showed expression, 19 (33.9%) weak expression, and 11 (19.6%) no expression of S100. Serum S100 levels rose invariably in all patients with strong expression throughout the course of disease, while patients without S100 expression in metastases never showed rising S100 levels. Thus, the value of S100 serum levels in monitoring disease progression can be predicted by immunohistochemistry of metastases. It is not a reliable marker for early detection of advanced disease.
Collapse
|
8
|
Fabrication of polyaspartic acid surface-modified highly fluorescent carbon quantum dot nanoprobe for sensing of reduced glutathione in real sample. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Tsubokawa D, Satoh M. Strongyloides venezuelensis-derived venestatin ameliorates asthma pathogenesis by suppressing receptor for advanced glycation end-products-mediated signaling. Pulm Pharmacol Ther 2022; 75:102148. [PMID: 35863725 DOI: 10.1016/j.pupt.2022.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION EF-hand Ca2+-binding proteins such as S100 protein family members are recognized by the receptor for advanced glycation end-products (RAGE) and are involved in the pathogenesis of asthma/allergic airway inflammation (AAI). Venestatin, an EF-hand Ca2+-binding protein, which is secreted by the parasitic helminth Strongyloides venezuelensis, binds with RAGE and suppresses RAGE-mediated inflammatory responses after parasite invasion. In this study, we evaluated the effect of venestatin on pathogenesis in a house dust mite (HDM) murine model of asthma/AAI. METHODS Mice were intranasally treated with HDM, HDM with recombinant venestatin, or HDM with synthetic peptides, which were designed based on the EF-hand Ca2+-binding domain of venestatin. Pro-inflammatory responses in the lungs of mice were assessed. RESULTS HDM treatment induced inflammatory cell infiltration, phosphorylation of the mitogen-activated protein kinase and inhibitor κB, and production of the cytokines tumor necrosis factor-α and interleukin-5 in the lungs. Co-administration of recombinant venestatin with HDM suppressed these pro-inflammatory responses. Treatment with synthetic peptides reduced inflammatory cell infiltration in a RAGE-dependent manner. CONCLUSION The EF-hand domain of venestatin may have potential therapeutic benefits in asthma.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
10
|
Sun Y, Fan Y, Wang Z, Li M, Su D, Liu Y, Liang X. S100A16 promotes acute kidney injury by activating HRD1-induced ubiquitination and degradation of GSK3β and CK1α. Cell Mol Life Sci 2022; 79:184. [PMID: 35279748 PMCID: PMC8918193 DOI: 10.1007/s00018-022-04213-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
AbstractThe pathogenesis of acute kidney injury (AKI) is associated with the activation of multiple signaling pathways, including Wnt/β-catenin signaling. However, the mechanism of Wnt/β-catenin pathway activation in renal interstitial fibroblasts during AKI is unclear. S100 calcium-binding protein A16 (S100A16), a new member of calcium-binding protein S100 family, is a multi-functional signaling factor involved in various pathogenies, including tumors, glycolipid metabolism disorder, and chronic kidney disease (CKD). We investigated the potential participation of S100A16 in Wnt/β-catenin pathway activation during AKI by subjecting wild-type (WT) and S100A16 knockout (S100A16+/−) mice to the ischemia–reperfusion injury (IRI), and revealed S100A16 upregulation in this model, in which knockout of S100A16 impeded the Wnt/β-catenin signaling pathway activation and recovered the expression of downstream hepatocyte growth factor (HGF). We also found that S100A16 was highly expressed in Platelet-derived growth factor receptor beta (PDGFRβ) positive renal fibroblasts in vivo. Consistently, in rat renal interstitial fibroblasts (NRK-49F cells), both hypoxia/reoxygenation and S100A16 overexpression exacerbated fibroblasts apoptosis and inhibited HGF secretion; whereas S100A16 knockdown or Wnt/β-catenin pathway inhibitor ICG-001 reversed these changes. Mechanistically, we showed that S100A16 promoted Wnt/β-catenin signaling activation via the ubiquitylation and degradation of β-catenin complex members, glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α), mediated by E3 ubiquitin ligase, the HMG-CoA reductase degradation protein 1 (HRD1). Our study identified the S100A16 as a key regulator in the activation of Wnt/β-catenin signaling pathway in AKI.
