1
|
Lyu P, Liu J, Ouyang X, Wang Y, Liu W, Zhong J. Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 affects the progression of periodontitis by regulating the function of periodontal membrane cells. J Dent Sci 2025; 20:325-334. [PMID: 39873066 PMCID: PMC11762624 DOI: 10.1016/j.jds.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/08/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 (NLRC5) plays a regulatory role in innate and adaptive immunity. However, its role in periodontitis remains unclear. This study investigated the effects of NLRC5 on periodontitis and the underlying mechanism. Materials and methods Experimental periodontitis models of wild-type and Nlrc5 knockout mice were established to detect alveolar bone loss. The inflammatory environment was established with Porphyromonas. gingivalis lipopolysaccharide (P. gingivalis LPS). The expression of NLRC5 in periodontal ligament stem cells (PDLSCs) were detected with P. gingivalis LPS stimulated. After knocking-down or overexpressing the NLRC5 expression level, the inflammatory cytokine level and osteogenic ability of PDLSCs were detected. Results The Nlrc5 knockout mice exhibited greater alveolar bone loss in periodontitis. In the presence of P. gingivalis LPS, the expression of NLRC5 decreased. Downregulating NLRC5 increased the expression of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). Upregulated NLRC5 inhibited nuclear factor kappa-B (NF-κB) signaling and inhibited the expression of those proinflammatory factors. NLRC5 had a positive regulatory effect on the osteogenic differentiation of PDLSCs. When NLRC5 was knocked down, the ALP activity and the number of mineralized nodules in PDLSCs decreased. Conversely, overexpression of NLRC5 enhanced the osteogenic differentiation ability of PDLSCs. Overexpression of NLRC5 increased the osteogenic differentiation of PDLSCs in inflammatory environments. Conclusion NLRC5 affects the progression of periodontitis by regulating the function of PDLSCs. NLRC5 reduced the expression of inflammatory factors by inhibiting NF-κB, and had a positive regulatory effect on the osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Peiying Lyu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yuanbo Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wenyi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinsheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
2
|
Li H, Li D, Li M, Hu Z. The Predictive Value of PKC and ET-1 Levels in Cerebrospinal Fluid for Vasospasm and Prognosis in Patients with Aneurysmal Subarachnoid Hemorrhage. Int J Gen Med 2024; 17:4347-4358. [PMID: 39346632 PMCID: PMC11439365 DOI: 10.2147/ijgm.s468549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Objective To analyze the predictive value of protein kinase C (PKC) and endothelin-1 (ET-1) in cerebrospinal fluid for vasospasm and prognosis in patients with aneurysmal subarachnoid hemorrhage (ASH). Methods One hundred and forty-eight ASH patients hospitalized in our hospital during February 2019 to February 2022 were optioned as observation subjects. These subjects were graded into good prognosis group (mRS score 0-2, n = 102) and poor prognosis group (mRS score 3-6, n = 46) according to the Rankin Revised Scale Score (mRS) after 6 months of follow-up. Cerebrospinal fluid was collected from patients to detect the content of ET-1 and PKC. The prognostic factors were analyzed using multifactorial logistic regression. The predictive value was assessed using receiver operating characteristic (ROC) curve. Results The patients with poor prognosis had a higher age level and a higher proportion of ≥2 aneurysms, aneurysm diameter ≥6 mm, cerebral vasospasm, and Hunt-Hess grade ≥III than those with good prognosis (P < 0.05). The patients with poor prognosis had higher content of PKC and ET-1 than those with good prognosis (P < 0.05). Age, aneurysm diameter ≥6 mm, cerebral vasospasm, Hunt-Hess classification ≥grade III, PKC and ET-1 were all risk factors related to the prognosis of ASH (P < 0.05). The area under the curve (AUC) of PKC and ET-1 for diagnosing poor prognosis of ASH was 0.803 and 0.720, respectively. The AUC of the combined detection was 0.873 (P < 0.05). Patients with cerebrovascular spasm had higher content of PKC and ET-1 than those without (P < 0.05). The AUC of PKC and ET-1 for diagnosing cerebral vasospasm in ASH was 0.891 and 0.816, respectively, which was 0.932 for combined detection (P < 0.05). Conclusion The combination of PKC and ET-1 in cerebrospinal fluid had certain value in predicting the poor prognosis of patients with ASH.
