1
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Becktel DA, Frye JB, Le EH, Whitman SA, Schnellmann RG, Morrison HW, Doyle KP. Discovering novel plasma biomarkers for ischemic stroke: Lipidomic and metabolomic analyses in an aged mouse model. J Lipid Res 2024; 65:100614. [PMID: 39098585 PMCID: PMC11399596 DOI: 10.1016/j.jlr.2024.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke remains a leading cause of mortality and long-term disability worldwide, necessitating efforts to identify biomarkers for diagnosis, prognosis, and treatment monitoring. The present study aimed to identify novel plasma biomarkers of neurodegeneration and inflammation in a mouse model of stroke induced by distal middle cerebral artery occlusion. Using targeted lipidomic and global untargeted metabolomic profiling of plasma collected from aged male mice 24 h after stroke and weekly thereafter for 7 weeks, we discovered distinct acute and chronic signatures. In the acute phase, we observed elevations in myelin-associated lipids, including sphingomyelin (SM) and hexosylceramide (HCER) lipid species, indicating brain lipid catabolism. In the chronic phase, we identified 12-hydroxyeicosatetraenoic acid (12-HETE) as a putative biomarker of prolonged inflammation, consistent with our previous observation of a biphasic pro-inflammatory response to ischemia in the mouse brain. These results provide insight into the metabolic alterations detectable in the plasma after stroke and highlight the potential of myelin degradation products and arachidonic acid derivatives as biomarkers of neurodegeneration and inflammation, respectively. These discoveries lay the groundwork for further validation in human studies and may improve stroke management strategies.
Collapse
Affiliation(s)
- Danielle A Becktel
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jennifer B Frye
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Elizabeth H Le
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Susan A Whitman
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Coit Center for Longevity and Neurotherapeutics, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA; BIO5 Institute, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | - Kristian P Doyle
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA; BIO5 Institute, College of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Neurology, College of Medicine, University of Arizona, Tucson, Arizona, USA; Arizona Center on Aging, University of Arizona, Tucson, Arizona, USA; Department of Psychology, College of Science, University of Arizona, Tucson, Arizona, USA; Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
3
|
Li X, Li J, Yu F, Feng X, Luo Y, Liu Z, Zhao T, Xia J. The Untargeted Metabolomics Reveals Differences in Energy Metabolism in Patients with Different Subtypes of Ischemic Stroke. Mol Neurobiol 2024; 61:5308-5319. [PMID: 38183570 DOI: 10.1007/s12035-023-03884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
AIMS Ischemic stroke (IS) is the most common subtype of stroke. The risk factors and pathogenesis of IS are complex and varied due to different subtypes. Therefore, we used metabolomics technology to investigate the biomarkers and potential pathophysiological mechanisms of different subtypes of IS. METHODS We included 126 IS patients and divided them into two groups based on the TOAST classification: large-artery atherosclerosis (LAA) group (n = 87) and small-vessel occlusion (SVO) group (n = 39). Plasma metabolomics analysis was performed using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to identify metabolic profiles in LAA and SVO subtype IS patients and to determine metabolic differences between patients with the two subtypes of IS. RESULTS We identified 26 differential metabolites between LAA and SVO subtype IS. A multiple prediction model based on the plasm metabolites had good predictive ability for IS subtyping (AUC = 0.822, accuracy = 77.8%), with 12,13-DHOME being the most important differential metabolite in the model. The differential metabolic pathways between the two subtypes of IS patients included tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, and pyruvate metabolism, mainly focused on energy metabolism. CONCLUSION 12,13-DHOME emerged as the primary discriminatory metabolite between LAA and SVO subtypes of IS. In LAA subtype IS patients, energy metabolism, encompassing pyruvate metabolism and the TCA cycle, exhibited lower activity levels when compared to patients with the SVO subtype IS. The utilization of targeted metabolomics holds the potential to improve diagnostic accuracy for distinguishing stroke subtypes.
