1
|
Wang F, Wu W, He X, Qian P, Chang J, Lu Z, Guo J, Bao Y, Guan H, Zhang T. Effects of moderate intensity exercise on liver metabolism in mice based on multi-omics analysis. Sci Rep 2024; 14:31072. [PMID: 39730655 DOI: 10.1038/s41598-024-82150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Physical exercise is beneficial to keep physical and mental health. The molecular mechanisms underlying exercise are still worth exploring. The healthy adult mice after six weeks of moderate-intensity exercise (experimental group) and sedentary mice (control group) were used to perform transcriptomic, proteomic, lactylation modification, and metabolomics analysis. In addition, gene sets related to hypoxia, glycolysis, and fatty acid metabolism were used to aid in the screening of hub genes. The mMCP-counter was employed to evaluate infiltration of immune cells in murine liver tissues. Transcriptomics analysis revealed 82 intersection genes related to hypoxia, glycolysis, and fatty acid metabolism. Proteomics and lactylation modification analysis identified 577 proteins and 141 differentially lactylation modification proteins. By overlapping 82 intersection genes with 577 differentially expressed proteins and 141 differentially lactylation modification proteins, three hub genes (Aldoa, Acsl1, and Hadhb) were obtained. The immune infiltration analysis revealed a decreased score for monocytes/macrophages and an increased score for endothelial cells in the experimental group. Then, 459 metabolites in positive mode and 181 metabolites in negative mode were identified. The "Metabolic pathways" (mmu01100) was a common pathway between intersection genes-enriched pathways and metabolites-enriched pathways. These findings highlight the pivotal roles of hub genes in the glycolysis and fatty acid metabolism under the context of chronic exercise.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Wanyu Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Xuejia He
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Ping Qian
- Department of Internal Medicine, Affiliated Children Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Jiahui Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoxu Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Hongyan Guan
- Nurturing Care Research and Guidance Center, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
2
|
Ruan L, Wang G, Qing Lv Z, Li S, Liu Q, Ren Y, Zhang Q, Lv X, Wu R, Ji Z. The effect of varied exercise intensity on antioxidant function, aortic endothelial function, and serum lipids in rats with non-alcoholic fatty liver disease. INVESTIGACIÓN CLÍNICA 2022. [DOI: 10.54817/ic.v63n4a01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study aimed to compare the effects of diet and exercise of different intensities on antioxidant function, aortic endothelial cell function and serum lipids in NAFLD (nonalcoholic fatty liver disease) rats. Fifty Sprague-Dawley (SD) rats (180-220g) were randomly divided into two experimental groups and fed either a standard rodent chow diet (CON; n=10) or a high-fat diet (HFD; n=40). After 16 weeks, the animals that received the HFD were randomly separated into a high-fat control group (HFC; n=10) or three ex-ercise training groups: HFD and low-intensity exercise (LE; n=10), HFD and moderate-intensity exercise (ME; n=10), and HFD and incremental intensity exercise (IE; n=10). These experimental rats keep sedentary or trained for the next six weeks. A detection kit was used to detect nitric oxide synthase (NOs), nitric oxide (NO), malondialdehyde (MDA) and other markers of aor-tic oxidative stress. The expression levels of endothelial nitric oxide synthase (e-NOS) and endothelin-1 (ET-1) were detected by immunohistochemistry. TC, TG, and other lipid metabolism parameters were detected by an auto-matic analyzer. Exercise with different intensities could improve lipid me-tabolism, enhance antioxidant function, reduce MDA (P<0.01), increase NO (P<0.01), and improve the expression of e-NOS and ET-1 (P<0.01) protein levels in NAFLD rats. Decreased blood lipids were exhibited in all exercise groups. Notably, the moderate-intensity exercise demonstrated more effecton increasing glutathione (GSH) contents (P<0.01) and decreased the ex-pression of ET-1protein levels (P<0.01). The results showed that exercise at different intensities improved lipid metabolism and enhanced anti-oxidation function. Moderate exercise could improve the function of aortic endothelial cells.