Collapse
Affiliation(s)
- Hailong Li
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| | - Donghua Li
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| | - Mi Li
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| | - Zehong Hu
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| |
Collapse
|
3
|
Yuan Z, Li J, He K, Sun Z, Luo G, Liu H, Dong J, Zhou C, Cui H, Fan C. Endogenous hydrogen sulfide accelerated trauma-induced heterotopic ossification through the Ca 2+/ERK pathway-enhanced aberrant osteogenic activity. Redox Biol 2024; 75:103265. [PMID: 39003920 PMCID: PMC11298937 DOI: 10.1016/j.redox.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Unveiling of the mechanism involved in the occurrence and development of trauma-induced heterotopic ossification (tHO) is highly demanding due to current ineffective clinical treatment for it. Previous studies proposed that hydrogen sulfide (H2S) was vital for fate determination of stem cells, suggesting a potential role in the regulation of tHO development. In the current study, We found that expression of metabolic enzyme within sulfur conversion pathway was enhanced after tendon injury, leading to H2S accumulation within the tHO region. Increased production of endogenous H2S was shown to promote aberrant osteogenic activity of tendon-derived stem cells (TDSCs), which accelerated tHO formation. The inhibition of metabolic enzyme of H2S production or directly absorption of H2S could abolished osteogenic induction of TDSCs and the formation of tHO. Mechanistically, through RNA sequencing combined with rescue experiments, we demonstrated that activation of Ca2+/ERK pathway was the downstream molecular event of H2S-induced osteogenic commitment of TDSCs and tHO. For treatment strategy exploration, zine oxide nanoparticles (ZnO) as an effective H2S elimination material was validated to ideally halt the tHO formation in this study. Furthermore, in terms of chirality of nanoparticles, D-ZnO or L-ZnO nanoparticles showed superiority over R-ZnO nanoparticles in both clearing of H2S and inhibition of tHO. Our study not only revealed the mechanism of tHO through the endogenous gas signaling event from a new perspective, but also presented a applicable platform for elimination of the inordinate gas production, thus aiding the development of clinical treatment for tHO.
Collapse
Affiliation(s)
- Zhengqiang Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kuangyu He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Gang Luo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinlei Dong
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haomin Cui
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Liu C, Dai L, Liu Y, Rong L, Dou D, Sun Y, Ma L. RETRACTED: Liu et al. Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer. Nutrients 2016, 8, 360. Nutrients 2024; 16:2846. [PMID: 39275359 PMCID: PMC11397418 DOI: 10.3390/nu16172846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The journal retracts the article, "Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer" [...].
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Longhai Dai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yueping Liu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Dequan Dou
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lanqing Ma
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| |
Collapse
|
5
|
Saito Y, Nodai T, Munemasa T, Mukaibo T, Kondo Y, Masaki C, Hosokawa R. Diagnostic potential of endothelin-1 in peri-implant diseases: a cross-sectional study. Int J Implant Dent 2024; 10:32. [PMID: 38874661 PMCID: PMC11178717 DOI: 10.1186/s40729-024-00551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
PURPOSE This study aimed to evaluate the potential of Endothelin-1 (ET-1), a peptide derived from vascular endothelial cells, as a biomarker for diagnosing peri-implant diseases. METHODS A cohort of 29 patients with a total of 76 implants was included in this study and subsequently divided into three groups based on peri-implant clinical parameters and radiographic examination: healthy (peri-implant health) (n = 29), mucositis (n = 22), and peri-implantitis (n = 25) groups. The levels of ET-1 (ρg/site) and interleukin (IL)-1β (ρg/site) in peri-implant sulcus fluid (PISF) samples were determined using enzyme immunoassay. Statistical analyses were conducted using Kruskal-Wallis and Steel-Dwass tests. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic performance of the biomarkers. RESULTS ET-1 levels were significantly elevated in the peri-implantitis group compared to those in the healthy group, and were highest in the peri-implant mucositis group. Additionally, IL-1β levels were significantly higher in the peri-implantitis group than those in the healthy group. ROC curve analysis indicated that ET-1 exhibited superior area under the curve values, sensitivity, and specificity compared to those of IL-1β. CONCLUSIONS Our findings suggest that the presence of ET-1 in PISF plays a role in peri-implant diseases. Its significantly increased expression in peri-implant mucositis indicates its potential for enabling earlier and more accurate assessments of peri-implant inflammation when combined with conventional examination methods.
