1
|
Rybkowska P, Kawalec M, Dymkowska D, Radoszkiewicz K, Zabłocka B, Zabłocki K, Sarnowska A. Activity and function of auxiliary fluxes of glucose metabolism in response to physiological normoxia (5 % O 2) during long-term Adipose-Derived Stem/Stromal cell culture. Eur J Cell Biol 2025; 104:151486. [PMID: 40187000 DOI: 10.1016/j.ejcb.2025.151486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Energy metabolism homeostasis emerges as a dominant element influencing mesenchymal stem/stromal cells' trajectory of development. The predominant glycolysis activity is a primary driver of cell proliferation and maintenance of the high-energetic state. Here, we examined the functions of two crucial auxiliary pathways: the phosphate-pentose pathway (PPP) and fructose-2,6-biphosphate pathway (FBP) to evaluate their impact on the therapeutic potential of Adipose-Derived Stem/Stromal cells (ASCs) during prolonged culture in various oxygen conditions: 5 % O2 - physiological normoxia or 21 % O2 - atmospheric oxygen. Our findings demonstrate that ASCs cultured in 5 % O2 increased the rate of proliferation, migration, and expression of stemness factors, which is prominent during the initial and middle passages. Additionally, ASCs cultured in a 5 % O2 exhibited heightened protection mechanisms against free radicals, increased LDH gene expression, and elevated extracellular acidification rate (ECAR). By estimating the HIF-1α level, we concluded that 5 % oxygen conditions were insufficient to induce a profound hypoxic state in ASCs. However, at the protein level, both the PPP and FBP pathways appeared to be more active in young (2-passage) cells, regardless of oxygen conditions, and their activity diminished over time. Additionally, the chemical suppression of G6PDH by Polydatin and inhibition of PFKFB3 by PFK-158 in ASCs (passage-2) revealed dose- and time-dependent effect on decreasing migratory capabilities of cells. Nevertheless, our work underscores the adaptable nature of ASC metabolism to prevailing external conditions, with the aging of the culture contributing to the decline in glycolysis-associated auxiliary pathways.
Collapse
Affiliation(s)
- Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland.
| | - Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, Warsaw 02-093, Poland
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, Warsaw 02-093, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland.
| |
Collapse
|
2
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Ratushnyy A, Ezdakova M, Buravkova L. Secretome of Senescent Adipose-Derived Mesenchymal Stem Cells Negatively Regulates Angiogenesis. Int J Mol Sci 2020; 21:ijms21051802. [PMID: 32151085 PMCID: PMC7084202 DOI: 10.3390/ijms21051802] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Nowadays, paracrine regulation is considered as a major tool of mesenchymal stem cell (MSC) involvement in tissue repair and renewal in adults. Aging results in alteration of tissue homeostasis including neovascularization. In this study, we examined the influence of replicative senescence on the angiogenic potential of adipose-derived MSCs (ASCs). Angiogenic activity of conditioned medium (CM) from senescent and “young” ASCs was evaluated in chorioallantoic membrane (CAM) assay in ovo using Japanese quail embryos. Also, the formation of capillary-like tubes by human umbilical vein endothelial cells (HUVECs) in 3D basement membrane matrix “Matrigel” and HUVEC migration capacity were analyzed. Multiplex, dot-blot and gene expression analysis were performed to characterize transcription and production of about 100 angiogenesis-associated proteins. The results point to decreased angiogenic potential of senescent ASC secretome in ovo. A number of angiogenesis-associated proteins demonstrated elevation in CM after long-term cultivation. Meanwhile, VEGF (key positive regulator of angiogenesis) did not change transcription level and concentration in CM. Increasing both pro- (FGF-2, uPA, IL-6, IL-8 etc.) and antiangiogenic (IL-4, IP-10, PF4, Activin A, DPPIV etc.) factors was observed. Some proangiogenic genes were downregulated (IGF1, MMP1, TGFB3, PDGFRB, PGF). Senescence-associated secretory phenotype (SASP) modifications after long-term cultivation lead to attenuation of angiogenic potential of ASC.
Collapse
|
4
|
Andreeva ER, Matveeva DK. Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s0362119718060038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Solari KA, Ramakrishnan U, Hadly EA. Gene expression is implicated in the ability of pikas to occupy Himalayan elevational gradient. PLoS One 2018; 13:e0207936. [PMID: 30540800 PMCID: PMC6291101 DOI: 10.1371/journal.pone.0207936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/08/2018] [Indexed: 01/25/2023] Open
Abstract
Species are shifting their ranges due to climate change, many moving to cooler and higher locations. However, with elevation increase comes oxygen decline, potentially limiting a species’ ability to track its environment depending on what mechanisms it has available to compensate for hypoxic stress. Pikas (Family Ochotonidae), cold-specialist small mammal species, are already undergoing elevational range shifts. We collected RNA samples from one population of Ochotona roylei in the western Himalaya at three sites– 3,600, 4,000, and 5,000 meters–and found no evidence of significant population genetic structure nor positive selection among sites. However, out of over 10,000 expressed transcripts, 26 were significantly upregulated at the 5,000 m site and were significantly enriched for pathways consistent with physiological compensation for limited oxygen. These results suggest that differences in gene expression may play a key role in enabling hypoxia tolerance on this local scale, indicating elevational flexibility that may facilitate successful range shifts in response to climate change.
