1
|
Bloch S, Nejman-Faleńczyk B, Licznerska K, Dydecka A, Topka-Bielecka G, Necel A, Węgrzyn A, Węgrzyn G. Complex effects of the exo-xis region of the Shiga toxin-converting bacteriophage Φ24 B genome on the phage development and the Escherichia coli host physiology. J Appl Genet 2024; 65:191-211. [PMID: 37968427 PMCID: PMC10789677 DOI: 10.1007/s13353-023-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Lambdoid bacteriophages are excellent models in studies on molecular aspects of virus-host interactions. However, some of them carry genes encoding toxins which are responsible for virulence of pathogenic strains of bacteria. Shiga toxin-converting bacteriophages (Stx phages) encode Shiga toxins that cause virulence of enterohemorrhagic Escherichia coli (EHEC), and their effective production depends on Stx prophage induction. The exo-xis region of the lambdoid phage genome consists of genes which are dispensable for the phage multiplication under laboratory conditions; however, they might modulate the virus development. Nevertheless, their exact effects on the phage and host physiology remained unclear. Here, we present results of complex studies on the role of the exo-xis region of bacteriophage Φ24B, one of Stx2b phages. Transcriptomic analyses, together with proteomic and metabolomic studies, provided the basis for understanding the functions of the exo-xis region. Genes from this region promoted lytic development of the phage over lysogenization. Moreover, expression of the host genes coding for DnaK, DnaJ, GrpE, and GroELS chaperones was impaired in the cells infected with the Δexo-xis phage mutant, relative to the wild-type virus, corroborating the conclusion about lytic development promotion by the exo-xis region. Proteomic and metabolomic analyses indicated also modulation of gad and nrf operons, and levels of amino acids and acylcarnitines, respectively. In conclusion, the exo-xis region controls phage propagation and host metabolism by influencing expression of different phage and bacterial genes, directing the virus to the lytic rather than lysogenic developmental mode.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
2
|
Donaldson LW. Molecular Modeling the Proteins from the exo-xis Region of Lambda and Shigatoxigenic Bacteriophages. Antibiotics (Basel) 2021; 10:1282. [PMID: 34827220 PMCID: PMC8614690 DOI: 10.3390/antibiotics10111282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite decades of intensive research on bacteriophage lambda, a relatively uncharacterized region remains between the exo and xis genes. Collectively, exo-xis region genes are expressed during the earliest stages of the lytic developmental cycle and are capable of affecting the molecular events associated with the lysogenic-lytic developmental decision. In Shiga toxin-producing E. coli (STEC) and enterohemorragic E. coli (EHEC) that are responsible for food- and water-borne outbreaks throughout the world, there are distinct differences of exo-xis region genes from their counterparts in lambda phage. Together, these differences may help EHEC-specific phage and their bacterial hosts adapt to the complex environment within the human intestine. Only one exo-xis region protein, Ea8.5, has been solved to date. Here, I have used the AlphaFold and RoseTTAFold machine learning algorithms to predict the structures of six exo-xis region proteins from lambda and STEC/EHEC phages. Together, the models suggest possible roles for exo-xis region proteins in transcription and the regulation of RNA polymerase.
Collapse
|
3
|
Koeppel MB, Glaser J, Baumgartner T, Spriewald S, Gerlach RG, von Armansperg B, Leong JM, Stecher B. Scalable Reporter Assays to Analyze the Regulation of stx2 Expression in Shiga Toxin-Producing Enteropathogens. Toxins (Basel) 2021; 13:toxins13080534. [PMID: 34437405 PMCID: PMC8402550 DOI: 10.3390/toxins13080534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
Stx2 is the major virulence factor of EHEC and is associated with an increased risk for HUS in infected patients. The conditions influencing its expression in the intestinal tract are largely unknown. For optimal management and treatment of infected patients, the identification of environmental conditions modulating Stx2 levels in the human gut is of central importance. In this study, we established a set of chromosomal stx2 reporter assays. One system is based on superfolder GFP (sfGFP) using a T7 polymerase/T7 promoter-based amplification loop. This reporter can be used to analyze stx2 expression at the single-cell level using FACSs and fluorescence microscopy. The other system is based on the cytosolic release of the Gaussia princeps luciferase (gluc). This latter reporter proves to be a highly sensitive and scalable reporter assay that can be used to quantify reporter protein in the culture supernatant. We envision that this new set of reporter tools will be highly useful to comprehensively analyze the influence of environmental and host factors, including drugs, small metabolites and the microbiota, on Stx2 release and thereby serve the identification of risk factors and new therapies in Stx-mediated pathologies.