Collapse
Affiliation(s)
- Yoshiki Saito
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
6
|
Retraction Note: A natural food sweetener with anti-pancreatic cancer properties. Oncogenesis 2023; 12:15. [PMID: 36928067 PMCID: PMC10020148 DOI: 10.1038/s41389-023-00461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
7
|
Shi SM, Liu TT, Wei XQ, Sun GH, Yang L, Zhu JF. GCN5 regulates ZBTB16 through acetylation, mediates osteogenic differentiation, and affects orthodontic tooth movement. Biochem Cell Biol 2023. [PMID: 36786377 DOI: 10.1139/bcb-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In the process of orthodontic tooth movement (OTM), periodontal ligament fibroblasts (PDLFs) must undergo osteogenic differentiation. OTM increased the expression of Zinc finger and BTB domain-containing 16 (ZBTB16), which is implicated in osteogenic differentiation. Our goal was to investigate the mechanism of PDLF osteogenic differentiation mediated by ZBTB16. The OTM rat model was established, and PDLFs were isolated and exposed to mechanical force. Hematoxylin-eosin staining, Alizarin Red staining, immunofluorescence, and immunohistochemistry were carried out. The alkaline phosphatase (ALP) activity was measured. Dual-luciferase reporter gene assay and chromatin immunoprecipitation assay were conducted. In OTM models, ZBTB16 was significantly expressed. Additionally, there was an uneven distribution of PDLFs in the OTM group, as well as an increase in fibroblasts and inflammatory infiltration. ZBTB16 interference hindered PDLF osteogenic differentiation and decreased Wnt and β-catenin levels. Meanwhile, ZBTB16 activated the Wnt/β-catenin pathway. ZBTB16 also enhanced the expression of the osteogenic molecules osterix, osteocalcin (OCN), osteopontin (OPN), and bone sialo protein (BSP) at mRNA and protein levels. The interactions between Wnt1 and ZBTB16, as well as GCN5 and ZBTB16, were also verified. The adeno-associated virus-shZBTB16 injection also proved to inhibit osteogenic differentiation and reduce tooth movement distance in in vivo tests. ZBTB16 was up-regulated in OTM. Through acetylation modification of ZBTB16, GCN5 regulated the Wnt/β-catenin signaling pathway and further mediated PDLF osteogenic differentiation.
Collapse
Affiliation(s)
- Shu-Man Shi
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ting-Ting Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xue-Qin Wei
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ge-Hong Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan-Fang Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
8
|
Zhang Z, Deng M, Hao M, Tang J. Stem Cell Therapy in Chronic Periodontitis: Host Limitations and Strategies. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.833033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of chronic periodontitis is undergoing a transition from simple plaque removal and replacement with substitute materials to regenerative therapy, in which stem cells play an important role. Although stem cell-based periodontal reconstruction has been widely explored, few clinical regeneration studies have been reported. The inflammatory lesions under the impact of host factors such as local microbial–host responses, may impede the regenerative properties of stem cells and destroy their living microenvironment. Furthermore, systemic diseases, in particular diabetes mellitus, synergistically shape the disordered host-bacterial responses and exacerbate the dysfunction of resident periodontal ligament stem cells (PDLSCs), which ultimately restrain the capacity of mesenchymal stromal cells (MSCs) to repair the damaged periodontal tissue. Accordingly, precise regulation of an instructive niche has become a promising approach to facilitate stem cell-based therapeutics for ameliorating periodontitis and for periodontal tissue regeneration. This review describes host limitations and coping strategies that influence resident or transplanted stem cell-mediated periodontal regeneration, such as the management of local microbial–host responses and rejuvenation of endogenous PDLSCs. More importantly, we recommend that active treatments for systemic diseases would also assist in recovering the limited stem cell function on the basis of amelioration of the inflammatory periodontal microenvironment.
Collapse
|
9
|
Ghanem A, Al-Karmalawy AA, Abd El Maksoud AI, Hanafy SM, Emara HA, Saleh RM, Elshal MF. Rumex Vesicarius L. extract improves the efficacy of doxorubicin in triple-negative breast cancer through inhibiting Bcl2, mTOR, JNK1 and augmenting p21 expression. INFORMATICS IN MEDICINE UNLOCKED 2022; 29:100869. [DOI: 10.1016/j.imu.2022.100869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
10
|
Shim NY, Heo JS. Performance of the Polydopamine-Graphene Oxide Composite Substrate in the Osteogenic Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2021; 22:ijms22147323. [PMID: 34298943 PMCID: PMC8303500 DOI: 10.3390/ijms22147323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly higher levels of integrin α5 and β1, as well as bone morphogenetic protein receptor (BMPR) types I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate. Blocking activation of the integrin α5/β1, MAPK, or SMAD signaling pathways downregulated the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO composite stimulates the osteogenic differentiation of ESCs via the integrin α5/β1, MAPK, and BMPR/SMAD signaling pathways.