Collapse
Affiliation(s)
- Yifei Sun
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ya Fan
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Zheng Wang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Liu
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
11
|
Li X, Qiu N, Li Q. Prognostic Values and Clinical Significance of S100 Family Member's Individualized mRNA Expression in Pancreatic Adenocarcinoma. Front Genet 2021; 12:758725. [PMID: 34804125 PMCID: PMC8595214 DOI: 10.3389/fgene.2021.758725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: Pancreatic adenocarcinoma (PAAD) is a common malignant tumor worldwide. S100 family (S100s) is wildly involved in regulating the occurrence, development, invasion, metastasis, apoptosis, and drug resistance of many malignant tumors. However, the expression pattern, prognostic value, and oncological role of individual S100s members in PAAD need to be elucidated. Methods: The transcriptional expression levels of S100s were analyzed through the Oncomine and GEPIA, respectively. The protein levels of S100s members in PAAD were studied by Human Protein Atlas. The correlation between S100 mRNA expression and overall survival and tumor stage in PAAD patients was studied by GEPIA. The transcriptional expression correlation and gene mutation rate of S100s members in PAAD patients were explored by cBioPortal. The co-expression networks of S100s are identified using STRING and Gene MANIA to predict their potential functions. The correlation of S100s expression and tumor-infiltrating immune cells was tested by TIMER. Pathway activity and drug target analyzed by GSCALite. Results: 13 S100s members were upregulated in PAAD tissues. 15 S100s members were associated with TP53 mutation. Expression levels of S100A3/A5/A6/A10/A11/A14/A16/B/P/Z were significantly correlated with the pathological stage. Prognosis analysis demonstrated that PAAD patients with low mRNA levels of S100A1/B/Z or high levels of S100A2/A3/A5/A10/A11/A14/A16 had a poor prognosis. Immuno-infiltration analysis showed that the mRNA levels of S100A10/A11/A14/A16 were correlated with the infiltration degree of macrophages in PAAD. Drug sensitivity analysis showed that PAAD expressing high levels of S100A2/A6/A10/A11/A13/A14/A16 maybe resistant to small molecule drugs. Conclusion: This study identifies the clinical significance and biological functions of the S100s in PAAD, which may provide novel insights for the selection of prognostic biomarkers.
Collapse
Affiliation(s)
- Xiaomin Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Qiu
- Key Laboratory of Ocean and Marginal Sea Geology, Guangdong Southern Marine Science & Engineering Laboratory (Guangzhou), South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Qijuan Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
12
|
An Aptamer-Based Antagonist against the Receptor for Advanced Glycation End-Products (RAGE) Blocks Development of Colorectal Cancer. Mediators Inflamm 2021; 2021:9958051. [PMID: 34035661 PMCID: PMC8116144 DOI: 10.1155/2021/9958051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor angiogenesis plays a crucial role in colorectal cancer development. Dysregulation of the receptor for the advanced glycation end-products (RAGE) transmembrane signaling mediates inflammation, resulting in various cancers. However, the mechanism of the RAGE signaling pathway in modulating development of colorectal cancer has not been explored. In this study, an aptamer-based RAGE antagonist (Apt-RAGE) was used to inhibit interaction between RAGE and S100B, thus blocking downstream NFκB-mediated signal transduction. In vitro results showed that Apt-RAGE effectively inhibited S100B-dependent and S100B-independent RAGE/NFκB activation in colorectal HCT116 cancer cells, thus decreasing proliferation and migration of cells. Notably, expression and secretion of VEGF-A were inhibited, implying that Apt-RAGE can be used as an antiangiogenesis agent in tumor therapy. Moreover, Apt-RAGE inhibited tumor growth and microvasculature formation in colorectal tumor-bearing mice. Inhibition of angiogenesis by Apt-RAGE was positively correlated with suppression of the RAGE/NFκB/VEGF-A signaling. The findings of this study show that Apt-RAGE antagonist is a potential therapeutic agent for treatment of colorectal cancer.