Collapse
Affiliation(s)
- Martin B. Koeppel
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
- Correspondence: (M.B.K.); (B.S.)
| | - Jana Glaser
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - Tobias Baumgartner
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - Stefanie Spriewald
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany;
| | - Benedikt von Armansperg
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA;
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
- Correspondence: (M.B.K.); (B.S.)
| |
Collapse
|
4
|
Mohaisen MR, McCarthy AJ, Adriaenssens EM, Allison HE. The Site-Specific Recombination System of the Escherichia coli Bacteriophage Φ24 B. Front Microbiol 2020; 11:578056. [PMID: 33162958 PMCID: PMC7581858 DOI: 10.3389/fmicb.2020.578056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Stx bacteriophages are members of the lambdoid group of phages and are responsible for Shiga toxin (Stx) production and the dissemination of Shiga toxin genes (stx) across shigatoxigenic Escherichia coli (STEC). These toxigenic bacteriophage hosts can cause life-threatening illnesses, and Stx is the virulence determinant responsible for the severe nature of infection with enterohemorrhagic E. coli, a subset of pathogenic STEC. Stx phages are temperate, and in the present study, the identification of what is actually required for Stx phage Φ24B and bacterial DNA recombination was tested using both in vitro and in situ recombination assays. It is well established that phage λ, which underpins most of what we understand about lambdoid phage biology, requires its own encoded phage attachment site (attP) of 250 bp, a host-encoded attachment site (attB) of 21 bp, and a host-encoded DNA binding protein known as integration host factor (IHF). The assays applied in this study enabled the manipulation of the phage attachment site (attP) and the bacterial attachment site (attB) sequences and the inclusion or exclusion of a host-encoded accessory element known as integration host factor. We were able to demonstrate that the minimal attP sequence required by Φ24B phage is between 350 and 427 bp. Unlike phage λ, the minimal necessary flanking sequences for the attB site do not appear to be equal in size, with a total length between 62 and 93 bp. Furthermore, we identified that the Φ24B integrase does not require IHF to drive the integration and the recombination process. Understanding how this unusual Stx phage integrase works may enable exploitation of its promiscuous nature in the context of genetic engineering.
Collapse
Affiliation(s)
- Mohammed Radhi Mohaisen
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,College of Dentistry, University of Anbar, Ramadi, Iraq
| | - Alan John McCarthy
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Heather Elizabeth Allison
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Tong J, Nejman-Faleńczyk B, Bloch S, Węgrzyn A, Węgrzyn G, Donaldson LW. Ea22 Proteins from Lambda and Shiga Toxin-Producing Bacteriophages Balance Structural Diversity with Functional Similarity. ACS OMEGA 2020; 5:12236-12244. [PMID: 32548406 PMCID: PMC7271347 DOI: 10.1021/acsomega.0c00894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) outbreaks are commonly associated with contaminated food sources. Unlike normal intestinal bacteria, EHEC are lysogens of lambdoid bacteriophages that also carry a gene for Shiga toxin. Oxidative attack by the immune system or other stressors on the bacterial host can activate the lytic pathway of the latent phage genome to produce phage progeny and the release of Shiga toxin into the surrounding tissues. Within the genomes of bacteriophage λ and Shiga toxin-expressing (Stx+) phages such as φ24B and φP27, there is a conserved set of open reading frames that is located between the exo and xis genes that influences the lysogenic-lytic decision. In this report, we have focused on the largest exo-xis region open reading frame termed ea22 that has been shown previously to have prolysogenic properties. Using a variety of biophysical and bioinformatic methods, we demonstrate that λ and φP27 Ea22 proteins are tetrameric in solution and can be considered in terms of an amino-terminal region, a central coiled-coil region, and a carboxy-terminal region. The carboxy-terminal regions of λ and φ24B Ea22, expressed on their own, form dimers with exceptional thermostability. Limited proteolysis of φP27 Ea22 also identified a C-terminal region along the predicted boundaries. While the three Ea22 proteins all appear to have the hallmarks of a domain in their respective C-terminal regions, each sequence is remarkably dissimilar. To reconcile this difference among Ea22 proteins from λ and Stx+ phages alike, we speculate that each Ea22 may achieve the same function by targeting different components of the same regulatory process in the host.