Collapse
Affiliation(s)
- Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Tingting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Zhang LC, Li N, Chen JL, Sun J, Xu M, Liu WQ, Zuo ZF, Shi LL, Wang TH, Luo XY. Molecular network mechanism in cerebral ischemia-reperfusion rats treated with human urine stem cells. Heliyon 2024; 10:e27508. [PMID: 38560254 PMCID: PMC10979071 DOI: 10.1016/j.heliyon.2024.e27508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To explore the effect of human urine-derived stem cells (husc) in improving the neurological function of rats with cerebral ischemia-reperfusion (CIR), and report new molecular network by bioinformatics, combined with experiment validation. Methods After CIR model was established, and husc were transplanted into the lateral ventricle of rats,neurological severe score (NSS) andgene network analysis were performed. Firstly, we input the keywords "Cerebral reperfusion" and "human urine stem cells" into Genecard database and merged data with findings from PubMed so as to get their targets genes, and downloaded them to make Venny intersection plot. Then, Gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and protein-protein interaction (PPI) were performed to construct molecular network of core genes. Lastly, the expressional level of core genes was validated via quantitative real-time polymerase chain reaction (qRT-PCR), and localized by immunofluorescence. Results Compared with the Sham group, the neurological function of CIR rats was significantly improved after the injection of husc into the lateral ventricle; at 14 days, P = 0.028, which was statistically significant. There were 258 overlapping genes between CIR and husc, and integrated with 252 genes screened from PubMed and CNKI. GO enrichment analysis were mainly involved neutrophil degranulation, neutrophil activation in immune response and platelet positive regulation of degranulation, Hemostasis, blood coagulation, coagulation, etc. KEGG pathway analysis was mainly involved in complement and coagulation cascades, ECM-receptor. Hub genes screened by Cytoscape consist ofCD44, ACTB, FN1, ITGB1, PLG, CASP3, ALB, HSP90AA1, EGF, GAPDH. Lastly, qRT-PCR results showed statistic significance (P < 0.05) in ALB, CD44 and EGF before and after treatment, and EGF immunostaining was localized in neuron of cortex. Conclusion husc transplantation showed a positive effect in improving neural function of CIR rats, and underlying mechanism is involved in CD44, ALB, and EGF network.
Collapse
Affiliation(s)
- Lang-Chun Zhang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Na Li
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Ji-Lin Chen
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Jie Sun
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Min Xu
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Wen-Qiang Liu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Jinzhou Medical University, Jinzhou, China
| | - Lan-Lan Shi
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Ting-Hua Wang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Xiang-Yin Luo
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| |
Collapse
|
5
|
Ma X, Zhang Y, Jiang J, Ru Y, Luo Y, Luo Y, Fei X, Song J, Ma X, Li B, Tan Y, Kuai L. Metabolism-related biomarkers, molecular classification, and immune infiltration in diabetic ulcers with validation. Int Wound J 2023; 20:3498-3513. [PMID: 37245869 PMCID: PMC10588317 DOI: 10.1111/iwj.14223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023] Open
Abstract
Diabetes mellitus (DM) can lead to diabetic ulcers (DUs), which are the most severe complications. Due to the need for more accurate patient classifications and diagnostic models, treatment and management strategies for DU patients still need improvement. The difficulty of diabetic wound healing is caused closely related to biological metabolism and immune chemotaxis reaction dysfunction. Therefore, the purpose of our study is to identify metabolic biomarkers in patients with DU and construct a molecular subtype-specific prognostic model that is highly accurate and robust. RNA-sequencing data for DU samples were obtained from the Gene Expression Omnibus (GEO) database. DU patients and normal individuals were compared regarding the expression of metabolism-related genes (MRGs). Then, a novel diagnostic model based on MRGs was constructed with the random forest algorithm, and classification performance was evaluated utilizing receiver operating characteristic (ROC) analysis. The biological functions of MRGs-based subtypes were investigated using consensus clustering analysis. A principal component analysis (PCA) was conducted to determine whether MRGs could distinguish between subtypes. We also examined the correlation between MRGs and immune infiltration. Lastly, qRT-PCR was utilized to validate the expression of the hub MRGs with clinical validations and animal experimentations. Firstly, 8 metabolism-related hub genes were obtained by random forest algorithm, which could distinguish the DUs from normal samples validated by the ROC curves. Secondly, DU samples could be consensus clustered into three molecular classifications by MRGs, verified by PCA analysis. Thirdly, associations between MRGs and immune infiltration were confirmed, with LYN and Type 1 helper cell significantly positively correlated; RHOH and TGF-β family remarkably negatively correlated. Finally, clinical validations and animal experiments of DU skin tissue samples showed that the expressions of metabolic hub genes in the DU groups were considerably upregulated, including GLDC, GALNT6, RHOH, XDH, MMP12, KLK6, LYN, and CFB. The current study proposed an auxiliary MRGs-based DUs model while proposing MRGs-based molecular clustering and confirmed the association with immune infiltration, facilitating the diagnosis and management of DU patients and designing individualized treatment plans.
