1
|
Kacholi DS. A comprehensive review of antimalarial medicinal plants used by Tanzanians. PHARMACEUTICAL BIOLOGY 2024; 62:133-152. [PMID: 38270178 PMCID: PMC10812860 DOI: 10.1080/13880209.2024.2305453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
CONTEXT Tanzania has rich medicinal plant (MP) resources, and most rural inhabitants rely on traditional healing practices for their primary healthcare needs. However, available research evidence on antimalarial MPs is highly fragmented in the country. OBJECTIVE This systematic review compiles ethnomedicinal research evidence on MPs used by Tanzanians as antimalarials. MATERIALS AND METHODS A systematic web search was conducted using various electronic databases and grey materials to gather relevant information on antimalarial MPs utilized by Tanzanians. The review was per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The data were collected from 25 articles, and MS Excel software was used to analyse relevant ethnobotanical information using descriptive statistics. RESULTS A total of 227 MPs belonging to 67 botanical families and 180 genera were identified. Fabaceae (15.9%) is the most frequently utilized family. The ethnobotanical recipes analysis indicated leaves (40%) and trees (44%) are the preferred MPs part and life form, respectively. Decoctions (67%) are the dominant preparation method of remedies. Of the recorded MPs, 25.9% have been scientifically investigated for antimalarial activities with positive results. However, 74.1% of MPs have no scientific records on antimalarial activities, but they could be potential sources of remedies. CONCLUSIONS The study discloses a wealth of antimalarial MPs possessed by Tanzanians and suggests a need for research to authenticate the healing potential of antimalarial compounds from the unstudied MPs. Additionally, it indicates that some of the presented MPs are potential sources for developing safe, effective and affordable antimalarial drugs.
Collapse
Affiliation(s)
- David Sylvester Kacholi
- Department of Biological Sciences, Dar es Salaam University College of Education (DUCE), University of Dar es Salaam (UDSM), Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Rizk MA, El-Sayed SAES, Sayed-Ahmed MZ, Almoshari Y, Alqahtani SS, Ahmad S, Alam N, Marghani BH, Abdelbaset AE, Igarashi I. Evaluation of the Inhibitory Effect of Moringa oleifera Leaves Methanolic Extract against In Vitro Growth of Several Babesia Species and Theileria equi and the In Vivo Growth of Babesia microti. J Trop Med 2023; 2023:4285042. [PMID: 37941580 PMCID: PMC10630014 DOI: 10.1155/2023/4285042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
The current study evaluated the inhibitory effect of Moringa oleifera leaves methanolic extract (MOL) against the in vitro growth of Babesia bovis (B. bovis), B. caballi, B. bigemina, and Theileria equi (T. equi), as well as in vivo growth of B. microti in mice. Active principles of MOL extract were determined using liquid chromatography mass spectrometry (LC-MS). MOL's anti-piroplasm efficacy was assessed both in vitro and in vivo using the SYBR Green I fluorescence assay. Every 96 hours, the hematological parameters, including red blood cell count (RBCs; 104/UL), hemoglobin content (HGB; g/dl), and hematocrit percent (HCT; %), in the treated mice were monitored using a Celltac MEK6450 automated hematological analyzer. LC-MS of MOL revealed that the most abundant polyphenolic catechism found in the MOL extract was isoquercetin and rutin. MOL inhibited B. bovis, B. caballi, B. bigemina, and T. equi in vitro growth in a dose-dependent way, with IC50 values of 45.29 ± 6.14, 19.16 ± 0.45, 137.49 ± 16.07, and 9.29 ± 0.014 μg/ml, respectively. MOL's in vitro antibabesial activity was enhanced when administrated simultaneously with either diminazene aceturate (DA) or MMV665875 compound from malaria box. In mice infected by B. microti, a combination of MOL and a low dose of DA (12.5 mg·kg-1) resulted in a significant (P < 0.05) reduction in B. microti growth. These findings suggest that MOL is an effective herbal anti-piroplasm therapy, especially when combined with a low dosage of either DA or MMV665875.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Z. Sayed-Ahmed
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sarfaraz Ahmad
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Nawazish Alam