Collapse
|
11
|
Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol 2021; 110:565-576. [PMID: 34043832 DOI: 10.1002/jlb.4mr0421-750r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is characterized by the periodontium's pathologic destruction due to the host's overwhelmed inflammation to the dental plaque. The bacterial infections and subsequent host immune responses have shaped a distinct microenvironment, which generally affects resident periodontal ligament stem cells (PDLSCs). Interestingly, recent studies have revealed that impaired PDLSCs may also contribute to the disturbance of periodontal homeostasis. The putative vicious circle underlying the interesting "positive feedback" of PDLSCs in the periodontitis niche remains a hot research topic, whereas the inseparable interactions between resident PDLSCs and the periodontitis niche are still not fully understood. This review provides a microscopic view on the periodontitis progression, especially the quick but delicate immune responses to oral dysbacterial infections. We also summarize the interesting crosstalk of the resident PDLSCs with their surrounding periodontitis niche and potential mechanisms. Particularly, the microenvironment reduces the osteogenic properties of resident PDLSCs, which are closely related to their reparative activity. Reciprocally, these impaired PDLSCs may disrupt the microenvironment by aggravating the host immune responses, promoting aberrant angiogenesis, and facilitating the osteoclastic activity. We further recommend that more in-depth studies are required to elucidate the interactions of PDLSCs with the periodontal microenvironment and provide novel interventions for periodontitis.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Deng
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hao
- Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Ren M, Zhao Y, He Z, Lin J, Xu C, Liu F, Hu R, Deng H, Wang Y. Baicalein inhibits inflammatory response and promotes osteogenic activity in periodontal ligament cells challenged with lipopolysaccharides. BMC Complement Med Ther 2021; 21:43. [PMID: 33485352 PMCID: PMC7824944 DOI: 10.1186/s12906-021-03213-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Periodontitis is a chronic infection initiated by oral bacterial and their virulence factors, yet the severity of periodontitis is largely determined by the dysregulated host immuno-inflammatory response. Baicalein is a flavonoid extracted from Scutellaria baicalensis with promising anti-inflammatory properties. This study aims to clarify the anti-inflammatory and osteogenic effects of baicalein in periodontal ligament cells (PDLCs) treated with lipopolysaccharides (LPS). Methods Human PDLCs were incubated with baicalein (0–100 μM) for 2 h prior to LPS challenge for 24 h. MTT analysis was adopted to assess the cytoxicity of baicalein. The mRNA and protein expression of inflammatory and osteogenic markers were measured by real-time polymerase chain reaction (PCR), western blot and enzyme-linked immunosorbent assay (ELISA) as appropriate. Alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were performed to evaluate the osteogenic differentiation of PDLCs. The expression of Wnt/β-catenin and mitogen-activated protein kinase (MAPK) signaling related proteins was assessed by western blot. Results MTT results showed that baicalein up to 100 μM had no cytotoxicity on PDLCs. Baicalein significantly attenuated the inflammatory factors induced by LPS, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), matrix metalloprotein-1 (MMP-1), MMP-2 and monocyte chemoattractant protein 1 (MCP-1) at both mRNA and protein level. Moreover, MAPK signaling (ERK, JNK and p38) was significantly inhibited by baicalein, which may account for the mitigated inflammatory response. Next, we found that baicalein effectively restored the osteogenic differentiation of LPS-treated PDLCs, as shown by the increased ALP and ARS staining. Accordingly, the protein and gene expression of osteogenic markers, namely runt-related transcription factor 2 (RUNX2), collagen-I, and osterix were markedly upregulated. Importantly, baicalein could function as the Wnt/β-catenin signaling activator, which may lead to the increased osteoblastic differentiation of PDLCs. Conclusions With the limitation of the study, we provide in vitro evidence that baicalein ameliorates inflammatory response and restores osteogenesis in PDLCs challenged with LPS, indicating its potential use as the host response modulator for the management of periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03213-5.