Collapse
|
13
|
Peterova E, Bures J, Moravkova P, Kohoutova D. Tissue mRNA for S100A4, S100A6, S100A8, S100A9, S100A11 and S100P Proteins in Colorectal Neoplasia: A Pilot Study. Molecules 2021; 26:molecules26020402. [PMID: 33466593 PMCID: PMC7828666 DOI: 10.3390/molecules26020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
S100 proteins are involved in the pathogenesis of sporadic colorectal carcinoma through different mechanisms. The aim of our study was to assess tissue mRNA encoding S100 proteins in patients with non-advanced and advanced colorectal adenoma. Mucosal biopsies were taken from the caecum, transverse colon and rectum during diagnostic and/or therapeutic colonoscopy. Another biopsy was obtained from adenomatous tissue in the advanced adenoma group. The tissue mRNA for each S100 protein (S100A4, S100A6, S100A8, S100A9, S100A11 and S100P) was investigated. Eighteen biopsies were obtained from the healthy mucosa in controls and the non-advanced adenoma group (six individuals in each group) and thirty biopsies in the advanced adenoma group (ten patients). Nine biopsies were obtained from advanced adenoma tissue (9/10 patients). Significant differences in mRNA investigated in the healthy mucosa were identified between (1) controls and the advanced adenoma group for S100A6 (p = 0.012), (2) controls and the non-advanced adenoma group for S100A8 (p = 0.033) and (3) controls and the advanced adenoma group for S100A11 (p = 0.005). In the advanced adenoma group, differences between the healthy mucosa and adenomatous tissue were found in S100A6 (p = 0.002), S100A8 (p = 0.002), S100A9 (p = 0.021) and S100A11 (p = 0.029). Abnormal mRNA expression for different S100 proteins was identified in the pathological adenomatous tissue as well as in the morphologically normal large intestinal mucosa.
Collapse
Affiliation(s)
- Eva Peterova
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 01 Hradec Kralove, Czech Republic
| | - Jan Bures
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
- Correspondence: ; Tel.: +420-495-834-240
| | - Paula Moravkova
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
| | - Darina Kohoutova
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, Chelsea, London SW3 6JJ, UK
| |
Collapse
|
14
|
An Integrated Bioinformatic Analysis of the S100 Gene Family for the Prognosis of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4746929. [PMID: 33294444 PMCID: PMC7718059 DOI: 10.1155/2020/4746929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
Background S100 family genes exclusively encode at least 20 calcium-binding proteins, which possess a wide spectrum of intracellular and extracellular functions in vertebrates. Multiple lines of evidences suggest that dysregulated S100 proteins are associated with human malignancies including colorectal cancer (CRC). However, the diverse expression patterns and prognostic roles of distinct S100 genes in CRC have not been fully elucidated. Methods In the current study, we analyzed the mRNA expression levels of S100 family genes and proteins and their associations with the survival of CRC patients using the Oncomine analysis and GEPIA databases. Expressions and mutations of S100 family genes were analyzed using the cBioPortal, and protein-protein interaction (PPI) networks of S100 proteins and their mutation-related coexpressed genes were analyzed using STRING and Cytoscape. Results We observed that the mRNA expression levels of S100A2, S100A3, S100A9, S100A11, and S100P were higher and the level of S100B was lower in CRC tissues than those in normal colon mucosa. A high S100A10 levels was associated with advanced-stage CRC. Results from GEPIA database showed that highly expressed S100A1 was correlated with worse overall survival (OS) and disease-free survival (DFS) and that overexpressions of S100A2 and S100A11 were associated with poor DFS of CRC, indicating that S100A1, S100A2, and S100A11 are potential prognostic markers. Unexpectedly, most of S100 family genes showed no significant prognostic values in CRC. Conclusions Our findings, though still need to be ascertained, offer novel insights into the prognostic implications of the S100 family in CRC and will inspire more clinical trials to explore potential S100-targeted inhibitors for the treatment of CRC.
Collapse
|
15
|
Al-Ashkar N, Zetoune AB. S100A14 serum level and its correlation with prognostic factors in breast cancer. J Egypt Natl Canc Inst 2020; 32:37. [PMID: 32984913 DOI: 10.1186/s43046-020-00048-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Breast cancer is the most commonly occurring cancer in women worldwide. S100A14 is a novel important member of S100 proteins family. Its importance is due to its role in tumorigenesis and metastasis process. In this study, we aimed to determine serum levels of S100A14 protein in breast cancer patients and healthy individuals to know if it can be suggested as a new biomarker for breast cancer and to reveal whether it is correlated with cancer pathological features. METHODS This cross-sectional study was performed in two groups: study group contains 46 breast cancer patients (29 metastatic and 17 non-metastatic) and control group contains 22 healthy women. Enzyme-linked immunoabsorbent assay was performed to determine S100A14 protein levels in samples. Pathological data were obtained for each patient. The data were statistically analyzed using Kruskal-Wallis H, Mann-Whitney U, and Spearman correlation tests. RESULTS S100A14 serum levels were elevated in study group compared with control group (P < 0.05). S100A14 serum levels were significantly increased in distant breast cancer patients compared with regional breast cancer patients (P = 0.001). There was a strong positive correlation between serum S100A14 level and tumor grade (rs = 0.713, P < 0.001). CONCLUSION Our study indicated that S100A14 serum levels are elevated in breast cancer patients compared with control individuals. High S100A14 serum levels were correlated with poor tumor differentiation so it might have a prognostic significance for breast cancer tumors. The elevation of S100A14 levels in distant breast cancer patients suggests the ability of using serum S100A14 as a biomarker for detection of breast cancer metastasis.