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Basma H. Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Biochemistry, Physiology and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, South of Sinai 46612, Egypt
| | - Abdelbaset E. Abdelbaset
- Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
3
|
Bezerra JJL, Pinheiro AAV, Dourado D. Antimalarial potential of Moringa oleifera Lam. (Moringaceae): A review of the ethnomedicinal, pharmacological, toxicological, and phytochemical evidence. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220079. [PMID: 37266375 PMCID: PMC10231345 DOI: 10.1590/1678-9199-jvatitd-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Several regions of the world frequently use the species Moringa oleifera Lam. (Moringaceae) in traditional medicine. This situation is even more common in African countries. Many literature reports point to the antimalarial potential of this species, indicating the efficacy of its chemical compounds against malaria-causing parasites of the genus Plasmodium. From this perspective, the present study reviews the ethnobotanical, pharmacological, toxicological, and phytochemical (flavonoids) evidence of M. oleifera, focusing on the treatment of malaria. Scientific articles were retrieved from Google Scholar, PubMed®, ScienceDirect®, and SciELO databases. Only articles published between 2002 and 2022 were selected. After applying the inclusion and exclusion criteria, this review used a total of 72 articles. These documents mention a large use of M. oleifera for the treatment of malaria in African and Asian countries. The leaves (63%) of this plant are the main parts used in the preparation of herbal medicines. The in vivo antimalarial activity of M. oleifera was confirmed through several studies using polar and nonpolar extracts, fractions obtained from the extracts, infusion, pellets, and oils obtained from this plant and tested in rodents infected by the following parasites of the genus Plasmodium: P. berghei, P. falciparum, P. yoelii, and P. chabaudi. Extracts obtained from M. oleifera showed no toxicity in preclinical tests. A total of 46 flavonoids were identified in the leaves and seeds of M. oleifera by different chromatography and mass spectrometry methods. Despite the scarcity of research on the antimalarial potential of compounds isolated from M. oleifera, the positive effects against malaria-causing parasites in previous studies are likely to correlate with the flavonoids that occur in this species.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Graduate Program in Plant Biology, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Douglas Dourado
- Graduate Program in Biosciences and Biotechnology in Health, Department of Immunology, Aggeu Magalhães-Fiocruz Institute, Recife, PE, Brazil
| |
Collapse
|
4
|
Ejigu YW, Endalifer BL. In vitro anti-plasmodial activity of three selected medicinal plants that are used in local traditional medicine in Amhara region of Ethiopia. BMC Pharmacol Toxicol 2023; 24:30. [PMID: 37170269 PMCID: PMC10173518 DOI: 10.1186/s40360-023-00672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The plants Aloe weloensis, Lepidium sativum, and Lobelia gibberoa have been used in Ethiopian folklore medicine to treat various diseases including malaria. METHOD The in vitro anti-plasmodial activity of the three crude extracts was evaluated using parasite lactate dehydrogenase assay against the chloroquine (CQ)-sensitive D10 and the chloroquine (CQ)-resistant W2 strains. RESULT The methanolic extract of L. gibberoa roots showed the highest in vitro anti-plasmodial effect against both D10 and W2 Plasmodium falciparum strains with IC50 value of 103.83 ± 26.17 µg/mL and 47.11 ± 12.46 µg/mL, respectively. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis were not active with an IC50 value > 200 µg/mL against both D10 and W2 strains. CONCLUSION The methanolic extract of L. gibberoa roots showed a promising in vitro anti-plasmodial activity against the CQ-sensitive (D10) and CQ-resistant (W2) strains of P. falciparum. Thus, the anti-plasmodial activity of this plant partly justifies and may also support the traditional use against malaria. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis did not exert suppressive activity on the growth of P. falciparum strains.
Collapse
Affiliation(s)
- Yenesew Wudu Ejigu
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P.O.Box: 1145, Dessie, Ethiopia.