Collapse
Affiliation(s)
- Jinge Tong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, University
of Gdansk, Wita Stwosza
59, 80-308 Gdansk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, University
of Gdansk, Wita Stwosza
59, 80-308 Gdansk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Kładki
24, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University
of Gdansk, Wita Stwosza
59, 80-308 Gdansk, Poland
| | - Logan W. Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
6
|
Dydecka A, Bloch S, Necel A, Topka G, Węgrzyn A, Tong J, Donaldson LW, Węgrzyn G, Nejman-Faleńczyk B. The ea22 gene of lambdoid phages: preserved prolysogenic function despite of high sequence diversity. Virus Genes 2020; 56:266-277. [PMID: 31970620 PMCID: PMC7093339 DOI: 10.1007/s11262-020-01734-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
The exo-xis region of lambdoid phages contains open reading frames and genes that appear to be evolutionarily important. However, this region has received little attention up to now. In this study, we provided evidence that ea22, the largest gene of this region, favors the lysogenic pathway over the lytic pathway in contrast to other characterized exo-xis region genes including ea8.5, orf61, orf60a, and orf63. Our assays also suggest some functional analogies between Ea22 and the phage integrase protein (Int). While it is unsurprising that Ea22 operates similarly in both λ and Stx phages, we have observed some distinctions that may arise from considerable sequence dissimilarity at the carboxy termini of each protein.
Collapse
Affiliation(s)
- Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdańsk, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Gracja Topka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdańsk, Poland
| | - Jinge Tong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Logan W Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
7
|
Roles of orf60a and orf61 in Development of Bacteriophages λ and Φ24 B. Viruses 2018; 10:v10100553. [PMID: 30314296 PMCID: PMC6213356 DOI: 10.3390/v10100553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022] Open
Abstract
The exo-xis region of lambdoid bacteriophage genomes contains several established and potential genes that are evolutionarily conserved, but not essential for phage propagation under laboratory conditions. Nevertheless, deletion or overexpression of either the whole exo-xis region and important regulatory elements can significantly influence the regulation of phage development. This report defines specific roles for orf60a and orf61 in bacteriophage λ and Φ24B, a specific Shiga toxin-converting phage with clinical relevance. We observed that mutant phages bearing deletions of orf60a and orf61 impaired two central aspects of phage development: the lysis-versus-lysogenization decision and prophage induction. These effects were more pronounced for phage Φ24B than for λ. Surprisingly, adsorption of phage Φ24B on Escherichia coli host cells was less efficient in the absence of either orf60a or orf61. We conclude that these open reading frames (ORFs) play important, but not essential, roles in the regulation of lambdoid phage development. Although phages can propagate without these ORFs in nutrient media, we suggest that they may be involved in the regulatory network, ensuring optimization of phage development under various environmental conditions.
Collapse
|
8
|
Bloch S, Nejman-Faleńczyk B, Pierzynowska K, Piotrowska E, Węgrzyn A, Marminon C, Bouaziz Z, Nebois P, Jose J, Le Borgne M, Saso L, Węgrzyn G. Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. J Enzyme Inhib Med Chem 2018. [PMID: 29536772 PMCID: PMC6009899 DOI: 10.1080/14756366.2018.1444610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress may be the major cause of induction of Shiga toxin-converting (Stx) prophages from chromosomes of Shiga toxin-producing Escherichia coli (STEC) in human intestine. Thus, we aimed to test a series of novel antioxidant compounds for their activities against prophage induction, thus, preventing pathogenicity of STEC. Forty-six compounds (derivatives of carbazole, indazole, triazole, quinolone, ninhydrine, and indenoindole) were tested. Fifteen of them gave promising results and were further characterized. Eleven compounds had acceptable profiles in cytotoxicity tests with human HEK-293 and HDFa cell lines. Three of them (selected for molecular studies) prevent the prophage induction at the level of expression of specific phage genes. In bacterial cells treated with hydrogen peroxide, expression of genes involved in the oxidative stress response was significantly less efficient in the presence of the tested compounds. Therefore, they apparently reduce the oxidative stress, which prevents induction of Stx prophage in E. coli.