Collapse
Affiliation(s)
- Katherine A. Solari
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TIFR, Bangalore, India
- Program for Conservation Genomics, Stanford University, Stanford, California, United States of America
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- Program for Conservation Genomics, Stanford University, Stanford, California, United States of America
- Center for Innovation in Global Health, Stanford University, Stanford, California, United States of America
| |
Collapse
|
6
|
Celikkan FT, Mungan C, Sucu M, Ulus AT, Cinar O, Ili EG, Can A. Optimizing the transport and storage conditions of current Good Manufacturing Practice -grade human umbilical cord mesenchymal stromal cells for transplantation (HUC-HEART Trial). Cytotherapy 2018; 21:64-75. [PMID: 30455106 DOI: 10.1016/j.jcyt.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND The HUC-HEART Trial is a clinical study of intramyocardial delivery of current Good Manufacturing Practice (cGMP)-grade human umbilical cord multipotent stromal cells (HUC-MSCs) in ischemic cardiomyopathy where 2 × 107 cells are administered to peri-infarcted myocardium. Prior to the onset of the trial, we aimed to optimize the transport/storage conditions for obtaining the highest cell viability and proliferation rate of cells to be transplanted. METHODS Cells were tested after being transported in phosphate-buffered saline (PBS) or Ringer's lactate-based (RL) transport media supplemented with human serum albumin (HSA) and/or hydroxyethyl starch (HES) at two temperatures (2-10°C or 22-24°C). RESULTS The effects of transport conditions on cell viability following 6 h were found highest (93.4 ± 1.5) in RL-based media at 2-10°C. Karyotypes were found normal upon transportation in any of the formulations and temperatures. However, the highest proliferation rate was noted (3.1-fold increase) in RL (1% HSA) media at 2-10°C over 6 days in culture. From that point, RL (1% HSA) media at 2-10°C was used for further experiments. The maximum cell storage time was detected around 24 h at 2-10°C. Extended storage periods resulted in a decrease in cell viability but not in MSC marker expression. An increase in actin quantity was detected in hypoxia (5% O2) groups in early culture days; no difference was noted between hypoxic versus normoxic (21% O2) conditions in later days. DISCUSSION The overall results suggest that non-commercial, simple media formulations with extended storage intervals at 2-10°C temperatures are capable of retaining the characteristics of clinical-grade HUC-MSCs. The above findings led us to use RL (1% HSA) media at 2-10°C for transport and storage in the HUC-HEART Trial; 23 patients received HUC-MSCs by August 2018; no adverse effects were noted related to cell processing and transplantation.
Collapse
Affiliation(s)
- Ferda Topal Celikkan
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ceren Mungan
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Merve Sucu
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - A Tulga Ulus
- Division of Cardiovascular Surgery, Acibadem Hospital, Ankara, Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ezgi Gokpinar Ili
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Alp Can
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
7
|
Sha Y, Yang L, Lv Y. ERK1/2 and Akt phosphorylation were essential for MGF E peptide regulating cell morphology and mobility but not proangiogenic capacity of BMSCs under severe hypoxia. Cell Biochem Funct 2018; 36:155-165. [DOI: 10.1002/cbf.3327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yongqiang Sha
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| |
Collapse
|
8
|
Torres A, Bidarra S, Pinto M, Aguiar P, Silva E, Barrias C. Guiding morphogenesis in cell-instructive microgels for therapeutic angiogenesis. Biomaterials 2018; 154:34-47. [DOI: 10.1016/j.biomaterials.2017.10.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
|
9
|
Andreeva ER, Udartseva OO, Zhidkova OV, Buravkov SV, Ezdakova MI, Buravkova LB. IFN‐gamma priming of adipose‐derived stromal cells at “physiological” hypoxia. J Cell Physiol 2017; 233:1535-1547. [DOI: 10.1002/jcp.26046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Elena R. Andreeva
- Cell Physiology LaboratoryInstitute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
| | - Olga O. Udartseva
- Cell Physiology LaboratoryInstitute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
| | - Olga V. Zhidkova
- Cell Physiology LaboratoryInstitute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
| | | | - Maria I. Ezdakova
- Cell Physiology LaboratoryInstitute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
| | - Ludmila B. Buravkova
- Cell Physiology LaboratoryInstitute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
| |
Collapse
|
10
|
Ratushnyy A, Lobanova M, Buravkova LB. Expansion of adipose tissue-derived stromal cells at "physiologic" hypoxia attenuates replicative senescence. Cell Biochem Funct 2017; 35:232-243. [PMID: 28589682 DOI: 10.1002/cbf.3267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
Multipotent mesenchymal stromal cells are considered as a perspective tool in cell therapy and regenerative medicine. Unfortunately, autologous cell therapy does not always provide positive outcomes in elder donors, perhaps as a result of the alterations of stem cell compartments. The mechanisms of stem and progenitor cell senescence and the factors engaged are investigated intensively. In present paper, we elucidated the effects of tissue-related O2 on morphology, functions, and transcriptomic profile of adipose tissue-derived stromal cells (ASCs) in replicative senescence in vitro model. Replicatively senescent ASCs at ambient (20%) O2 (12-21 passages) demonstrated an increased average cell size, granularity, reactive oxygen species level, including anion superoxide, lysosomal compartment activity, and IL-6 production. Decreased ASC viability and proliferation, as well as the change of more than 10 senescence-associated gene expression were detected (IGF1, CDKN1C, ID1, CCND1, etc). Long-term ASC expansion at low O2 (5%) revoked in part the replicative senescence-associated alterations.
Collapse
Affiliation(s)
- Andrey Ratushnyy
- Lab. of Cell Physiology, Institute of Biomedical Problems of Russian Academy of Science, Moscow, Russia
| | - Margarita Lobanova
- Lab. of Cell Physiology, Institute of Biomedical Problems of Russian Academy of Science, Moscow, Russia
| | - Ludmila B Buravkova
- Lab. of Cell Physiology, Institute of Biomedical Problems of Russian Academy of Science, Moscow, Russia
| |
Collapse
|