Collapse
Affiliation(s)
- Manman Ren
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya Zhao
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqi He
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Lin
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuchu Xu
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Cheng M, Zhou Q. Targeting EZH2 Ameliorates the LPS-Inhibited PDLSC Osteogenesis via Wnt/β-Catenin Pathway. Cells Tissues Organs 2021; 209:227-235. [PMID: 33461200 DOI: 10.1159/000511702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
As a histone methyltransferase, enhancer of zeste homolog 2 (EZH2), suppresses osteoblast maturation and is involved in inflammation. However, the role of EZH2 in human periodontal ligament stem cells (PDLSCs) under inflammation still needs to be further investigated. This study aimed to identify the underlying mechanisms and explore the function of EZH2 in PDLSC osteogenesis under inflammation. PDLSCs were treated with sh-EZH2, DZNep or DKK1 under inflammation. The alkaline phosphatase (ALP) activity, alizarin red staining, and osteogenesis-related protein levels were analyzed. Lipopolysaccharide (LPS)-induced inflammation restrained osteogenic differentiation. Under inflammation, the upregulation of EZH2 suppressed the expression of osteogenic markers, including osteocalcin, runt-related transcription factor 2, and bone morphogenetic protein-2, the activity of ALP, and the accumulation of mineralization through the Wnt/β-catenin pathway. EZH2 knockdown inhibited the levels of proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α. These results suggested that LPS-induced overexpression of EZH2 suppressed PDLSC osteogenesis under inflammatory conditions through the Wnt/β-catenin pathway. These findings give new insights into the physiological differentiation and pathological inflammation of PDLSC osteogenesis, and provide an underlying therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Mosha Cheng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China,
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Ibrahimi Disha S, Furlani B, Drevensek G, Plut A, Yanagisawa M, Hudoklin S, Prodan Žitnik I, Marc J, Drevensek M. The role of endothelin B receptor in bone modelling during orthodontic tooth movement: a study on ET B knockout rats. Sci Rep 2020; 10:14226. [PMID: 32848199 PMCID: PMC7450079 DOI: 10.1038/s41598-020-71159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin system has an important role in bone modelling during orthodontic tooth movement (OTM); however, little is known about the involvement of endothelin B receptors (ETB) in this process. The aim of this study was to evaluate the role of ETB in bone modelling during OTM using ETB knockout rats (ETB-KO). Thirty-two male rats were divided into 4 groups (n = 8 per group): the ETB-KO appliance group, ETB-KO control group, wild type (ETB-WT) appliance group, and ETB-WT control group. The appliance consisted of a super-elastic closed-coil spring placed between the first and second left maxillary molar and the incisors. Tooth movement was measured on days 0 and 35, and maxillary alveolar bone volume, osteoblast, and osteoclast volume were determined histomorphometrically on day 35 of OTM. Next, we determined the serum endothelin 1 (ET-1) level and gene expression levels of the osteoclast activity marker cathepsin K and osteoblast activity markers osteocalcin and dentin matrix acidic phosphoprotein 1 (DMP1) on day 35. The ETB-KO appliance group showed significantly lower osteoblast activity, diminished alveolar bone volume and less OTM than the ETB-WT appliance group. Our results showed that ETB is involved in bone modelling in the late stage of OTM.
Collapse
Affiliation(s)
- S Ibrahimi Disha
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia
| | - B Furlani
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G Drevensek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - A Plut
- Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - M Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - I Prodan Žitnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - J Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - M Drevensek
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia. .,Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Yi M, Liu MQ, Chou LS, Jiang SM, Zhang LJ, Huang CN, Wang N, Zhang QX, Yang L. Correlation between serum levels of endothelin-1 and disease severity in patients with neuromyelitis optica spectrum disorders. Immunobiology 2020; 225:151959. [PMID: 32517881 DOI: 10.1016/j.imbio.2020.151959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022]
Abstract
AIMS Neuromyelitis optica spectrum disorders (NMOSD) are aquaporin-4 antibody-mediated diseases of the central nervous system. Endothelin-1 (ET-1) is an inflammatory cytokine released by vascular endothelial cells and activated astrocytes. Previous studies have reported the aberrant expressions of cytokines/chemokines in patients diagnosed with NMOSD. However, the serum levels of ET-1 in NMOSD patients remain unknown. The purpose of this study was to measure the serum levels of ET-1 and other immune-related cytokines/chemokines in patients with NMOSD, and to investigate the correlation between serum ET-1 levels and clinical characteristics of NMOSD. METHODS Thirty-eight patients with NMOSD and twenty-eight healthy controls (HCs) were recruited in this study. The serum concentrations of ET-1 and other cytokines/chemokines were measured, and their correlations to the clinical features of patients with NMOSD were analyzed. RESULTS The serum levels of ET-1 in patients with NMOSD were significantly higher than those in HCs (P = 0.0001). The serum concentrations of ET-1 were positively correlated with the Expanded Disability Status Scale score (r = 0.428, P = 0.0183). High-dose intravenous methylprednisolone treatment significantly reduced the levels of ET-1 and interleukin (IL)-6 in blood, but significantly increased the serum concentrations of IL-10 in NMOSD patients. No correlations were found between serum ET-1 levels and the concentrations of other cytokines/chemokines in these patients. CONCLUSION ET-1 and IL-6 might exert pro-inflammatory effects in the pathogenesis of NMOSD, whereas IL-10 played an anti-inflammatory role in this process. ET-1 might be a potential biomarker for predicting the severity of NMOSD. However, the serum levels of ET-1 were not correlated with the changes of other cytokines/chemokines in patients with NMOSD. The involvement of ET-1 in the development of NMOSD needs to be further studied.