Collapse
Affiliation(s)
- Sylwia Bloch
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Bożena Nejman-Faleńczyk
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Karolina Pierzynowska
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Ewa Piotrowska
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Alicja Węgrzyn
- b Laboratory of Molecular Biology , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Gdańsk , Poland
| | - Christelle Marminon
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Zouhair Bouaziz
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Pascal Nebois
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Joachim Jose
- d Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster , Münster , Germany
| | - Marc Le Borgne
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Luciano Saso
- e Department of Physiology and Pharmacology "Vittorio Erspamer" , Sapienza University , Rome , Italy
| | - Grzegorz Węgrzyn
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| |
Collapse
|
9
|
Krüger A, Burgán J, Friedrich AW, Rossen JWA, Lucchesi PMA. ArgO145, a Stx2a prophage of a bovine O145:H- STEC strain, is closely related to phages of virulent human strains. INFECTION GENETICS AND EVOLUTION 2018; 60:126-132. [PMID: 29476813 DOI: 10.1016/j.meegid.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/18/2018] [Accepted: 02/17/2018] [Indexed: 01/08/2023]
Abstract
Shiga toxins (Stx) are the main virulence factor of a pathogroup of Escherichia coli strains that cause severe human diseases. These toxins are encoded in prophages (Stx prophages), and generally their expression depends on prophage induction. Several studies have reported high diversity among both Stx prophages and Stx. In particular, the toxin subtype Stx2a is associated with high virulence and HUS. Here, we report the genome of ArgO145, an inducible Stx2a prophage identified in a bovine O145:H- strain which produced high levels of Shiga toxin and Stx phage particles. The ArgO145 genome shared lambda phage organization, with recombination, regulation, replication, lysis, and head and tail structural gene regions, although some lambda genes encoding regulatory proteins could not be identified. Remarkably, some Stx2a phages of strains isolated from patients in other countries showed high similarity to ArgO145.
Collapse
Affiliation(s)
- A Krüger
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina.
| | - J Burgán
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| | - A W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - J W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - P M A Lucchesi
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| |
Collapse
|
10
|
Dydecka A, Bloch S, Rizvi A, Perez S, Nejman-Falenczyk B, Topka G, Gasior T, Necel A, Wegrzyn G, Donaldson LW, Wegrzyn A. Bad Phages in Good Bacteria: Role of the Mysterious orf63 of λ and Shiga Toxin-Converting Φ24 B Bacteriophages. Front Microbiol 2017; 8:1618. [PMID: 28890713 PMCID: PMC5575149 DOI: 10.3389/fmicb.2017.01618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Lambdoid bacteriophages form a group of viruses that shares a common schema of genome organization and lifecycle. Some of them can play crucial roles in creating the pathogenic profiles of Escherichia coli strains. For example, Shiga toxin-producing E. coli (STEC) acquired stx genes, encoding Shiga toxins, via lambdoid prophages (Stx phages). The results obtained so far present the evidence for the relation between the exo-xis region of the phage genome and lambdoid phage development, however molecular mechanisms of activities of the exo-xis genes' products are still unknown. In view of this, we decided to determine the influence of the uncharacterized open reading frame orf63 of the exo-xis region on lambdoid phages development using recombinant prophages, λ and Stx phage Φ24B. We have demonstrated that orf63 codes for a folded protein, thus, it is a functional gene. NMR spectroscopy and analytical gel filtration were used to extend this observation further. From backbone chemical shifts, Orf63 is oligomeric in solution, likely a trimer and consistent with its small size (63 aa.), is comprised of two helices, likely intertwined to form the oligomer. We observed that the deletion of phage orf63 does not impair the intracellular lambdoid phage lytic development, however delays the time and decreases the efficiency of prophage induction and in consequence results in increased survival of E. coli during phage lytic development. Additionally, the deletion of phage orf63 negatively influences expression of the major phage genes and open reading frames from the exo-xis region during prophage induction with hydrogen peroxide. We conclude, that lambdoid phage orf63 may have specific functions in the regulation of lambdoid phages development, especially at the stage of the lysis vs. lysogenization decision. Besides, orf63 probably participates in the regulation of the level of expression of essential phage genes and open reading frames from the exo-xis region during prophage induction.
Collapse
Affiliation(s)
- Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Ali Rizvi
- Department of Biology, York UniversityToronto, ON, Canada
| | - Shaili Perez
- Department of Biology, York UniversityToronto, ON, Canada
| | | | - Gracja Topka
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Tomasz Gasior
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | | | - Alicja Wegrzyn
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| |
Collapse
|