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Bedilu Linger Endalifer
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P.O.Box: 1145, Dessie, Ethiopia
| |
Collapse
|
5
|
Nadeem F, Fozia F, Aslam M, Ahmad I, Ahmad S, Ullah R, Almutairi MH, Aleya L, Abdel-Daim MM. Characterization, Antiplasmodial and Cytotoxic Activities of Green Synthesized Iron Oxide Nanoparticles Using Nephrolepis exaltata Aqueous Extract. Molecules 2022; 27:4931. [PMID: 35956882 PMCID: PMC9370615 DOI: 10.3390/molecules27154931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
The use of non-toxic synthesis of iron oxide nanoparticles (FeO NPs) by an aqueous plant extract has proven to be a viable and environmentally friendly method. Therefore, the present investigation is based on the FeO NPs synthesis by means of FeCl3·6H2O as a precursor, and the plant extract of Nephrolepis exaltata (N. exaltata) serves as a capping and reducing agent. Various techniques were used to examine the synthesized FeO NPs, such as UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). The FT-IR studies were used to identify different photoactive biomolecules at 3285, 2928, 1415, 1170, and 600 cm-1 in the wavenumber range from 4000 to 400 cm-1, indicating the -OH, C-H, C-O, C-C, and M-O groups, respectively. The XRD examination exhibited crystallinity, and the average diameter of the particle was 16 nm. The spherical nature of synthesized FeO NPs was recognized by SEM images, while the elemental composition of nanoparticles was identified by an EDX spectrophotometer. The antiplasmodial activity of synthesized FeO NPs was investigated against Plasmodium parasites. The antiplasmodial property of FeO NPs was evaluated by means of parasite inhibitory concentration, which showed higher efficiency (62 ± 1.3 at 25 μg/mL) against Plasmodium parasite if compared to plant extracts and precursor. The cytotoxicity of FeO NPs was also assessed in human peripheral blood mononuclear cells (PBMCs) under in vitro conditions. The lack of toxic effects through FeO NPs keeps them more effective for use in pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Faisal Nadeem
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; (F.N.); (M.A.); (S.A.)
| | - Fozia Fozia
- Biochemistry Department, Khyber Medical University, Institute of Medical Sciences, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
| | - Madeeha Aslam
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; (F.N.); (M.A.); (S.A.)
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; (F.N.); (M.A.); (S.A.)
| | - Shakeel Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; (F.N.); (M.A.); (S.A.)
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, F-25030 Besançon, France;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
6
|
Ceravolo IP, Aguiar AC, Adebayo JO, Krettli AU. Studies on Activities and Chemical Characterization of Medicinal Plants in Search for New Antimalarials: A Ten Year Review on Ethnopharmacology. Front Pharmacol 2021; 12:734263. [PMID: 34630109 PMCID: PMC8493299 DOI: 10.3389/fphar.2021.734263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Malaria is an endemic disease that affected 229 million people and caused 409 thousand deaths, in 2019. Disease control is based on early diagnosis and specific treatment with antimalarial drugs since no effective vaccines are commercially available to prevent the disease. Drug chemotherapy has a strong historical link to the use of traditional plant infusions and other natural products in various cultures. The research based on such knowledge has yielded two drugs in medicine: the alkaloid quinine from Cinchona species, native in the Amazon highland rain forest in South America, and artemisinin from Artemisia annua, a species from the millenary Chinese medicine. The artemisinin-based combination therapies (ACTs), proven to be highly effective against malaria parasites, and considered as “the last bullet to fight drug-resistant malaria parasites,” have limited use now due to the emergence of multidrug resistance. In addition, the limited number of therapeutic options makes urgent the development of new antimalarial drugs. This review focuses on the antimalarial activities of 90 plant species obtained from a search using Pubmed database with keywords “antimalarials,” “plants” and “natural products.” We selected only papers published in the last 10 years (2011–2020), with a further analysis of those which were tested experimentally in malaria infected mice. Most plant species studied were from the African continent, followed by Asia and South America; their antimalarial activities were evaluated against asexual blood parasites, and only one species was evaluated for transmission blocking activity. Only a few compounds isolated from these plants were active and had their mechanisms of action delineated, thereby limiting the contribution of these medicinal plants as sources of novel antimalarial pharmacophores, which are highly necessary for the development of effective drugs. Nevertheless, the search for bioactive compounds remains as a promising strategy for the development of new antimalarials and the validation of traditional treatments against malaria. One species native in South America, Ampelozyzyphus amazonicus, and is largely used against human malaria in Brazil has a prophylactic effect, interfering with the viability of sporozoites in in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Isabela P Ceravolo
- Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Anna C Aguiar
- Departamento de Biociência, Universidade Federal de São Paulo, Santos, Brazil
| | - Joseph O Adebayo
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Antoniana U Krettli
- Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| |
Collapse
|
7
|
Nishi L, Sanfelice RADS, da Silva Bortoleti BT, Tomiotto-Pellissier F, Silva TF, Evangelista FF, Lazarin-Bidóia D, Costa IN, Pavanelli WR, Conchon Costa I, Baptista ATA, Bergamasco R, Falavigna-Guilherme AL. Moringa oleifera extract promotes apoptosis-like death in Toxoplasma gondii tachyzoites in vitro. Parasitology 2021; 148:1447-1457. [PMID: 34187608 PMCID: PMC11010153 DOI: 10.1017/s0031182021001086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 01/30/2023]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, and an important problem of public health. The current treatment for toxoplasmosis is the combination of pyrimethamine and sulphadiazine, which do not act in the chronic phase of toxoplasmosis and have several side-effects. This study evaluated the anti-T. gondii activity and potential mechanism of Moringa oleifera seeds’ aqueous extract in vitro. The concentration of M. oleifera extract in HeLa cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assays. The presence of T. gondii was assessed by quantitative polymerase chain reaction and toluidine blue staining. Pyrimethamine and sulphadiazine were used as drug controls. Modifications in T. gondii morphology and ultrastructure were observed by electron microscopy. In vitro, the M. oleifera extract had no toxic effect on HeLa cells at concentrations below 50 μg mL−1. Moringa oleifera extract inhibits T. gondii invasion and intracellular proliferation with similar results for sulphadiazine + pyrimethamine, and also shows cellular nitric oxide production at a concentration of 30 μg mL−1. Electron microscopy analyses indicated structural and ultrastructural modifications in tachyzoites after treatment. We also observed an increase in reactive oxygen species production and a loss of mitochondrial membrane integrity. Nile Red staining assays demonstrated a lipid accumulation. Annexin V–fluorescein isothiocyanate and propidium iodide staining demonstrated that the main action of M. oleifera extract in T. gondii tachyzoites was compatible with late apoptosis. In conclusion, M. oleifera extract has anti-T. gondii activity in vitro and might be a promising substance for the development of a new anti-T. gondii drug.
Collapse
Affiliation(s)
- Letícia Nishi
- Graduate Program in Health Science, State University of Maringá, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| | - Raquel Arruda da Silva Sanfelice
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC/Fiocruz-PR), Curitiba, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC/Fiocruz-PR), Curitiba, Paraná, Brazil
| | - Taylon Felipe Silva
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Fernanda Ferreira Evangelista
- Graduate Program in Health Science, State University of Maringá, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidóia
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Ivete Conchon Costa
- Department of Pathological Sciences, Laboratory of Immunoparasitology of Neglected Diseases and Cancer – LIDNC, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Campus, Zip Code 86057-970, Postal box 10.011, Londrina, Paraná, Brazil
| | - Aline Takaoka Alves Baptista
- Departament of Food and Chemical Engineering, Federal University of Technology – Paraná – UTFPR, Câmpus Campo Mourão, Via Rosalina Maria Dos Santos, 1233, Zip Code 87301-899, Campo Mourão, Paraná, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| | - Ana Lúcia Falavigna-Guilherme
- Graduate Program in Health Science, State University of Maringá, Colombo Avenue, 5790, Zip Code 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
8
|
Ekasari W, Basuki DR, Arwati H, Wahyuni TS. Antiplasmodial activity of Ethanolic extract of Cassia spectabilis DC leaf and its inhibition effect in Heme detoxification. BMC Complement Med Ther 2021; 21:71. [PMID: 33607987 PMCID: PMC7896390 DOI: 10.1186/s12906-021-03239-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In previous studies, Cassia spectabilis DC leaf has shown a good antiplasmodial activity. Therefore, this study is a follow-up study of the extract of leaf of C. spectabilis DC on its in vitro and in vivo antiplasmodial activity and mechanism as an antimalarial. METHODS The extract was fractionated, sub-fractionated and isolated to obtain the purified compound. In vitro antiplasmodial activity test against Plasmodium falciparum to find out the active compound. In vivo test against P. berghei ANKA-infected mice was conducted to determine prophylactic activity and antiplasmodial activity either alone or in combination with artesunate. The inhibition of heme detoxification test as one of the antimalarial mechanisms was carried out using the Basilico method. RESULTS The results showed that active antimalarial compound isolated from C. spectabilis DC leaf had a structural pattern that was identical to (-)-7-hydroxycassine. Prophylactic test of 90% ethanolic extract of C. spectabilis DC leaf alone against P. berghei ANKA-infected mice obtained the highest percentage inhibition was 68.61%, while positive control (doxycycline 13 mg/kg) was 73.54%. In combination with artesunate, 150 mg/kg three times a day of C. spectabilis DC (D0-D2) + artesunate (D2) was better than the standard combination of amodiaquine + artesunate where the inhibition percentages were 99.18 and 92.88%, respectively. The IC50 of the extract for the inhibitory activity of heme detoxification was 0.375 mg/ml which was better than chloroquine diphosphate (0.682 mg/ml). CONCLUSION C. spectabilis DC leaf possessed potent antiplasmodial activity and may offer a potential agent for effective and affordable antimalarial phytomedicine.