Collapse
Affiliation(s)
- Ming Yi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Ming-Qi Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Li-Sha Chou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shu-Min Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chen-Na Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Nan Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
16
|
Zhou Z, Liu F, Wang L, Zhu B, Chen Y, Yu Y, Wang X. Inflammation has synergistic effect with nicotine in periodontitis by up-regulating the expression of α7 nAChR via phosphorylated GSK-3β. J Cell Mol Med 2020; 24:2663-2676. [PMID: 31930698 PMCID: PMC7028870 DOI: 10.1111/jcmm.14986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is the leading cause of adult tooth loss, and those who smoke are at an increased risk of developing periodontitis. α7 nicotinic acetylcholine receptor (α7 nAChR) is proposed to mediate the potential synergistic effect of nicotine and inflammation in smoking‐related periodontitis. However, this has not been experimentally demonstrated. We isolated and cultured human periodontal ligament stem cells (PDLSCs) from healthy and inflamed tissues. PDLSCs were treated with either inflammatory factors or nicotine. We measured expression of genes that are associated with osteogenic differentiation and osteoclast formation using RT‐qPCR and Western blot analyses. Besides, immunohistochemical staining, micro‐CT analysis and tartaric acid phosphatase staining were used to measure α7 nAChR expression and function. Inflammation up‐regulated α7 nAChR expression in both periodontal ligament tissues and PDLSCs. The up‐regulated α7 nAChR contributed to the synergistic effect of nicotine and inflammation, leading to a decreased capability of osteogenic differentiation and increased capability of osteoclast formation‐induction of PDLSCs. Moreover, the inflammation‐induced up‐regulation of α7 nAChR was partially dependent on the level of phosphorylated GSK‐3β. This study provides experimental evidence for the pathological development of smoking‐related periodontitis and sheds new light on developing inflammation and α7 nAChR‐targeted therapeutics to treat and prevent the disease.
Collapse
Affiliation(s)
- Zhifei Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China.,Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, China
| | - Fen Liu
- Department of Stomatology, Northwest Women's and Children's Hospital, Xi'an, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Lulu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Bin Zhu
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, China
| | - Yujiang Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yang Yu
- Stomatological Hospital of Chongqing Medical University & Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higer Education, Chongqing, China
| | - Xiaojing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China
| |
Collapse
|
17
|
Kar S, Jasuja H, Katti DR, Katti KS. Wnt/β-Catenin Signaling Pathway Regulates Osteogenesis for Breast Cancer Bone Metastasis: Experiments in an In Vitro Nanoclay Scaffold Cancer Testbed. ACS Biomater Sci Eng 2019; 6:2600-2611. [PMID: 33463270 DOI: 10.1021/acsbiomaterials.9b00923] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/β-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/β-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/β-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis. In this study, we have created a 3D in vitro breast cancer bone metastatic microenvironment using nanoclay-based scaffolds along with osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells (MCF-7 and MDA-MB-231). The results showed upregulation in expressions of Wnt-related factors (Wnt-5a, β-catenin, AXIN2, and LRP5) in sequential cultures of MSCs with MCF-7 as compared to sequential cultures of MSCs with MDA-MB-231. Sequential cultures of MSCs with MCF-7 also showed higher β-catenin expression on the protein levels than sequential cultures of MSCs with MDA-MB-231. Stimulation of Wnt/β-catenin signaling in sequential cultures of MSCs with MCF-7 by ET-1 resulted in increased bone formation, whereas inactivation of Wnt/β-catenin signaling by DKK-1 displayed a significant decrease in bone formation, mimicking bone lesions in breast cancer patients. These data collectively demonstrate that Wnt/β-catenin signaling governs osteogenesis within the tumor-harboring bone microenvironment, leading to bone metastasis. The nanoclay scaffold provides a unique testbed approach for analysis of the pathways of cancer metastasis.
