1
|
Mamczarz J, Lane M, Merchenthaler I. Letrozole delays acquisition of water maze task in female BALB/c mice: Possible involvement of anxiety. Horm Behav 2024; 162:105524. [PMID: 38513526 PMCID: PMC11155665 DOI: 10.1016/j.yhbeh.2024.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Letrozole, an aromatase inhibitor preventing estrogen synthesis from testosterone, is used as an adjuvant therapy in estrogen receptor-positive breast cancer patients. However, like other aromatase inhibitors, it induces many side effects, including impaired cognition. Despite its negative effect in humans, results from animal models are inconsistent and suggest that letrozole can either impair or improve cognition. Here, we studied the effects of chronic letrozole treatment on cognitive behavior of adult female BALB/c mice, a relevant animal model for breast cancer studies, to develop an appropriate animal model aimed at testing therapies to mitigate side effects of letrozole. In Morris water maze, letrozole 0.1 mg/kg impaired reference learning and memory. Interestingly, most of the letrozole 0.1 mg/kg-treated mice were able to learn the new platform position in reversal training and performed similar to control mice in a reversal probe test. Results of the reversal test suggest that letrozole did not completely disrupt spatial navigation, but rather delayed acquisition of spatial information. The delay might be related to increased anxiety as suggested by increased thigmotactic behavior during the reference memory training. The learning impairment was water maze-specific since we did not observe impairment in other spatial tasks such as in Y-maze or object location test. In contrast, the dose of 0.3 mg/kg did not have effect on water maze learning and facilitated locomotor habituation and recognition in novel object recognition test. The current study shows that letrozole dose-dependently modulates behavioral response and that its effects are task-dependent.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Malcolm Lane
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Istvan Merchenthaler
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
2
|
Lan Z, Meng Z, Lian B, Liu M, Sun T, Sun H, Liu Z, Hu Z, Guo Q, Zhang J. Hippocampal Aromatase Knockdown Aggravates Ovariectomy-Induced Spatial Memory Impairment, Aβ Accumulation and Neural Plasticity Deficiency in Adult Female Mice. Neurochem Res 2021; 46:1188-1202. [PMID: 33559105 DOI: 10.1007/s11064-021-03258-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022]
Abstract
Ovarian estrogens (mainly 17β estradiol, E2) have been involved in the regulation of the structure of hippocampus, the center of spatial memory. In recent years, high levels of aromatase (AROM), the estrogen synthase, has been localized in hippocampus; and this hippocampus-derived E2 seems to be functional in synaptic plasticity and spatial memory as ovarian E2 does. However, the contribution of ovarian E2 and hippocampal E2 to spatial memory and neural plasticity remains unclear. In this study, AROM-specific RNA interference AAVs (shAROM) were constructed and injected into the hippocampus of control or ovariectomized (OVX) mice. Four weeks later the spatial learning and memory behavior was examined with Morris water maze, the expression of hippocampal Aβ related proteins, selected synaptic proteins and CA1 synapse density, actin polymerization related proteins and CA1 spine density were also examined. The results showed that while OVX and hippocampal shAROM contributed similarly to most of the parameters examined, shAROM induced more increase in BACE1 (amyloidogenic β-secretase), more decrease in neprilysin (Aβ remover) and Profilin-1 (actin polymerization inducer). More importantly, combined OVX and shAROM treatment displayed most significant impairment of spatial learning and memory as well as decrease in synaptic plasticity compared to OVX or shAROM alone. In conclusion, the above results clearly demonstrated the crucial role of hippocampal E2 in the regulation of the structure and function of hippocampus besides ovarian E2, indicating that hippocampal E2 content should also be taken into consideration during estrogenic replacement.