Collapse
Affiliation(s)
- Ling Ruan
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Guanghua Wang
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Zhen Qing Lv
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Shoubang Li
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Qin Liu
- College of Physical Education, Ankang University, Ankang, Shaanxi, China
| | - Yiling Ren
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Quancheng Zhang
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Xianli Lv
- College of Physical Education, Ankang University, Ankang, Shaanxi, China
| | - Rongping Wu
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| | - Zhan Ji
- Department of Physical Education, Xi’an Shiyou University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Nardo WD, Miotto PM, Bayliss J, Nie S, Keenan SN, Montgomery MK, Watt MJ. Proteomic analysis reveals exercise training induced remodelling of hepatokine secretion and uncovers syndecan-4 as a regulator of hepatic lipid metabolism. Mol Metab 2022; 60:101491. [PMID: 35381388 PMCID: PMC9034320 DOI: 10.1016/j.molmet.2022.101491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is linked to impaired lipid metabolism and systemic insulin resistance, which is partly mediated by altered secretion of liver proteins known as hepatokines. Regular physical activity can resolve NAFLD and improve its metabolic comorbidities, however, the effects of exercise training on hepatokine secretion and the metabolic impact of exercise-regulated hepatokines in NAFLD remain unresolved. Herein, we examined the effect of endurance exercise training on hepatocyte secreted proteins with the aim of identifying proteins that regulate metabolism and reduce NAFLD severity. Methods C57BL/6 mice were fed a high-fat diet for six weeks to induce NAFLD. Mice were exercise trained for a further six weeks, while the control group remained sedentary. Hepatocytes were isolated two days after the last exercise bout, and intracellular and secreted proteins were detected using label-free mass spectrometry. Hepatocyte secreted factors were applied to skeletal muscle and liver ex vivo and insulin action and fatty acid metabolism were assessed. Syndecan-4 (SDC4), identified as an exercise-responsive hepatokine, was overexpressed in the livers of mice using adeno-associated virus. Whole-body energy homeostasis was assessed by indirect calorimetry and skeletal muscle and liver metabolism was assessed using radiometric techniques. Results Proteomics analysis detected 2657 intracellular and 1593 secreted proteins from mouse hepatocytes. Exercise training remodelled the hepatocyte proteome, with differences in 137 intracellular and 35 secreted proteins. Bioinformatic analysis of hepatocyte secreted proteins revealed enrichment of tumour suppressive proteins and proteins involved in lipid metabolism and mitochondrial function, and suppression of oncogenes and regulators of oxidative stress. Hepatocyte secreted factors from exercise trained mice improved insulin action in skeletal muscle and increased hepatic fatty acid oxidation. Hepatocyte-specific overexpression of SDC4 reduced hepatic steatosis, which was associated with reduced hepatic fatty acid uptake, and blunted pro-inflammatory and pro-fibrotic gene expression. Treating hepatocytes with recombinant ectodomain of SDC4 (secreted form) recapitulated these effects with reduced fatty acid uptake, lipid storage and lipid droplet accumulation. Conclusions Remodelling of hepatokine secretion is an adaptation to regular exercise training that induces changes in metabolism in the liver and skeletal muscle. SDC4 is a novel exercise-responsive hepatokine that decreases fatty acid uptake and reduces steatosis in the liver. By understanding the proteomic changes in hepatocytes with exercise, these findings have potential for the discovery of new therapeutic targets for NAFLD. Exercise training remodels hepatokine secretion. Exercise regulated secreted factors improve insulin action in skeletal muscle. Syndecan-4 (SDC4) is a novel exercise-induced hepatokine. SDC4 reduces hepatic fatty acid uptake and hepatic steatosis.