Collapse
Affiliation(s)
- Wiwied Ekasari
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Campus C, Mulyorejo Street, Surabaya, 60115, Indonesia.
| | - Dewi Resty Basuki
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Campus C, Mulyorejo Street, Surabaya, 60115, Indonesia
| | - Heny Arwati
- Department of Medical Parasitology, Faculty of Medicine, Universitas Airlangga, Campus A, Surabaya, 60132, Indonesia
| | - Tutik Sri Wahyuni
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Campus C, Mulyorejo Street, Surabaya, 60115, Indonesia
| |
Collapse
|
9
|
Erhirhie EO, Ikegbune C, Okeke AI, Onwuzuligbo CC, Madubuogwu NU, Chukwudulue UM, Okonkwo OB. Antimalarial herbal drugs: a review of their interactions with conventional antimalarial drugs. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-020-00242-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDevelopment of resistance by malaria parasites to conventional antimalarial drugs has rejuvenated the exploration of herbal medicine as alternatives. Also, the increasing rate of the use of herbal antimalarial remedies in combination with conventional antimalarial drugs (both synthetic and semi-synthetic) has inspired researchers to validate their herb-drug interaction effects. This review evaluated the interaction outcomes between herbal antimalarial drugs in combination with conventional antimalarial drugs. With the aid of electronic databases, Pubmed and Google scholar, articles related to this subject were sourced from English peer reviewed scientific journals published from 2003 to 2020. Search terms used include “antimalarial-herbal drugs interaction”, “antimalarial medicinal plant interactions with conventional antimalarial drugs”, “drug-herbal interactions, “antimalarial drugs and medicinal plants”. Synergistic, antagonistic and none effects were reported among 30 studies reviewed. Among 18 in vivo studies on P. berghei and P. yoelii nigerense infected mice model, 14 showed synergism, 3 showed antagonism and 1 involving three plants showed both effects. Among 9 in-vivo studies involving normal animal (non-infected), 2 showed antagonism, 2 showed synergism and 5 showed none-effects. Two (2) studies on human volunteers and one (1) in vitro quantitative study showed that Garcinia kola reduced plasma concentrations of quinine and halofantrine. Generally, majority of herbal antimalarial drugs showed synergistic effects with CAMDs. Vernonia amygdalina was the most studied plant compared to others. Consequently, herbal remedies that produced synergistic effects with conventional antimalarial drugs may be prospects for standardization and development of antimalarial-medicinal plant combination therapy that could curtail malaria resistance to conventional antimalarial therapies.