Collapse
Affiliation(s)
- Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing, China
| | - Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing, China
| | - Biyao Lian
- Department of Neurobiology, Army Medical University, Chongqing, China
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengying Liu
- Department of Neurobiology, Army Medical University, Chongqing, China
- The 305 Hospital of PLA, Beijing, China
| | - Tao Sun
- Department of Neurobiology, Army Medical University, Chongqing, China
- The 63650 Hospital of PLA, Malan, China
| | - Huan Sun
- Department of Neurobiology, Army Medical University, Chongqing, China
- Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Liu
- Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Zhenxin Hu
- Battalion One of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Qiang Guo
- Department of Basic Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Liu M, Xing F, Bian C, Zhao Y, Zhao J, Liu Y, Zhang J. Letrozole induces worse hippocampal synaptic and dendritic changes and spatial memory impairment than ovariectomy in adult female mice. Neurosci Lett 2019; 706:61-67. [PMID: 31077740 DOI: 10.1016/j.neulet.2019.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 01/11/2023]
Abstract
Estrogens (E2) derived from ovaries and/or local de novo synthesis in the hippocampus profoundly regulate hippocampal structure and function, but the importance of local E2 versus ovarian E2 on hippocampal synaptic plasticity and spatial memory has not been well elucidated. The present study used ovariectomy (OVX) and intraperitoneal injection of an E2 synthase inhibitor, letrozole (LET), in adult female mice to investigate changes in hippocampal steroid receptor coactivator-1 (SRC-1), postsynaptic proteins, and actin polymerization dynamics with these treatments. Changes in the CA1 spine density, synapse density and spatial learning and memory after OVX and LET were also investigated. As a result, OVX and LET showed similar regulation of the expression of GluR1, spinophilin and p-Cofilin, but LET tended to induce more significant changes in SRC-1, PSD95, Rictor, Cofilin and actin depolymerization. More significant decreases in F-actin/G-actin, CA1 spine density and synapse density were also observed after LET than after OVX. Notably, LET-treated mice showed worse learning and memory impairment than OVX mice. Taken together, these results demonstrated that circulating E2 played a limited role and that hippocampus-derived E2 played a more important role in the regulation of hippocampal synaptic plasticity and hippocampus-based spatial learning and memory.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Fangzhou Xing
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Yan Liu
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Zhang YY, Liu MY, Liu Z, Zhao JK, Zhao YG, He L, Li W, Zhang JQ. GPR30-mediated estrogenic regulation of actin polymerization and spatial memory involves SRC-1 and PI3K-mTORC2 in the hippocampus of female mice. CNS Neurosci Ther 2019; 25:714-733. [PMID: 30714337 PMCID: PMC6515707 DOI: 10.1111/cns.13108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022] Open
Abstract
AIMS The G-protein-coupled estrogen receptor GPR30 (also referred to as GPER) has been implicated in the estrogenic regulation of hippocampal plasticity and spatial memory; however, the molecular mechanisms are largely unclear. METHODS In this study, we initially examined the levels of GPR30 in the hippocampus of postnatal, ovariectomy (OVX)- and letrozole (LET)-treated female mice. Under G1, G15, and/or OVX treatment, the spatial memory, spine density, levels of ERα, ERβ, and SRC-1, selected synaptic proteins, mTORC2 signals (Rictor and p-AKT Ser473), and actin polymerization dynamics were subsequently evaluated. Furthermore, G1, G15, and/or E2 combined with SRC-1 and/or PI3K inhibitors, actin cytoskeleton polymerization modulator JPK, and CytoD treatments were used to address the mechanisms that underlie GPR30 regulation in vitro. Finally, mTORC2 activator A-443654 (A4) was used to explore the role of mTORC2 in GPR30 regulation of spatial memory. RESULTS The results showed that high levels of GPR30 were detected in the adult hippocampus and the levels were downregulated by OVX and LET. OVX induced an impairment of spatial memory, and changes in other parameters previously described were reversed by G1 and mimicked by G15. Furthermore, the E2 effects on SRC-1 and mTORC2 signals, synaptic proteins, and actin polymerization were inhibited by G15, whereas G1 effects on these parameters were inhibited by the blockade of SRC-1 or PI3K; the levels of synaptic proteins were regulated by JPK and CytoD. Importantly, G15-induced actin depolymerization and spatial memory impairment were rescued by mTORC2 activation with A4. CONCLUSIONS Taking together, these results demonstrated that decreased GPR30 induces actin depolymerization through SRC-1 and PI3K/mTORC2 pathways and ultimately impairs learning and memory, indicating its potential role as a therapeutic target against hippocampus-based, E2-related memory impairments.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Meng-Ying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Zhi Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Ji-Kai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Yan-Gang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Li He
- School of Nursing, Third Military Medical University, Chongqing, China
| | - Wei Li
- School of Nursing, Third Military Medical University, Chongqing, China
| | - Ji-Qiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Xing FZ, Zhao YG, Zhang YY, He L, Zhao JK, Liu MY, Liu Y, Zhang JQ. Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation-reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus. CNS Neurosci Ther 2018; 24:495-507. [PMID: 29352507 DOI: 10.1111/cns.12806] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/23/2017] [Accepted: 12/24/2017] [Indexed: 11/28/2022] Open
Abstract
AIMS Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long-term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear. METHODS We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A-443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC-1 expression, mTORC2 signaling (rictor and phospho-AKTSer473), actin polymerization (phospho-cofilin and profilin-1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density. RESULTS All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p-cofilin, GluR1, and spinophilin expression. The ER antagonist-induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC-1, rictor, and synaptophysin expression. CONCLUSIONS nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal-dependent dementia such as Alzheimer's disease as proposed by previous studies.