Collapse
Affiliation(s)
- Noor Al-Ashkar
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
16
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
17
|
Diamantopoulou A, Mantas D, Kostakis ID, Agrogiannis G, Garoufalia Z, Kavantzas N, Kouraklis G. A Clinicopathological Analysis of S100A14 Expression in Colorectal Cancer. In Vivo 2020; 34:321-330. [PMID: 31882495 DOI: 10.21873/invivo.11777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM The calcium-binding protein S100A14 is involved in processes related to tumorigenesis and tumor propagation, such as proliferation, apoptosis, motility and invasiveness. Our aim was to investigate its role in colorectal cancer. PATIENTS AND METHODS One hundred and seven patients (65 men and 42 women) were included in this study. They had been diagnosed with colorectal cancer and undergone complete resection of their primary tumor. Tissue samples from archival blocks of their normal and malignant colorectal tissues were used for immunohistochemical assessment of S100A14 expression. S100A14 levels were evaluated using image analysis and associated with various clinicopathological parameters and prognosis. RESULTS S100A14 expression was reduced in malignant tissues when compared to normal intestinal mucosa in cases of T3-T4 tumors (p=0.017). Moreover, as far as S100A14 levels in malignant tissues are concerned, they were lower in T3-T4 tumors (p=0.001), N2 disease (p=0.034) and M1 disease (p=0.019). Finally, very high S100A14 production (>75th percentile) was associated with shorter disease-specific (HR=3.584, p=0.045) and relapse-free survival (HR=4.527, p=0.007) in multivariate survival analysis. CONCLUSION S100A14 expression is decreased in advanced colorectal cancer. However, cases with very high S100A14 levels have a worse survival.
Collapse
Affiliation(s)
- Angela Diamantopoulou
- Second Department of Propaedeutic Surgery, "Laiko" General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitrios Mantas
- Second Department of Propaedeutic Surgery, "Laiko" General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis D Kostakis
- Second Department of Propaedeutic Surgery, "Laiko" General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Zoe Garoufalia
- Second Department of Propaedeutic Surgery, "Laiko" General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Gregory Kouraklis
- Second Department of Propaedeutic Surgery, "Laiko" General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
18
|
Moravkova P, Kohoutova D, Vavrova J, Bures J. Serum S100A6, S100A8, S100A9 and S100A11 proteins in colorectal neoplasia: results of a single centre prospective study. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 80:173-178. [PMID: 31856598 DOI: 10.1080/00365513.2019.1704050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
S100 proteins are involved in biological events related to colorectal carcinogenesis. Aim of this prospective study was to assess serum concentration of S100A6, A8, A9 and A11 proteins in patients with colorectal neoplasia. Eighty-four subjects were enrolled: 20 controls (average risk population with normal findings on colonoscopy; 7 men, 13 women, age 23-74, mean 55 ± 14), 20 patients with non-advanced colorectal adenoma (non-AA, 10 men, 10 women, age 41-82, mean 62 ± 11), 22 with advanced colorectal adenoma (AA, 15 men, 7 women, age 49-80, mean 64 ± 8) and 22 with colorectal cancer (CRC, 12 men, 10 women, age 49-86, mean 69 ± 10). Peripheral venous blood was obtained. Serum S100 proteins were investigated by enzyme immunoassay technique. Serum S100A6 was significantly lower in CRC (mean 8530 ± 4743 ng/L), p = .035 compared to controls (mean 11308 ± 2968 ng/L). Serum S100A8 was significantly higher in AA (median 11955 ng/L, IQR 2681-34756 ng/L), p = .009 and in CRC (median 27532 ng/L, IQR 6794-35092 ng/L), p < .001 compared to controls (median 2513 ng/L, IQR 2111-4881 ng/L). Serum S100A9 concentrations did not differ between any tested group and controls, p > .05. Serum concentration of S100A11 was significantly lower in non-AA (mean 3.5 ± 2.4 μg/L), p = .004 and in CRC (mean 3.4 ± 2.4 μg/L), p = .002 compared to controls (mean 5.9 ± 2.5 μg/L). Sensitivity and specificity for S100A8 protein in patients with CRC were 94% and 73%; positive predictive value 68% and negative predictive value 95%. Patients with colorectal neoplasia have significantly lower serum S100A6 and S100A11 levels, significantly higher S100A8 and unaltered serum S100A9 levels.