Collapse
Affiliation(s)
- Xiao‐Xuan Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineshanghaiChina
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineshanghaiChina
| | - Jing‐Si Jiang
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineshanghaiChina
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineshanghaiChina
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiao‐Ya Fei
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jian‐Kun Song
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineshanghaiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Bin Li
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineshanghaiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yi‐Mei Tan
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineshanghaiChina
| |
Collapse
|
6
|
Wang H, Li Z, Cao G, Tang L, Zhou R, Li C, Zhang J, Wu H, Li X, Yang H. Targeted Energy Metabolomics Combined with Spatial Metabolomics Study on the Efficacy of Guhong Injection Against Cerebral Ischemia Reperfusion. Mol Neurobiol 2023; 60:5533-5547. [PMID: 37328677 DOI: 10.1007/s12035-023-03403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Optimizing the metabolic phenotype to improve cerebral function is critical for treatment of cerebral ischemia-reperfusion (I/R) injury. Guhong injection (GHI), which comprised safflower extract and aceglutamide, is widely prescribed in Chinese medicine for the treatment of cerebrovascular diseases. In this study, a combination of LC-QQQ-MS and MALDI-MSI were utilized to explore tissue-specific metabolic alterations in the brain of I/R, as well as to evaluate the therapeutic effect of GHI. Pharmacological evaluation demonstrated that GHI can significantly improve infarction rate, neurological deficit, cerebral blood flow, and neuronal damage in I/R rats. Based on LC-QQQ-MS, 23 energy metabolites were found to be significantly altered in the I/R group compared to the sham group (P < 0.05). After GHI treatment, 12 metabolites, including G6P, TPP, NAD, citrate, succinate, malate, ATP, GTP, GDP, ADP, NADP, and FMN showed a significant tendency of returning to baseline values (P < 0.05). Based on MALDI-MSI, 4 metabolites in glycolysis and TCA, 4 metabolites in nucleic acid metabolism, 4 amino acid metabolites, and 6 metabolites were discovered and compared between the different groups in the four special regions of cortex, hippocampus, hypothalamus, and striatum. Parts of these were found to have significant changes after I/R in the special brain region, and were regulated by GHI. The study provides comprehensive and detailed information for specific metabolic reprogramming of brain tissue in rats with I/R, and the therapeutic effect of GHI. Schema describing the discovery strategies of integrated LC-MS and MALDI-MSI to identify cerebral ischemia reperfusion metabolic reprogramming and GHI therapeutic effects.
Collapse
Affiliation(s)
- Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Zhenkun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Caifeng Li
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
| | - Xianyu Li
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
7
|
Fangma Y, Liu M, Liao J, Chen Z, Zheng Y. Dissecting the brain with spatially resolved multi-omics. J Pharm Anal 2023; 13:694-710. [PMID: 37577383 PMCID: PMC10422112 DOI: 10.1016/j.jpha.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 08/15/2023] Open
Abstract
Recent studies have highlighted spatially resolved multi-omics technologies, including spatial genomics, transcriptomics, proteomics, and metabolomics, as powerful tools to decipher the spatial heterogeneity of the brain. Here, we focus on two major approaches in spatial transcriptomics (next-generation sequencing-based technologies and image-based technologies), and mass spectrometry imaging technologies used in spatial proteomics and spatial metabolomics. Furthermore, we discuss their applications in neuroscience, including building the brain atlas, uncovering gene expression patterns of neurons for special behaviors, deciphering the molecular basis of neuronal communication, and providing a more comprehensive explanation of the molecular mechanisms underlying central nervous system disorders. However, further efforts are still needed toward the integrative application of multi-omics technologies, including the real-time spatial multi-omics analysis in living cells, the detailed gene profile in a whole-brain view, and the combination of functional verification.
Collapse
Affiliation(s)
- Yijia Fangma
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
8
|
Tian J, Zhu X, Wu H, Wang Y, Hu X. Serum metabolic profile and metabolome genome-wide association study in chicken. J Anim Sci Biotechnol 2023; 14:69. [PMID: 37138301 PMCID: PMC10158329 DOI: 10.1186/s40104-023-00868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/09/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Chickens provide globally important livestock products. Understanding the genetic and molecular mechanisms underpinning chicken economic traits is crucial for improving their selective breeding. Influenced by a combination of genetic and environmental factors, metabolites are the ultimate expression of physiological processes and can provide key insights into livestock economic traits. However, the serum metabolite profile and genetic architecture of the metabolome in chickens have not been well studied. RESULTS Here, comprehensive metabolome detection was performed using non-targeted LC-MS/MS on serum from a chicken advanced intercross line (AIL). In total, 7,191 metabolites were used to construct a chicken serum metabolomics dataset and to comprehensively characterize the serum metabolism of the chicken AIL population. Regulatory loci affecting metabolites were identified in a metabolome genome-wide association study (mGWAS). There were 10,061 significant SNPs associated with 253 metabolites that were widely distributed across the entire chicken genome. Many functional genes affect metabolite synthesis, metabolism, and regulation. We highlight the key roles of TDH and AASS in amino acids, and ABCB1 and CD36 in lipids. CONCLUSIONS We constructed a chicken serum metabolite dataset containing 7,191 metabolites to provide a reference for future chicken metabolome characterization work. Meanwhile, we used mGWAS to analyze the genetic basis of chicken metabolic traits and metabolites and to improve chicken breeding.