Collapse
|
10
|
Antimalarial Activity of the Leaf Latex of Aloe weloensis (Aloaceae) against Plasmodium berghei in Mice. J Trop Med 2020; 2020:1397043. [PMID: 32855640 PMCID: PMC7443248 DOI: 10.1155/2020/1397043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
Background Emergence of drug resistance and lack of therapeutic efficacy of modern antimalarial drugs are the most triggering factors for the searching of new lead compounds with different mechanisms of action. Medicinal plants with documented traditional uses are a viable option for treatment of malaria. Traditionally, the leaf latex of Aloe weloensis has been used in the treatment of malaria in Ethiopia. Hence, this study was undertaken to investigate the antimalarial activity of the leaf latex of Aloe weloensis in Plasmodium berghei-infected mice. Methods A four-day suppressive test was employed to evaluate the antimalarial effect of the leaf latex of the plant against P. berghei in Swiss albino mice. Mice were randomly assigned in five groups of five animals in each and given 100, 200, and 400 mg/kg of the leaf latex, chloroquine 25 mg/kg, and distilled water. The level of parasitemia, packed cell volume, survival time, temperature, and body weight was used to determine the antimalarial activity. Results The acute toxicity study indicated that the leaf latex of A. weloensis caused neither mortality nor signs and symptoms of toxicity at a dose of 2000 mg/kg. Furthermore, the 4-day suppressive test indicated that the latex of the plant exhibited a significant parasitemia reduction in a dose-dependent manner as compared to negative control. The leaf latex of the plant exhibited a percent inhibition of 13.05%, 41.87%, and 66.84% at doses of 100 mg/kg, 200 mg/kg, and 400 mg/kg, respectively. The chemosuppression of the antimalarial activity was statistically significant at 100 mg/kg (p < 0.05), 200 mg/kg (p < 0.01), and 400 mg/kg (p < 0.01) as compared to negative control. All doses of the leaf latex prevented weight loss and reduction in temperature and packed cell volume and increased the survival time of infected mice. Conclusion The results of this study demonstrated that the leaf latex of Aloe weloensis possessed antiplasmodial activity confirming the genuine traditional use of the plant as an antimalarial agent.
Collapse
|
11
|
Ebstie YA, Guedoung ART, Habluetzel A. A murine malaria protocol for characterizing transmission blocking benefits of antimalarial drug combinations. MALARIAWORLD JOURNAL 2020; 11:1. [PMID: 34532220 PMCID: PMC8415060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Current efforts towards malaria elimination include the discovery of new transmission blocking (TB) drugs and identification of compounds suitable to replace primaquine, recommended as transmission blocking post treatment after artemisinin combination therapy (ACT). High through put screening of compound libraries has allowed to identify numerous compounds active in vitro against gametocytes and insect early sporogonic stages, but few studies have been performed to characterize TB compounds in vivo. Here we propose a double TB drug Direct Feeding Assay (2TB-DFA), suitable to assess the combined effects of TB compounds. MATERIALS AND METHODS Plasmodium berghei GFPcon (PbGFPcon), BALB/c mice and Anopheles stephensi mosquitoes were used. Artemisinin (ART) and artesunate (AS) served as examples of artemisinins, NeemAzal® (NA), as a known TB-product with sporontocidal activity. DFA experiments were performed to assess the appropriate time point of administration before mosquito feeding and estimate suitable sub-optimal doses of the three compounds that allow combination effects to be appreciated. RESULTS Suboptimal dosages, that reduce about 50% of oocyst development, were recorded with ART in the range of 16-30 mg/ kg, AS 14-28 mg/kg and NA 31-38mg/kg. Ten hours before mosquito feeding (corresponding to 3.5 days after mouse infection) was determined as a suitable time point for mouse treatment with ART and AS and 1 hour for post-treatment with NA. ART given at 35 mg/kg in combination with NA at 40 mg/kg reduced oocyst density by 94% and prevalence of infection by 59%. Similarly, the combination of ART at 25 mg/kg plus NA at 35 mg/kg decreased oocyst density by 95% and prevalence of infection by 34%. In the 2TB-DFA, conducted with AS (20 mg/kg) and NA (35 mg/kg) the combination treatment reduced oocyst density by 71% and did not affect prevalence of infection. Applying 'Highest Single Agent' analysis and considering as readout oocyst density and prevalence of infection, cooperative effects of the combination treatments, compared with the single compound treatments emerged. CONCLUSION This study suggests the 2TB-DFA to be suitable for the profiling of new TB candidates that could substitute primaquine as a post-treatment to ACT courses.