Collapse
Affiliation(s)
- Paula Moravkova
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic
| | - Darina Kohoutova
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic.,The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Jaroslava Vavrova
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Bures
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
S100B Protein Stimulates Proliferation and Angiogenic Mediators Release through RAGE/pAkt/mTOR Pathway in Human Colon Adenocarcinoma Caco-2 Cells. Int J Mol Sci 2019; 20:ijms20133240. [PMID: 31266264 PMCID: PMC6651655 DOI: 10.3390/ijms20133240] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation and angiogenesis are associated with colonic carcinogenesis. Enteric glia-derived S100B protein has been proposed as an "ideal bridge", linking colonic inflammation and cancer, given its dual ability to up-regulate nuclear factor-kappaB (NF-κB) transcription via receptor for advanced glycation end products (RAGE) signaling and to sequestrate wild type pro-apoptotic wild type (wt)p53. However, its pro-angiogenic effects on cancer cells are still uninvestigated. To this aim, we evaluated the effect of exogenous S100B (0.05-5 µM) protein alone or in the presence of S100B blocking monoclonal antibody (mAb) (1:105-1:104 v/v diluted) on (1) cultured Caco-2 cells proliferation, migration and invasiveness in vitro, respectively by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)-formazan, wound healing and matrigel invasion assays and (2) its effect on the release of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF) by ELISA and immunofluorescence analyses. The effect of S100B alone or in the presence of S100BmAb was then investigated on RAGE/pAkt/mammalian target of rapamycin (mTOR) signaling pathway by immunoblot analysis. Our results showed that S100B markedly increases proliferation and invasiveness of Caco-2 cells, through the release of pro-angiogenic VEGF and NO paralleled to a significant decrease of wtp53 expression mediated by RAGE-p38 mitogen-activated protein kinase (MAPK)/pAkt-mTOR and hypoxia-inducible factor 1-alpha (HIF1α) pathways. Such effects were counteracted by S100BmAb, indicating that S100B targeting is a potential approach to inhibit colon carcinoma proliferation and angiogenesis.
Collapse
|
20
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
21
|
Brenner AK, Bruserud Ø. S100 Proteins in Acute Myeloid Leukemia. Neoplasia 2018; 20:1175-1186. [PMID: 30366122 PMCID: PMC6215056 DOI: 10.1016/j.neo.2018.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
Abstract
The S100 protein family contains 20 functionally expressed members, which are commonly dysregulated in cancer. Their wide range of functions includes cell proliferation, cell differentiation, regulation of transcription factors, inflammation, chemotaxis, and angiogenesis. S100 proteins have in several types of cancer proven to be biomarkers for disease progression and prognosis. Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive disease in which immature myeloblasts replace normal hematopoietic cells in the bone marrow. This review focuses on the S100 protein family members, which commonly are dysregulated in AML, and on the consequences of their dysregulation in the disorder. Like in other cancers, it appears as if S100 proteins are potential biomarkers for leukemogenesis. Furthermore, several S100 members seem to be involved in maintaining the leukemic phenotype. For these reasons, specific S100 proteins might serve as prognostic biomarkers, especially in the patient subset with intermediate/undetermined risk, and as potential targets for patient-adjusted therapy. Because the question of the most suitable candidate S100 biomarkers in AML still is under discussion, because particular AML subgroups lead to specific S100 signatures, and because downstream effects and the significance of co-expression of potential S100 binding partners in AML are not fully elucidated yet, we conclude that a panel of S100 proteins will probably be best suited for prognostic purposes.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway.
| |
Collapse
|
22
|
S100A4 May Be a Good Prognostic Marker and a Therapeutic Target for Colon Cancer. JOURNAL OF ONCOLOGY 2018; 2018:1828791. [PMID: 30111999 PMCID: PMC6077577 DOI: 10.1155/2018/1828791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023]
Abstract
Background Globally, the colorectal cancers rank the third in terms of cancer incidence and rank the fourth in cancer-associated deaths. S100A4, an important member of the S100 protein family, serves to promote tumor progression and metastasis. By conducting this study, we aim to examine the role of S100A4 in the prognosis of colon cancer and to demonstrate its prognostic significance. Methods Tissue samples of colon cancer from 148 patients who underwent colon resection due to colon cancer were analyzed by immunohistochemical staining to determine the protein expression levels of S100A4. The protein expression levels of S100A4 in tumor tissue were matched with the clinicopathologic factors including patient survival. Results Cytoplasmic expression of S100A4 protein was demonstrated in the tumor tissue of 132 patients (89.2%) out of a total of 148 study patients. Statistically, the expression levels of the cytoplasmic S100A4 protein correlated significantly with the TNM stages and patient survival. The distribution of the S100A4 protein staining in the tumor tissue was associated with the age groups, tumor localization, TNM staging, and patient survival with statistical significance. The levels of S100A4 protein expression were found to be an independent prognostic factor for TNM staging and poor survival. Conclusion Expression of the S100A4 protein in colon cancers may be an indicator of tumor progression and lymph node metastasis and may be useful for predicting the overall survival of the patients with colon cancer. In patients with colon cancer, it may be used as an indicator of poor prognosis.
