1
|
de Lima E Souza Mesquita GC, Da Cruz ER, Corrêa DS, de Barros Falcão Ferraz A, Miri JM, Farias IV, Reginatto FH, Boaretto FBM, Dos Santos DM, da Silva J, Grivicich I, Picada JN. Genotoxic and antiproliferative properties of Endopleura uchi bark aqueous extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:516-531. [PMID: 38619152 DOI: 10.1080/15287394.2024.2340069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.
Collapse
Affiliation(s)
| | - Elkejer Ribeiro Da Cruz
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Dione Silva Corrêa
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alexandre de Barros Falcão Ferraz
- Pharmacognosy Laboratory, Department of Industrial Pharmaceutical, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jéssica Machado Miri
- Laboratory of Cancer Biology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ingrid Vicente Farias
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Duani Maria Dos Santos
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
- Laboratory of Genetics Toxicology, La Salle University, Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | |
Collapse
|
2
|
Ribas LE, Gasser FB, Baravalle ME, Renna MS, Perello A, Savino GH, Ortega HH, Van de Velde F, Hein GJ. Cytotoxic, antioxidant, and cytoprotective properties of polyphenol-enriched extracts from pecan nutshells in MDA-MB-231 breast cancer cells. Cell Biochem Funct 2023; 41:1442-1450. [PMID: 37933894 DOI: 10.1002/cbf.3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Phenolic compounds present in plants have demonstrated several biological properties such as antioxidant, antitumor, cardioprotective, and antiproliferative. On the other hand, doxorubicin, a chemotherapeutic widely used to treat breast cancer, usually exhibits chronic cardiotoxicity associated with oxidative stress. Therefore, we aimed to study the effects of phenolic compound-enriched extract (PCEE) with doxorubicin in breast cancer. To achieve this, after an SPE-C18 -column purification process of crude extracts obtained from pecan nutshells (Carya illinoinensis), the resulting PCEE was used to evaluate the cytotoxicity and antioxidant properties against the human breast cancer cell line MDA-MB-231 and the normal-hamster ovary cell line CHO-K1. PCEE was selectively cytotoxic against both cell lines, with an IC50 value (≈26.34 mg/L) for MDA-MB-231 lower than that obtained for CHO-K1 (≈55.63 mg/L). As a cytotoxic mechanism, PCEE inhibited cell growth by G2/M cell cycle arrest in MDA-MB-231 cells. Simultaneously, the study of the antioxidant activity showed that PCEE had a cytoprotective effect, evidenced by reduced ROS production in cells with oxidative stress caused by doxorubicin. The results highlight PCEE as a potential antitumor agent, thus revaluing it as an agro-industrial residue.
Collapse
Affiliation(s)
- Lucas E Ribas
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Fátima B Gasser
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - María E Baravalle
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Maria S Renna
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Adriana Perello
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Graciela H Savino
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Franco Van de Velde
- Instituto de Tecnología de los Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Gustavo J Hein
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| |
Collapse
|
3
|
Gur CS, Dunford NT, Gumus ZP. Cytotoxicity of subcritical water extracts obtained from byproducts generated at commercial pecan shelling operations on cancer cells. BIORESOUR BIOPROCESS 2023; 10:47. [PMID: 38647846 PMCID: PMC10992222 DOI: 10.1186/s40643-023-00666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/09/2023] [Indexed: 04/25/2024] Open
Abstract
This study examined potential of the extracts obtained from the byproducts generated at commercial pecan nut-shelling operations in cancer treatment. The subcritical water extracts obtained from two varieties, Native and Pawnee, were analyzed for their phenolic contents and compositions. Effects of the extracts on viability and IC50 of the human cell lines representing a broad range of cancer types, cervical, lung, skin, breast, colon and prostate cancers, were investigated. Although the effect of the temperature on the phenolic contents and compositions of the extracts was not statistically significant, the influence of the variety was extensive. The pecan shell extracts were not cytotoxic to the healthy cell line Vero in the concentration range examined. Some of the pecan shell extracts had greater efficay than Doxorubicin, a drug used in cancer chemotherapy, in reducing cancer cell viability. This study is novel and practical implications of the data generated in this study are noteworthy, because this is the first report on the beneficial effects of subcritical water extracts obtained from pecan shelling industry byproducts on a broad range of cancer cell lines. It is likely that the experimental data presented in this study will support and encourage future research on the biological pathways involved in the interactions of the cancer cells and the extracts. The findings of this study will facilitate research on downstream processing and purification of the crude extracts exhibiting high cancer cell cytotoxcity, potentially improving the final product efficacy and lead to commercial applications.
Collapse
Affiliation(s)
- Canan Sevimli Gur
- Department of Basic Pharmaceutical Sciences, Katip Celebi University, Izmir, Turkey
| | - Nurhan Turgut Dunford
- Department of Biosystems and Agricultural Engineering and Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, FAPC Room 103, Stillwater, OK, 74078-6055, USA.