Collapse
Affiliation(s)
- Sumanta Kar
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Haneesh Jasuja
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh R Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kalpana S Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
18
|
Ma Y, Li SH, Ding XX, Wu PL. [Effects of tumor necrosis factor-α on osteogenic differentiation and Notch signaling pathway in human periodontal ligament stem cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 36:184-189. [PMID: 29779281 DOI: 10.7518/hxkq.2018.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To evaluate the effects of tumor necrosis factor-α (TNF-α) on osteogenic differentiation and Notch signaling pathway of periodontal ligament stem cells (PDLSCs) and to investigate the regulatory role of Notch signaling pathway on the osteogenic differentiation of PDLSCs under the influence of TNF-α. METHODS PDLSCs were obtained through enzyme digestion and tissue block method. The expression levels of stem cell surface markers CD105, CD90, CD146, CD45, and CD31 were detected by fluorescence activated cell sorter (FACS). PDLSCs were divided into experimental (10 ng·mL⁻¹ TNF-α) and control groups (0 ng·mL⁻¹ TNF-α). The proliferation ability of PDLSCs was detected using cell counting kit-8 (CCK-8). The effect of TNF-α on the osteogenic ability of PDLSCs were tested by measuring alkaline phosphatase (ALP) activity and conducting alizarin red staining and quantitative real-time polymerase chain reaction (PCR). We tested Notch signal pathway receptors Notch1, Notch2, ligand JAG1, JGA2, and downstream gene Hes-1. Changes in DLL1 expression were detected by quantitative real-time PCR. RESULTS FACS profiling showed that PDLSCs were strongly positive for CD105, CD90, and CD146 but negative for CD45 and CD31. CCK-8 results showed that TNF-α could promote the proliferation of PDLSCs (P<0.05). ALP activity in the experimental group was lower than that in the control group (P<0.05). Alizarin red staining showed that the experimental group had decreased mineralized nodules as compared with the control group. Quantitative real-time PCR results showed that the mRNA expression of osteogenic marker genes cementum attachment protein (CAP), osteopontin (OPN), and Runt-related transcription factor 2 (Runx2) significantly decreased in the experimental group as compared with those in the control group (P<0.05). The expression levels of Notch1, Notch2, JAG1, JGA2 and Hes-1 were significantly decreased (P<0.05), whereas those of Notch3 and DLL1 were increased in Notch signaling pathway-related molecules (P<0.05). CONCLUSIONS TNF-α can promote PDLSCs proliferation and inhibit bone differentiation and Notch signaling pathway expression, indicating that the Notch signaling pathway regulates PDLSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Yu Ma
- Dept. of Stomatology, The 2nd Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Shu-Hui Li
- Dept. of Stomatology, The 2nd Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Xin-Xin Ding
- Dept. of Stomatology, The 2nd Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Pei-Ling Wu
- Dept. of Stomatology, The 2nd Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| |
Collapse
|
19
|
Kukolj T, Trivanović D, Mojsilović S, Okić Djordjević I, Obradović H, Krstić J, Jauković A, Bugarski D. IL-33 guides osteogenesis and increases proliferation and pluripotency marker expression in dental stem cells. Cell Prolif 2018; 52:e12533. [PMID: 30430681 PMCID: PMC6430470 DOI: 10.1111/cpr.12533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives Soluble IL‐33 (interleukin (IL)‐1‐like cytokine) acts as endogenous alarm signal (alarmin). Since alarmins, besides activating immune system, act to restore tissue homeostasis, we investigated whether IL‐33 exerts beneficial effects on oral stem cell pull. Materials and Methods Clonogenicity, proliferation, differentiation and senescence of stem cells derived from human periodontal ligament (PDLSCs) and dental pulp (DPSCs) were determined after in vitro exposure to IL‐33. Cellular changes were detected by flow cytometry, Western blot, immunocytochemistry and semiquantitative RT‐PCR. Results IL‐33 stimulated proliferation, clonogenicity and expression of pluripotency markers, OCT‐4, SOX‐2 and NANOG, but it inhibited ALP activity and mineralization in both PDLSCs and DPSCs. Higher Ki67 expression and reduced β‐galactosidase activity in IL‐33‐treated cells were demonstrated, whereas these trends were more conspicuous in osteogenic medium. However, after 7‐day IL‐33 pretreatment, differentiation capacity of IL‐33‐pretreated cells was retained, and increased ALP activity was observed in both cell types. Results showed that IL‐33 regulates NF‐κB and β‐catenin signalling, indicating the association of these molecules with changes observed in IL‐33‐treated PDLSCs and DPSCs, particularly their proliferation, pluripotency‐associated marker expression and osteogenesis. Conclusions IL‐33 treatment impairs osteogenesis of PDLSCs and DPSCs, while increases their clonogenicity, proliferation and pluripotency marker expression. After exposure to IL‐33, osteogenic capacity of cells stayed intact. NF‐κB and β‐catenin are implicated in the effects achieved by IL‐33 in PDLSCs and DPSCs.