Collapse
|
23
|
Grandpierre RG, Bobbia X, de La Coussaye JE, Claret PG. Intérêt clinique des concentrations sériques de la protéine S100β dans l’évaluation des patients traumatisés crâniens. ANNALES FRANCAISES DE MEDECINE D URGENCE 2018. [DOI: 10.3166/afmu-2018-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Les recommandations de la Société française de médecine d’urgence concernant la prise en charge des patients traumatisés crâniens légers ont été éditées en 2012, complétées par des recommandations sur la bonne utilisation du biomarqueur S100β deux ans plus tard. Grâce à son excellente valeur prédictive négative, la protéine S100β utilisée à travers des règles strictes de prescription a été définie comme une alternative solide à la tomodensitométrie. Cependant, plusieurs questions restent en suspens concernant le délai maximum de réalisation du prélèvement par rapport à l’heure du traumatisme, l’impact médicoéconomique, les variations en rapport avec l’âge du patient, l’impact des agents anticoagulants ou antiagrégants plaquettaires et l’utilité du dosage sérique de cette protéine dans d’autres cadres nosologiques.
Collapse
|
24
|
Prognostic Roles of mRNA Expression of S100 in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9815806. [PMID: 29607329 PMCID: PMC5828052 DOI: 10.1155/2018/9815806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
The S100 protein family is involved in cancer cell invasion and metastasis, but its prognostic value in non-small-cell lung cancer (NSCLC) has not been elucidated. In the present study we investigated the prognostic role of mRNA expression of each individual S100 in NSCLC patients through the Kaplan-Meier plotter (KM plotter) database. Expression of 14 members of the S100 family correlated with overall survival (OS) for all NSCLC patients; 18 members were associated with OS in adenocarcinoma, but none were associated with OS in squamous cell carcinoma. In particular, high mRNA expression level of S100B was associated with better OS in NSCLC patients. The prognostic value of S100 according to smoking status, pathological grades, clinical stages, and chemotherapeutic treatment of NSCLC was further assessed. Although the results should be further verified in clinical trials our findings provide new insights into the prognostic roles of S100 proteins in NSCLC and might promote development of S100-targeted inhibitors for the treatment of NSCLC.
Collapse
|
25
|
A Proteomics Analysis Reveals 9 Up-Regulated Proteins Associated with Altered Cell Signaling in Colon Cancer Patients. Protein J 2017; 36:513-522. [PMID: 29128960 DOI: 10.1007/s10930-017-9746-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Colorectal cancer is the second most common cancer in women and third most common cancer in men. Cell signaling alterations in colon cancer, especially in aggressive metastatic tumors, require further investigations. The present study aims to compare the expression pattern of proteins associated with cell signaling in paired tumor and non-tumor samples of patients with colon cancer, as well as to define the cluster of proteins to differentiate patients with non-metastatic (Dukes' grade B) and metastatic (Dukes' grade C&D) colon cancer. Frozen tumor and non-tumor samples were collected after tumor resection from 19 patients with colon cancer. The Panorama™ Antibody Microarray-Cell Signaling kits were used for the analyses. The expression ratios of paired tumor/non-tumor samples were calculated for the each protein. We employed R packages 'samr', 'gplots', 'supclust' (pelora, wilma algorithms), 'glmnet' for the differential expression analysis, supervised clustering and penalized logistic regression. Significance analysis of microarrays revealed 9 significantly up-regulated proteins, including protein kinase C gamma, c-Myc, MDM2, pan cytokeratin, and 1 significantly down-regulated protein (GAP1) in tumoral mucosa. Pan-cytokeratin and APP were up-regulated in tumor versus non-tumor tissue, and were selected in the predictive cluster to discriminate colon cancer type. Higher levels of S-100b and phospho-Tau-pSer199/202 were confirmed as the predictors of non-metastatic colon cancer by all employed regression/clustering methods. Deregulated proteins in colon cancer are involved in oncogenic signal transduction, cell cycle control, and regulation of cytoskeleton/transport. Further studies are needed to validate potential protein markers of colon cancer development and metastatic progression.