Collapse
|
4
|
He Y, Qiu R, Wu B, Gui W, Lin X, Li H, Zheng F. Transthyretin contributes to insulin resistance and diminishes exercise-induced insulin sensitivity in obese mice by inhibiting AMPK activity in skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E808-E821. [PMID: 33682458 DOI: 10.1152/ajpendo.00495.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise improves obesity-induced insulin resistance and metabolic disorders via mechanisms that remain unclear. Here, we show that the levels of the hepatokine transthyretin (TTR) in circulation are elevated in insulin-resistant individuals including high-fat diet (HFD)-induced obese mice, db/db mice, and patients with metabolic syndrome. Liver Ttr mRNA and circulating TTR levels were reduced in mice by treadmill training, as was the TTR levels in quadriceps femoris muscle; however, AMP-activated protein kinase (AMPK) signaling activity was enhanced. Transgenic overexpression of TTR or injection of purified TTR triggered insulin resistance in mice fed on regular chow (RC). Furthermore, TTR overexpression reduced the beneficial effects of exercise on insulin sensitivity in HFD-fed mice. TTR was internalized by muscle cells via the membrane receptor Grp78 and the internalization into the quadriceps femoris was reduced by treadmill training. The TTR/Grp78 combination in C2C12 cells was increased, whereas the AMPK activity of C2C12 cells was decreased as the TTR concentration rose. In addition, Grp78 silencing prevented the TTR internalization and reversed its inhibitory effect on AMPK activity in C2C12 cells. Our study suggests that elevated circulating TTR may contribute to insulin resistance and counteract the exercise-induced insulin sensitivity improvement; the TTR suppression might be an adaptive response to exercise through enhancing AMPK activity in skeletal muscles.NEW & NOTEWORTHY Exercise improves obesity-induced insulin resistance via mechanisms that remain unclear. The novel findings of the study are that circulating TTR (a hepatokine) level is decreased by exercise, and the elevated circulating TTR, as was the elevated transthyretin internalization mediated by Grp78, counteracts the exercise-induced insulin sensitivity by downregulating AMPK activity in skeletal muscle of obese mice. These data suggest that TTR suppression might be an adaptive response to exercise through the crosstalk between liver and muscle.
Collapse
Affiliation(s)
- Yingzi He
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ruojun Qiu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Beibei Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Gui
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fenping Zheng
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Zamanian-Azodi M, Khatoon Hajisayah S, Razzaghi M, Rezaei-Tavirani M. Introducing physical exercise as a potential strategy in liver cancer prevention and development. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:317-322. [PMID: 34659659 PMCID: PMC8514208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
AIM This study aimed to investigate the anticancer properties of physical activity by network analysis in trained rats. BACKGROUND Much evidence supports the benefits of physical activity, most of which are related to metabolism regulation and body health. Deeper investigation deals with other features of physical activity, such as its anticancer properties. METHODS Protein-protein interaction network analysis was applied to investigate the proteome profile of livers of rats subjected to physical activity through bioinformatics. Twelve differentially expressed proteins were searched and analyzed by Cytoscape 3.7.2 and its plug-ins. The network was analyzed to identify hub-bottleneck nodes. An action map was constructed for the central proteins. RESULTS Among the queried proteins, Eno1 and Pgm1 were only assigned as hubs by Network Analzyer. Gpi, Pkm, Aldoa, and Aldoart2 were identified as central nodes among the first neighbors of network elements. Furthermore, the glycolytic, carbohydrate catabolic, and glucose metabolic processes are key elements that could be imperative in the mechanism of exercise in liver function. The anticancer properties of the central nodes were highlighted. CONCLUSION The network findings indicate the anticancer properties of physical activity, which has also been supported by previous investigations.
Collapse
Affiliation(s)
- Mona Zamanian-Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Khatoon Hajisayah
- Department of Basic Sciences, School of Rehabilitation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohhamadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Quantitative proteomics to study aging in rabbit liver. Mech Ageing Dev 2020; 187:111227. [PMID: 32126221 DOI: 10.1016/j.mad.2020.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
Aging globally effects cellular and organismal metabolism across a range of mammalian species, including humans and rabbits. Rabbits (Oryctolagus cuniculus are an attractive model system of aging due to their genetic similarity with humans and their short lifespans. This model can be used to understand metabolic changes in aging especially in major organs such as liver where we detected pronounced variations in fat metabolism, mitochondrial dysfunction, and protein degradation. Such changes in the liver are consistent across several mammalian species however in rabbits the downstream effects of these changes have not yet been explored. We have applied proteomics to study changes in the liver proteins from young, middle, and old age rabbits using a multiplexing cPILOT strategy. This resulted in the identification of 2,586 liver proteins, among which 45 proteins had significant p < 0.05) changes with aging. Seven proteins were differentially-expressed at all ages and include fatty acid binding protein, aldehyde dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl CoA dehydrogenase, apolipoprotein C3, peroxisomal sarcosine oxidase, adhesion G-protein coupled receptor, and glutamate ionotropic receptor kinate. Insights to how alterations in metabolism affect protein expression in liver have been gained and demonstrate the utility of rabbit as a model of aging.