Collapse
Affiliation(s)
- Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ivana Okić Djordjević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Peng W, Deng W, Zhang J, Pei G, Rong Q, Zhu S. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochem Biophys Res Commun 2018; 503:815-821. [PMID: 29913147 DOI: 10.1016/j.bbrc.2018.06.081] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) were proposed to be important regulators influencing various differentiation processes. Yet, the molecular mechanisms of lncRNAs governing osteogenic differentiation of Periodontal Ligament Stem Cells (PDLSCs) remain unclear. Here, PDLSCs were isolated from normal periodontal ligament of human (PDL) whereas P-PDLSCs were isolated from periodontitis affected PDL. Quantitative real-time PCR (qRT-PCR) was performed to examine the relative expression level of lncRNA-ANCR and of Osterix (OSX), Alkaline Phosphatase (ALP) as well as Runt-related transcription factor 2 (RUNX2) in PDLSCs. Gain- and loss-of- function experiments was performed to study the role of lncRNA-ANCR. Alizarin Red staining was used to evaluate the function of lncRNA-ANCR and miRNA-758 on osteogenic differentiation. In addition, via dual luciferase reporter assay and RNA immunoprecipitation the microRNA sponge potential of lncRNA-ANCR was assessed. A luciferase reporter assay identified the correlation between miR-758 and Notch2. Our results showed that the expression of ALP, RUNX2 and OSX were increased whereas lncRNA-ANCR was decreased during the process of differentiation in PDLSCs. Overexpression of lncRNA-ANCR decreased the expression of ALP, RUNX2 and OSX as confirmed by Alizarin red staining. Overexpression of lncRNA-ANCR resulted in reduction of the miR-758 expression level. Furthermore, RNA immunoprecipitation proved that lncRNA-ANCR targets miR-758 directly. The results of dual luciferase reporter assay also demonstrated that miR-758 regulated Notch2 expression by targeting 3'-UTR of Notch2. In conclusion, the novel pathway lncRNA-ANCR/miR-758/Notch2 plays an important role in the process of regulating osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital, Haikou, PR China
| | - Jing Zhang
- Department of Stomatology, Clifford Hospital, Guangzhou University of Chinese Medicine, PR China
| | - Gengwang Pei
- Otolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, PR China
| | - Qiong Rong
- Department of Stomatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Shuangxi Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
21
|
Liu X, Zhang Z, Pan S, Shang S, Li C. Interaction between the Wnt/β-catenin signaling pathway and the EMMPRIN/MMP-2, 9 route in periodontitis. J Periodontal Res 2018; 53:842-852. [PMID: 29900539 DOI: 10.1111/jre.12574] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- X. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Z. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - S. Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - S. Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - C. Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| |
Collapse
|
22
|
LNGFR targets the Wnt/β-catenin pathway and promotes the osteogenic differentiation in rat ectomesenchymal stem cells. Sci Rep 2017; 7:11021. [PMID: 28887537 PMCID: PMC5591262 DOI: 10.1038/s41598-017-11555-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022] Open
Abstract
Considerable evidence has shown that the Wnt/β-catenin pathway is involved in osteogenic differentiation in various stem cells. However, the role of Wnt/β-catenin pathway in regulating the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs), which are considered to be the progenitors of dental mesenchymal stem cells, remains unknown. In this study, we demonstrated that nuclear β-catenin was upregulated during EMSC osteogenic differentiation. The Wnt signalling inhibitor IWR-1-endo inhibited EMSC osteogenic differentiation, while the Wnt signalling agonist SKL2001 promoted it. Moreover, nuclear β-catenin was further upregulated by the overexpression of low-affinity nerve growth factor receptor (LNGFR) during EMSC osteogenic differentiation. Further experiments demonstrated that LNGFR overexpression enhanced EMSC osteogenic differentiation, while LNGFR silencing decreased it. Additionally, IWR-1-endo attenuated LNGFR-enhanced EMSC osteogenic differentiation. Collectively, our data reveal that LNGFR targets the Wnt/β-catenin pathway and positively regulates EMSC osteogenic differentiation, suggesting that Wnt/β-catenin pathway may be involved in the development of teeth and that the targeting Wnt/β-catenin pathway may have great potential for applications in dental tissue engineering regeneration.
Collapse
|
23
|
Niu C, Yuan K, Ma R, Gao L, Jiang W, Hu X, Lin W, Zhang X, Huang Z. Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Mol Med Rep 2017; 16:4879-4886. [PMID: 28791361 DOI: 10.3892/mmr.2017.7170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Gold nanoparticles (AuNPs) are a promising material for use in regenerative medicine due to their biocompatibility and easy functionalization with biomolecules including growth factors, DNA and peptides. In the present study, transmission electron microscopy indicated that the AuNPs were monodisperse and spherical in shape, with an estimated average diameter of 13 nm. And the cellular effects of AuNPs on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and the associated signaling pathways in cell differentiation were investigated based on histochemical analysis of alkaline phosphatase activity and mineralization, quantitative polymerase chain reaction, and western blotting. The results indicated that AuNPs enhanced the differentiation of hPDLSCs into osteoblasts, increasing their osteogenic transcriptional profile including alkaline phosphatase, osterix, collagen type I and runt‑related transcription factor 2 (RUNX2) and activating the p38 mitogen‑activated protein kinase (MAPK) signaling pathway. Furthermore, AuNPs increased the protein level of RUNX2, which is crucial for osteogenic differentiation. These results suggested that AuNPs stimulate the osteogenesis of hPDLSCs partially via activation of the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Keyong Yuan
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Rui Ma
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Li Gao
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Wenxin Jiang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xuchen Hu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Wenzhen Lin
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200092, P.R. China
| | - Zhengwei Huang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
24
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|