Collapse
|
26
|
A review of S100 protein family in lung cancer. Clin Chim Acta 2017; 476:54-59. [PMID: 29146477 DOI: 10.1016/j.cca.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 02/08/2023]
Abstract
S100 protein family, representing 25 relatively small calcium binding proteins, has been reported to be involved in multiple stages of tumorigenesis and progression. These proteins are considered having potential value to be adopted as novel biomarkers in the detection and accurate prediction of many kinds of tumors, including lung cancer. As the one having the highest morbidity and mortality among all cancers, lung carcinoma is still occult for detection, especially at early stage. S100 proteins take participation in the lung neoplasia through playing intracellular and/or extracellular functions, therefore getting involved in a variety of biological processes such as differentiation, proliferation, and migration. A few members have also been testified to modulate TGF-β/Smad-3 mediated transcriptional activity of target genes involved in tumor promotion. In addition to that, a number of proteins in this family have already been reported to experience an abnormal trend in lung cancer at cell, serum and tissue levels. Thus, S100 proteins may serve as effective biomarkers for suspected or already diagnosed lung cancer patients. In future, S100 protein family might be applied as therapeutic targets in clinical treatment of lung cancer. In this review, we firstly summed up the biological and clinical evidence connecting S100 proteins and lung cancer, which has not been summarized before.
Collapse
|
27
|
Morávková P, Kohoutová D, Vávrová J, Bureš J. S100A4 Protein in Inflammatory Bowel Disease: Results of a Single Centre Prospective Study. ACTA MEDICA (HRADEC KRALOVE) 2017; 60:108-113. [PMID: 29439756 DOI: 10.14712/18059694.2018.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The aim of our study was to assess association of serum S100A4 protein with ulcerative colitis (UC) and Crohn's disease (CD). METHODS Study included 118 subjects: 93 patients with CD, 16 with UC and 9 controls. In CD group, 20/93 patients had B1 phenotype, 19/93 B2, 20/93 B3 and 34/93 B2 + B3. L1 involvement was present in 15/93, L2 in 14/93 and L3 in 64/93 patients. Serum S100A4 concentration was investigated in peripheral venous blood samples by means of ELISA. RESULTS Serum S100A4 was significantly higher in UC (158.6 ± 56.2 ng/mL), p = 0.019 and in CD (154.4 ± 52.1 ng/mL), p = 0.007 compared to controls (104.8 ± 40.5 ng/mL). No difference in S100A4 was revealed between UC and CD, p > 0.05. Serum S100A4 in each CD subgroup (according to behaviour) was significantly higher compared to controls, p < 0.05. Serum S100A4 was significantly higher in L2 (144.6 ± 44.2 ng/mL), p = 0.041 and in L3 (163.0 ± 52.8 ng/mL), p = 0.002 compared to controls and in L3 compared to L1 (126.9 ± 47.6 ng/mL), p = 0.017. CONCLUSION Association of serum S100A4 protein with UC and CD was confirmed. In CD, disease behaviour did not influence serum concentration of S100A4 protein. In CD, higher levels of serum S100A4 were observed in patients with ileo-colonic and colonic involvement compared to those with isolated small bowel involvement.
Collapse
Affiliation(s)
- Paula Morávková
- Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, 2nd Department of Internal Medicine - Gastroenterology, Hradec Králové, Czech Republic.
| | - Darina Kohoutová
- Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, 2nd Department of Internal Medicine - Gastroenterology, Hradec Králové, Czech Republic
| | - Jaroslava Vávrová
- Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Hradec Králové, Czech Republic
| | - Jan Bureš
- Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, 2nd Department of Internal Medicine - Gastroenterology, Hradec Králové, Czech Republic
| |
Collapse
|
28
|
Shekhtman A, Ramasamy R, Schmidt AM. Glycation & the RAGE axis: targeting signal transduction through DIAPH1. Expert Rev Proteomics 2016; 14:147-156. [PMID: 27967251 DOI: 10.1080/14789450.2017.1271719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration. Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases. Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.
