1
|
Zhu J, Liu M, Kang J, Wang S, Zha Z, Zhan Y, Wang Z, Li J, Cai D, Chen S. Engineering Bacillus licheniformis as industrial chassis for efficient bioproduction from starch. BIORESOURCE TECHNOLOGY 2024; 406:131061. [PMID: 38960005 DOI: 10.1016/j.biortech.2024.131061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Starch is an attractive feedstock in biorefinery processes, while the low natural conversion rate of most microorganisms limits its applications. Herein, starch metabolic pathway was systematically investigated using Bacillus licheniformis DW2 as the host organism. Initially, the effects of overexpressing amylolytic enzymes on starch hydrolysis were evaluated. Subsequently, the transmembrane transport system and intracellular degradation module were modified to accelerate the uptake of hydrolysates and their further conversion to glucose-6-phosphate. The DW2-derived strains exhibited robust growth in starch medium, and productivity of bacitracin and subtilisin were improved by 38.5% and 32.6%, with an 32.3% and 22.9% increase of starch conversion rate, respectively. Lastly, the employment of engineering strategies enabled another B. licheniformis WX-02 to produce poly-γ-glutamic acid from starch with a 2.1-fold increase of starch conversion rate. This study not only provided excellent B. licheniformis chassis for sustainable bioproduction from starch, but shed light on researches of substrate utilization.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jianling Kang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Ziyan Zha
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, Hubei, PR China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
2
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
4
|
Tong L, Zheng J, Wang X, Wang X, Huang H, Yang H, Tu T, Wang Y, Bai Y, Yao B, Luo H, Qin X. Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:202. [PMID: 34656167 PMCID: PMC8520190 DOI: 10.1186/s13068-021-02052-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/02/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. RESULTS In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 ℃ and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 ℃. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. CONCLUSIONS We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.
Collapse
Affiliation(s)
- Lige Tong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haomeng Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Purification of an alpha amylase from Aspergillus flavus NSH9 and molecular characterization of its nucleotide gene sequence. 3 Biotech 2018; 8:204. [PMID: 29607285 DOI: 10.1007/s13205-018-1225-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022] Open
Abstract
In this study, an alpha-amylase enzyme from a locally isolated Aspergillus flavus NSH9 was purified and characterized. The extracellular α-amylase was purified by ammonium sulfate precipitation and anion-exchange chromatography at a final yield of 2.55-fold and recovery of 11.73%. The molecular mass of the purified α-amylase was estimated to be 54 kDa using SDS-PAGE and the enzyme exhibited optimal catalytic activity at pH 5.0 and temperature of 50 °C. The enzyme was also thermally stable at 50 °C, with 87% residual activity after 60 min. As a metalloenzymes containing calcium, the purified α-amylase showed significantly increased enzyme activity in the presence of Ca2+ ions. Further gene isolation and characterization shows that the α-amylase gene of A. flavus NSH9 contained eight introns and an open reading frame that encodes for 499 amino acids with the first 21 amino acids presumed to be a signal peptide. Analysis of the deduced peptide sequence showed the presence of three conserved catalytic residues of α-amylase, two Ca2+-binding sites, seven conserved peptide sequences, and several other properties that indicates the protein belongs to glycosyl hydrolase family 13 capable of acting on α-1,4-bonds only. Based on sequence similarity, the deduced peptide sequence of A. flavus NSH9 α-amylase was also found to carry two potential surface/secondary-binding site (SBS) residues (Trp 237 and Tyr 409) that might be playing crucial roles in both the enzyme activity and also the binding of starch granules.
Collapse
|
7
|
Ayodeji AO, Bamidele OS, Kolawole AO, Ajele JO. Physicochemical and kinetic properties of a high salt tolerant Aspergillus flavus glucoamylase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|