Collapse
|
7
|
Ersoz Unlu C, Akkoca Ö, Tatar I, Sargon MF, Zeybek D, Oguztuzun S. Protective effect of aerobic exercise on the vocal folds against cigarette smoke exposure. Eur Arch Otorhinolaryngol 2019; 276:1713-1719. [PMID: 30980189 DOI: 10.1007/s00405-019-05422-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Laryngeal pathologies due to cigarette smoking vary among individuals, whereas some smokers remain disease free. These differences can be explained by multiple factors among individuals. In this context, an animal study was designed to determine if there is any protective effect of aerobic exercise against the detrimental effects of cigarette smoke on laryngeal tissues. METHODS A total of 24 male Wistar albino rats were divided into three groups of eight animals each: control (no smoke exposure), smoking (smoke exposure), and exercise (smoke exposure and exercise) groups. Histopathological (light and electron microscopy) and immunohistochemical (GSTA1, CYP1A1, CYP2E1) evaluations of the vocal folds were performed at the end of experimental period. RESULTS Exercise group revealed statistically significant decrease in edema (p = 0.03) and inflammatory cell infiltration (p = 0.02) compared to smoking group. In electron microscopic evaluation; cytoplasmic vacuoles were also present in exercise group, but were smaller than smoking group. Edema and swollen mitochondria were also less prominent in exercise group. Condensed chromatin material in the periphery of nucleus was observed only in few cells in exercise group, and observed in more cells in smoking group. GSTA1 expression was higher (p = 0.047) and CYP1A1 expression was lower (p = 0.01) in exercise group than smoking group. CONCLUSIONS Our results indicate that aerobic exercise has a protective role on the larynx against the damaging effect of cigarette smoke. Smokers who exercise regularly may be at a lower risk of cigarette smoke-related laryngeal diseases, as compared with those who do not exercise.
Collapse
Affiliation(s)
- Ceren Ersoz Unlu
- Department of Otolaryngology, Gulhane Training and Research Hospital, Ankara, Turkey.
| | - Özlem Akkoca
- Department of Otolaryngology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Ilkan Tatar
- Department of Anatomy, Hacettepe University School of Medicine, Ankara, Turkey
| | | | - Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serpil Oguztuzun
- Department of Biology, Kirikkale University School of Medicine, Kirikkale, Turkey
| |
Collapse
|
8
|
Long-term moderate exercise enhances specific proteins that constitute neurotrophin signaling pathway: A TMT-based quantitative proteomic analysis of rat plasma. J Proteomics 2018; 185:39-50. [PMID: 29953961 DOI: 10.1016/j.jprot.2018.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 12/15/2022]
Abstract
Physical exercise has been reported to increase neurotrophin in brain tissues as hippocampus as well as increased neurotrophic level peripherally in blood plasma and might have an effect on/or affect molecular processes of energy metabolism (and homeostasis). In this study, using quantitative proteomic analysis, we obtained a plasma protein profile from the rat with long-term moderate exercise. A total of 752 proteins were identified in the plasma. Among them, 54 proteins were significant up-regulated and 47 proteins were down-regulated in the plasma of exercise group compared with the control group. Bioinformatic analyses showed that these altered proteins are widely involved in multiple biological processes, molecular functions and cellular components, which connect with 11 signaling pathways. Interestingly, 5 up-regulated proteins Rap1b, PTPN11, ARHGDIA, Cdc42 and YWHAE, confirmed by Western blots, are involved in the neurotrophin signaling pathway which shows the lowest P value among the identified pathways. Further analyses showed that the 5 neurotrophin-signaling-pathway-related proteins participate in two important protein-protein interaction networks associated to cell survival and apoptosis, axonal development, synapse formation and plasticity. This study provides an exercise-induced plasma protein profile, suggesting that long-term exercise enhances the proteins involved in neurotrophin signaling pathway which may contribute to health benefit. SIGNIFICANCE Physical activity contributes to myriad benefits on body health across the lifespan. The changes in plasma proteins after chronic moderate exercise may be used as biomarkers for health and may also play important roles in increase of cardiovascular fitness, enhancement of immune competence, prevention of obesity, decrease of risk for neurological disorders, cancer, stroke, diabetes and other metabolic disorders. Using a TMT-based proteomic method, this study identified 101 altered proteins in the plasma of rats after long-term moderate treadmill running, which may provide novel biomarkers for further investigation of the underlying mechanism of physical exercise. We confirmed that exercise enhances 5 proteins of the neurotrophin signaling pathway that may contribute to health benefits.
Collapse
|