Collapse
Affiliation(s)
- Alexander Shekhtman
- a Department of Chemistry , University at Albany, State University of New York , Albany , NY , 12222 , USA
| | - Ravichandran Ramasamy
- b Diabetes Research Program, Division of Endocrinology, Department of Medicine , NYU Langone Medical Center , New York , NY , 10016 , USA
| | - Ann Marie Schmidt
- b Diabetes Research Program, Division of Endocrinology, Department of Medicine , NYU Langone Medical Center , New York , NY , 10016 , USA
| |
Collapse
|
29
|
Lee AR, Park J, Jung KJ, Jee SH, Kim-Yoon S. Genetic variation rs7930 in the miR-4273-5p target site is associated with a risk of colorectal cancer. Onco Targets Ther 2016; 9:6885-6895. [PMID: 27853382 PMCID: PMC5106228 DOI: 10.2147/ott.s108787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) are noncoding RNAs that play roles as tumor suppressors or oncogenes by regulating the expression of target genes via binding to seed-match sequences. Polymorphisms in the miRNA-binding site of a target gene can alter miRNA binding and potentially affect the risk of cancer. The objective of this study was to identify single-nucleotide polymorphisms (SNPs) in miRNA-binding sites and assess their involvement in the risk of colorectal cancer (CRC). MATERIALS AND METHODS SNPs in the 3' untranslated regions of genes were selected and assessed for their effects on CRC risk in Korean population using participants in Korean Cancer Prevention Study-II. A detailed study was carried out with the SNP rs7930 in the 3' untranslated region of the translocase of outer mitochondrial membrane 20 (TOMM20) gene. A case-control study (1,545 controls and 620 CRC cases) was conducted to analyze the relationship between polymorphism at rs7930 and the risk of CRC. An interacting miRNA was predicted using web-based software programs, and its interaction with rs7930 in CRC cell lines was investigated by using a luciferase assay. RESULTS Individuals carrying the rs7930 AG genotype (G allele) had a 1.721-fold increased risk for CRC in comparison with those with the AA genotype (A allele). The miRNA miR-4273-5p was found to specifically interact with the A allele of rs7930 and to suppress the expression of the target gene (TOMM20) in CRC cell lines. CONCLUSION rs7930 is an independent genetic risk factor for CRC susceptibility. Our study suggests a mechanism of how this SNP contributes to CRC carcinogenesis.
Collapse
Affiliation(s)
- Ah-Reum Lee
- Department of Medical Life Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Jongkeun Park
- Department of Medical Life Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Sungjoo Kim-Yoon
- Department of Medical Life Sciences, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
30
|
Loosen SH, Benz F, Niedeggen J, Schmeding M, Schüller F, Koch A, Vucur M, Tacke F, Trautwein C, Roderburg C, Neumann UP, Luedde T. Serum levels of S100A6 are unaltered in patients with resectable cholangiocarcinoma. Clin Transl Med 2016; 5:39. [PMID: 27709523 PMCID: PMC5052241 DOI: 10.1186/s40169-016-0120-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/10/2016] [Indexed: 02/12/2023] Open
Abstract
Background Elevated expression levels of S100A6, a calcium-binding low-molecular-weight protein, were demonstrated in various malignancies. Moreover, increased serum levels of S100A6 were suggested as a novel biomarker for various inflammatory and malignant diseases including lung and gastric cancer. However, up to now, serum concentrations of S100A6 have not been analyzed in patients with cholangiocarcinoma (CCA). Methods S100A6 mRNA expression levels were analyzed in human and murine CCA tumor samples, using semi-quantitative reverse transcriptase PCR. S100A6 serum concentrations were measured using an enzyme-linked immunosorbent assay in 112 patients with CCA referred to surgery for curative resection and were compared to those of 42 healthy controls. Results were correlated with clinical data. Results S100A6 mRNA expression levels were significantly up-regulated in tumor samples of CCA patients and in tumor tissue of a CCA mouse model. In contrast, serum levels of S100A6 were not significantly altered in patients with CCA compared to healthy controls. Whereas no differences became apparent within the different clinical subgroups of CCA, patients with primary sclerosing cholangitis (PSC)-based CCA displayed higher levels of S100A6 compared to the other patients. Nevertheless, patients with higher S100A6 serum concentrations showed a trend towards an impaired prognosis compared to patients with lower levels. Finally, within our cohort of patients both the diagnostic and prognostic potentials of S100A6 were similar to those of the clinically established biomarkers CEA and CA19-9. Conclusion Although S100A6 was expressed at significantly higher levels in human and murine CCA tumor samples, S100A6 serum levels were not regulated in patients with CCA and are thus not suitable for diagnosis of CCA. However, CCA-patients with elevated S100A6 displayed a trend toward an impaired prognosis compared to patients with lower S100A6 levels, supporting its further evaluation as a prognostic biomarker in CCA. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0120-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sven H Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Fabian Benz
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Jennifer Niedeggen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Maximilian Schmeding
- Department of Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Florian Schüller
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Mihael Vucur
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ulf P Neumann
- Department of Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|