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Bornova, İzmir, Turkey
| |
Collapse
|
4
|
Devidas SB, Sendri N, Rahmatkar SN, Singh D, Bhandari P. Two undescribed diarylheptanoids from green husk of Carya illinoinensis as acetylcholinesterase inhibitors. Nat Prod Res 2020; 36:1161-1169. [DOI: 10.1080/14786419.2020.1862833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shinde Bhagatsing Devidas
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Nitisha Sendri
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Pamita Bhandari
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
5
|
Fu W, Kerr WL. Characterization of pecan shells and their effect on the physical properties and acceptability of smoked chicken breast. J Food Sci 2020; 85:3020-3025. [PMID: 32856294 DOI: 10.1111/1750-3841.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/30/2022]
Abstract
Pecan shells were used as a source of smoke for cooked chicken breast and compared with samples smoked with hickory, mesquite, and apple tree wood. The wood moisture content ranged from 7.94% to 11.43%, whereas ash ranged from 0.97% to 3.11%. The particle size varied among the smoke sources, with chopped pecan shells having more pieces in the "coarse" category. Several properties related to quality of the cooked meat were measured including moisture content, water activity, color, cook loss, expressible moisture, and maximum shear force. Moisture content ranged from 70.13% to 71.72%, whereas pH ranged from 6.39 to 6.43. Chicken breasts smoked with pecan shells were darker (L* = 72.86 compared to 74.94 to 76.57) and slightly redder (a* = 5.71; b* = 25.70) than other samples. Color development was localized to the surface of the meat. Cooking loss did not differ significantly among the samples (26.13% to 27.03%) nor did expressible moisture (9.68% to 11.87%). Meat tenderness was assessed by shear values, but did not differ among the samples. Consumer panels showed that all samples were well liked. Samples smoked with mesquite had slightly lower scores for flavor and overall likability, whereas the scores for samples smoked with hickory, apple, or pecan shells were no different. PRACTICAL APPLICATION: Many meat products are cooked in the presence of smoke produced from burning hardwoods. This work shows that smoke can be produced from waste pecan shells, resulting in chicken breast with similar yield, texture, moisture retention, and acceptability as that smoked with hickory, mesquite, or apple tree wood.
Collapse
Affiliation(s)
| | - William L Kerr
- Department of Food Science and Technology, University of Georgia, Athens, GA, 30602, U.S.A
| |
Collapse
|
6
|
De Sousa JA, De Sousa JT, Boaretto FBM, Salvi JDO, Fachini J, Da Silva JB, Unfer JP, Allgayer MC, Lemes MLB, Marroni NP, Ferraz ADBF, Picada JN. Anti-hyperlipidemic effects of Campomanesia xanthocarpa aqueous extract and its modulation on oxidative stress and genomic instability in Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1009-1018. [PMID: 31658881 DOI: 10.1080/15287394.2019.1683925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of natural products from herbs may be a therapeutic option in dyslipidemia treatment. Campomanesia xanthocarpa (Mart.) O. Berg (Myrtaceae) leaves have been used to decrease cholesterol levels. However, studies to determine activities of this plant on triglycerides metabolism have received little attention. The aim of this study was to examine anti-hyperlipidemic effects of a C. xanthocarpa aqueous leaf extract (CxAE) and assess protective actions against oxidative stress and DNA damage. The tyloxapol-induced hyperlipidemia model was used in Wistar rats. Rats were treated orally with CxAE either 250 or 500 mg/kg/day for 7 days prior to tyloxapol administration. Biochemical parameters, oxidative stress levels, and genomic instability were assessed in several tissues. CxAE decreased cholesterol and triglyceride levels in serum and hepatic and renal DNA damage in tyloxapol-treated rats. There was no marked effect on the micronucleus frequency in bone marrow. The extract increased catalase activity and decreased glutathione S-transferase activity in kidney tissue. CxAE showed anti-hyperlipidemic effects, improved oxidative parameters, and protected DNA against damage induced by tyloxapol-induced hyperlipidemia, suggesting C. xanthocarpa leaves may be useful in preventing dyslipidemias.Abbreviations: ALP: Alkaline phosphatase; ALT: Aspartate aminotransferase; ANOVA: Analysis of variance; AST: Aspartate aminotransferase; Ator: Atorvastatin; CAT: Catalase; Chol: Cholesterol; CxAE: Campomanesia xanthocarpa aqueous extract; GST: Glutathione S-transferase; HDL: High density cholesterol; i.p.: Intraperitoneal; NCE: Normochromatic erythrocyte; PBS: Phosphate buffer solution; PCE: Polychromatic erythrocyte; ROS: Reactive oxygen species; SD: Standard deviation; SOD: Superoxide dismutase; T: Tyloxapol; TBARS: Thiobarbituric acid reacting substances; TG: Triglyceride.
Collapse
Affiliation(s)
- Joubert Aires De Sousa
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jayne Torres De Sousa
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Fernanda Brião Menezes Boaretto
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jeferson De Oliveira Salvi
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jean Fachini
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - Julia Pereira Unfer
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Mariangela C Allgayer
- Laboratory of Clinical Pathology, Veterinary Hospital, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Maria Luísa Brodt Lemes
- Laboratory of Pharmacognosy and Phytochemistry, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Norma Possa Marroni
- Center of Experimental Research, Clinic Hospital of Porto Alegre, Porto Alegre, Brazil
- Department of Biological Sciences: Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre De Barros Falcão Ferraz
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Laboratory of Pharmacognosy and Phytochemistry, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| |
Collapse
|