Collapse
Affiliation(s)
- Fang-Zhou Xing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yan-Gang Zhao
- Department of Neurobiology, Third Military Medical University, Chongqing, China
| | - Yuan-Yuan Zhang
- Department of Neurobiology, Third Military Medical University, Chongqing, China
| | - Li He
- School of Nursing, Third Military Medical University, Chongqing, China
| | - Ji-Kai Zhao
- Department of Neurobiology, Third Military Medical University, Chongqing, China
| | - Meng-Ying Liu
- Department of Neurobiology, Third Military Medical University, Chongqing, China
| | - Yan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Ji-Qiang Zhang
- Department of Neurobiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhao Y, He L, Zhang Y, Zhao J, Liu Z, Xing F, Liu M, Feng Z, Li W, Zhang J. Estrogen receptor alpha and beta regulate actin polymerization and spatial memory through an SRC-1/mTORC2-dependent pathway in the hippocampus of female mice. J Steroid Biochem Mol Biol 2017; 174:96-113. [PMID: 28789972 DOI: 10.1016/j.jsbmb.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Aging-related decline of estrogens, especially 17β-estradiol (E2), has been shown to play an important role in the impairment of learning and memory in dementias, such as Alzheimer's disease (AD), but the underlying molecular mechanisms are poorly understood. In this study, we first demonstrated decreases in E2 signaling (aromatase, classic estrogen receptor ERα and ERβ and their coactivator SRC-1), mTORC2 signaling (Rictor and phospho-AKTser473) and actin polymerization (phospho-Cofilin, Profilin-1 and the F-actin/G-actin ratio) in the hippocampus of old female mice compared with those levels detected in the adult hippocampus. We then showed that ERα and ERβ antagonists induced a significant decrease in SRC-1, mTORC2 signaling, actin polymerization, and CA1 spine density, as well as impairments of learning and memory; however, ovariectomy-induced changes of these parameters could be significantly reversed by treatment with ER agonists. We further showed that expression of SRC-1, mTORC2 signaling and actin polymerization could be upregulated by E2 treatment, and the effects of E2 were blocked by the ER antagonists but mimicked by the agonists. We also showed that the lentivirus-mediated SRC-1 knockdown significantly inhibited the agonist-activated mTORC2 signaling and actin polymerization, and the lentivirus-mediated Rictor knockdown also significantly inhibited the agonist-activated actin polymerization. Finally, we demonstrated that the ERα and ERβ antagonists induced a disruption in actin polymerization and an impairment of spatial memory, which were rescued by activation of mTORC2. Taken together, the above results clearly demonstrated an mTORC2-dependent regulation of actin polymerization that contributed to the effects of ERα and ERβ on spatial learning, which may provide a novel target for the prevention and treatment of E2-related dementia in the aged population.
Collapse
Affiliation(s)
- Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Li He
- School of Nursing, Third Military Medical University, Chongqing 400038, China
| | - Yuanyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Fangzhou Xing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Ziqi Feng
- Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Wei Li
- School of Nursing, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Zhao Y, Yu Y, Zhang Y, He L, Qiu L, Zhao J, Liu M, Zhang J. Letrozole regulates actin cytoskeleton polymerization dynamics in a SRC-1 dependent manner in the hippocampus of mice. J Steroid Biochem Mol Biol 2017; 167:86-97. [PMID: 27866972 DOI: 10.1016/j.jsbmb.2016.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
In the hippocampus, local estrogens (E2) derived from testosterone that is catalyzed by aromatase play important roles in the regulation of hippocampal neural plasticity, but the underlying mechanisms remain unclear. The actin cytoskeleton contributes greatly to hippocampal synaptic plasticity; however, whether it is regulated by local E2 and the related mechanisms remain to be elucidated. In this study, we first examined the postnatal developmental profiles of hippocampal aromatase and specific proteins responsible for actin cytoskeleton dynamics. Then we used aromatase inhibitor letrozole (LET) to block local E2 synthesis and examined the changes of these proteins and steroid receptor coactivator-1 (SRC-1), the predominant coactivator for steroid nuclear receptors. Finally, SRC-1 specific RNA interference was used to examine the effects of SRC-1 on the expression of these actin remodeling proteins. The results showed a V-type profile for aromatase and increased profiles for actin cytoskeleton proteins in both male and female hippocampus without obvious sex differences. LET treatment dramatically decreased the F-actin/G-actin ratio, the expression of Rictor, phospho-AKT (ser473), Profilin-1, phospho-Cofilin (Ser3), and SRC-1 in a dose-dependent manner. In vitro studies demonstrated that LET induced downregulation of these proteins could be reversed by E2, and E2 induced increase of these proteins were significantly suppressed by SRC-1 shRNA interference. These results for the first time clearly demonstrated that local E2 inhibition could induce aberrant actin polymerization; they also showed an important role of SRC-1 in the mediation of local E2 action on hippocampal synaptic plasticity by regulation of actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Yanlan Yu
- Student Brigade, Third Military Medical University, Chongqing 400038, China
| | - Yuanyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Li He
- School of Nursing, Third Military Medical University, Chongqing 400038, China
| | - Linli Qiu
- School of Nursing, Third Military Medical University, Chongqing 400038, China; Department of Nursing, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|