Collapse
Affiliation(s)
| | | | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Camerino, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Popoola JO, Aworunse OS, Oyesola OL, Akinnola OO, Obembe OO. A systematic review of pharmacological activities and safety of Moringa oleifera. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, Moringa oleifera, a multipurpose medicinal plant (MMP) has received increased research attention and commercial interest for its nutritional, therapeutic and pharmacological properties. Rigorous approaches including biological assays, animal and clinical trials are required towards safe usage as herbal therapy. We conducted a systematic review of the known pharmacological activities, toxicity, and safety of M. oleifera, usually used locally in the treatment and prevention of myriads of illnesses. Five major bibliographic databases (SCOPUS, Web of Science, Science Direct, PubMed, and Mendeley) were searched for studies reported on pharmacological activities, toxicity, and safety assessment of M. oleifera in the last 29 years (1990 – 2019). Studies on animals and humans involving aqueous leaf extracts and different preparations from M. oleifera seed and bark were also considered. All articles retained, and data collected were evaluated based on the period of the article, country where such studies were conducted and the document type. Our search results identified and analyzed 165 articles while 63 studies were eventually retained. Diverse pharmacological activities including neuroprotective, antimicrobial, antiasthmatic, anti-malaria, cardioprotective, antidiabetic, antiobesity, hepatoprotective and cytotoxic effects, amongst others, were recorded. Toxicity studies in animal models and few human studies showed that M. oleifera is safe with no adverse effect reported. The importance of the plant is highlighted in the search for new bioactive compounds to explore its therapeutic potentials towards drug discovery and development in the pharmaceutical and allied industries.
Collapse
Affiliation(s)
- Jacob O. Popoola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | | | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olayemi O. Akinnola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
13
|
Pilotos J, Ibrahim KA, Mowa CN, Opata MM. Moringa oleifera treatment increases Tbet expression in CD4 + T cells and remediates immune defects of malnutrition in Plasmodium chabaudi-infected mice. Malar J 2020; 19:62. [PMID: 32033605 PMCID: PMC7006207 DOI: 10.1186/s12936-020-3129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a worldwide problem that affects millions of people yearly. In rural areas where anti-malarial drugs are not easily accessible, many people use herbal treatments, such as Moringa oleifera, to treat a variety of diseases and ailments including malaria. While Moringa is reported to possess potent and curative anti-malarial properties, previous studies have mostly been restricted to assessment of parasitaemia. In this study, the effect of Moringa on malaria immunity in a murine model was investigated. METHODS Using a high dose (60 mg/mouse) for a short time (7 days) or low dose Moringa (30 mg/mouse) for a longer time (3 weeks), cytokine production, and Tbet expression by effector CD4+ T cells (Teff) were determined. Mice were also treated with Moringa after infection (curatively) or before infection (prophylactically) to determine the effect of the plant extract on parasitaemia and immunity. Given that Moringa also possess many nutritional benefits, the contribution of Moringa on malnourished malaria infected mice was determined. Malnutrition was induced by limiting access to food to only 4 h a day for 4 weeks, while control mice had unlimited access to mouse laboratory chow. All data was collected by flow cytometry and analysed using one-Way ANOVA or two tailed Student's t test. RESULTS Moringa-treated mice had increased numbers of effector CD4+ T cells accompanied by an increase in Tbet expression compared to control untreated mice. Mice that were treated with Moringa curatively also exhibited increased effector CD4+ T cell numbers, IFN-gamma and TNF secretion. Interestingly, the mice that were treated prophylactically had significantly higher Tbet expression. In the absence of adaptive immunity, high parasitaemia was observed in the RAG1 knockout mice. The food limited mice (malnourished) had reduced numbers of CD4+ T cells, TNF proportions, and significantly greater Tbet expression compared to the control group. Supplementation with Moringa in the limited group slightly restored CD4+ T cell activation, IL-2, and IL-10 production. CONCLUSIONS Taken together, these data suggest that Moringa treatment leads to increased CD4+ T cell activation, Th1 differentiation and production of pro-inflammatory cytokines after malaria infection. Thus, Moringa may be immunologically useful in the treatment of malaria and malnutrition. Further investigations are required to identify the active components in Moringa.
Collapse
Affiliation(s)
- Jennifer Pilotos
- Department of Biology, College of Arts and Sciences, Appalachian State University, 572 Rivers Street, ASU Box 32027, Boone, NC, 28604, USA
| | - Kadra Abdu Ibrahim
- Department of Biology, College of Arts and Sciences, Appalachian State University, 572 Rivers Street, ASU Box 32027, Boone, NC, 28604, USA
| | - Chishimba Nathan Mowa
- Department of Biology, College of Arts and Sciences, Appalachian State University, 572 Rivers Street, ASU Box 32027, Boone, NC, 28604, USA
| | - Michael Makokha Opata
- Department of Biology, College of Arts and Sciences, Appalachian State University, 572 Rivers Street, ASU Box 32027, Boone, NC, 28604, USA.
| |
Collapse
|