Collapse
Affiliation(s)
- Jing Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoning Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hanyu Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing, 100193, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing, 100193, China.
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Wang F, Xu L, Qi M, Lai H, Zeng F, Liang F, Wen Q, Ma X, Zhang C, Xie K. Metabolomic analysis-identified 2-hydroxybutyric acid might be a key metabolite of severe preeclampsia. Open Life Sci 2023; 18:20220572. [PMID: 36874628 PMCID: PMC9975955 DOI: 10.1515/biol-2022-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 03/04/2023] Open
Abstract
This study set out to determine the key metabolite changes underlying the pathophysiology of severe preeclampsia (PE) using metabolic analysis. We collected sera from 10 patients with severe PE and from 10 healthy pregnant women of the same trimester and analyzed them using liquid chromatography mass spectrometry. A total of 3,138 differential metabolites were screened, resulting in the identification of 124 differential metabolites. Kyoto encyclopedia of genes and genomes pathway analysis revealed that they were mainly enriched in the following metabolic pathways: central carbon metabolism in cancer; protein digestion and absorption; aminoacyl-transfer RNA biosynthesis; mineral absorption; alanine, aspartate, and glutamate metabolism; and prostate cancer. After analysis of 124 differential metabolites, 2-hydroxybutyric acid was found to be the most critical differential metabolite, and its use allowed the differentiation of women with severe PE from healthy pregnant women. In summary, our analysis revealed that 2-hydroxybutyric acid is a potential key metabolite for distinguishing severe PE from healthy controls and is also a marker for the early diagnosis of severe PE, thus allowing early intervention.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Lili Xu
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Huimin Lai
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Fanhua Zeng
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Furong Liang
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Qing Wen
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Xihua Ma
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Chan Zhang
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Kaili Xie
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| |
Collapse
|
10
|
Zhang R, Meng J, Wang X, Pu L, Zhao T, Huang Y, Han L. Metabolomics of ischemic stroke: insights into risk prediction and mechanisms. Metab Brain Dis 2022; 37:2163-2180. [PMID: 35612695 DOI: 10.1007/s11011-022-01011-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Ischemic stroke (IS) is the most prevalent type of stroke. The early diagnosis and prognosis of IS are crucial for successful therapy and early intervention. Metabolomics, a tool in systems biology based on several innovative technologies, can be used to identify disease biomarkers and unveil underlying pathophysiological processes. Accordingly, in recent years, an increasing number of studies have identified metabolites from cerebral ischemia patients and animal models that could improve the diagnosis of IS and prediction of its outcome. In this paper, metabolomic research is comprehensively reviewed with a focus on describing the metabolic changes and related pathways associated with IS. Most clinical studies use biofluids (e.g., blood or plasma) because their collection is minimally invasive and they are ideal for analyzing changes in metabolites in patients of IS. We review the application of animal models in metabolomic analyses aimed at investigating potential mechanisms of IS and developing novel therapeutic approaches. In addition, this review presents the strengths and limitations of current metabolomic studies on IS, providing a reference for future related studies.
Collapse
Affiliation(s)
- Ruijie Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Jiajia Meng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Xihu District Center for Disease Control and Prevention, Hangzhou, 310013, Zhejiang, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Liyuan Pu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Tian Zhao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
- Medical Research Center, Ningbo First Hospital, Ningbo, 315010, Zhejiang, China.
| | - Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
11
|
Jia J, Zhang H, Liang X, Dai Y, Liu L, Tan K, Ma R, Luo J, Ding Y, Ke C. Application of Metabolomics to the Discovery of Biomarkers for Ischemic Stroke in the Murine Model: a Comparison with the Clinical Results. Mol Neurobiol 2021; 58:6415-6426. [PMID: 34532786 DOI: 10.1007/s12035-021-02535-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability worldwide. However, the pathogenesis of IS remains unknown, and methods for early prediction and diagnosis of IS are lacking. Metabolomics can be applied to biomarker discovery and mechanism exploration of IS by exploring metabolic alterations. In this review, 62 IS metabolomics studies in the murine model published from January 2006 to December 2020 in the PubMed and Web of Science databases were systematically reviewed. Twenty metabolites (e.g., lysine, phenylalanine, methionine, tryptophan, leucine, lactate, serine, N-acetyl-aspartic acid, and glutathione) were reported consistently in more than two-third murine studies. The disturbance of metabolic pathways, such as arginine biosynthesis; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis; and citrate cycle, may be implicated in the development of IS by influencing the biological processes such as energy failure, oxidative stress, apoptosis, and glutamate toxicity. The transient middle cerebral artery occlusion model and permanent middle cerebral artery occlusion model exhibit both common and distinct metabolic patterns. Furthermore, five metabolites (proline, serine, LysoPC (16:0), uric acid, glutamate) in the blood sample and 7 metabolic pathways (e.g., alanine, aspartate, and glutamate metabolism) are shared in animal and clinical studies. The potential biomarkers and related pathways of IS in the murine model may facilitate the biomarker discovery for early diagnosis of IS and the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Jinjing Jia
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Hangyao Zhang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xiaoyi Liang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yuning Dai
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Lihe Liu
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Kaiwen Tan
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Ruohan Ma
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Jiahuan Luo
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yi Ding
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, People's Republic of China
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
12
|
Kong LL, Gao L, Wang KX, Liu NN, Liu CD, Ma GD, Yang HG, Qin XM, Du GH. Pinocembrin attenuates hemorrhagic transformation after delayed t-PA treatment in thromboembolic stroke rats by regulating endogenous metabolites. Acta Pharmacol Sin 2021; 42:1223-1234. [PMID: 33859344 PMCID: PMC8285418 DOI: 10.1038/s41401-021-00664-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023]
Abstract
Hemorrhagic transformation (HT) is a common serious complication of stroke after thrombolysis treatment, which limits the clinical use of tissue plasminogen activator (t-PA). Since early diagnosis and treatment for HT is important to improve the prognosis of stroke patients, it is urgent to discover the potential biomarkers and therapeutic drugs. Recent evidence shows that pinocembrin, a natural flavonoid compound, exerts anti-cerebral ischemia effect and expands the time window of t-PA. In this study, we investigated the effect of pinocembrin on t-PA-induced HT and the potential biomarkers for HT after t-PA thrombolysis, thereby improving the prognosis of stroke. Electrocoagulation-induced thrombotic focal ischemic rats received intravenous infusion of t-PA (10 mg/kg) 6 h after ischemia. Administration of pinocembrin (10 mg/kg, iv) prior t-PA infusion significantly decreased the infarct volume, ameliorated t-PA-induced HT, and protected blood-brain barrier. Metabolomics analysis revealed that 5 differential metabolites in the cerebral cortex and 16 differential metabolites in serum involved in amino acid metabolism and energy metabolism were significantly changed after t-PA thrombolysis, whereas pinocembrin administration exerted significant intervention effects on these metabolites. Linear regression analysis showed that lactic acid was highly correlated to the occurrence of HT. Further experiments confirmed that t-PA treatment significantly increased the content of lactic acid and the activity of lactate dehydrogenase in the cerebral cortex and serum, and the expression of monocarboxylate transporter 1 (MCT 1) in the cerebral cortex; pinocembrin reversed these changes, which was consistent with the result of metabolomics. These results demonstrate that pinocembrin attenuates HT after t-PA thrombolysis, which may be associated with the regulation of endogenous metabolites. Lactic acid may be a potential biomarker for HT prediction and treatment.
Collapse
Affiliation(s)
- Ling-Lei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Nan-Nan Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cheng-di Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guo-Dong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hai-Guang Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
13
|
Szewczyk A, Zagaja M, Szala-Rycaj J, Maj M, Andres-Mach M. Effect of Lacosamide and Ethosuximide Chronic Treatment on Neural Precursor Cells and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. Brain Sci 2021; 11:brainsci11081014. [PMID: 34439633 PMCID: PMC8392532 DOI: 10.3390/brainsci11081014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Seizures in about 40% of patients with epilepsy fail to respond to anti-seizure medication (ASM) and may lead to uncontrolled and prolonged seizures often inducing status epilepticus (SE). The aim of the study was to evaluate the impact of a long-term treatment with two different generation ASMs: ethosuximide (ETS, a classic ASM) and lacosamide (LCM, a 3rd generation ASM) on neural stem cells’ (NSCs’) proliferation and learning and memory functions after pilocarpine (PILO)-induced SE in mice. The following drugs were used: LCM (10 mg/kg), ETS (20 mg/kg), and PILO (300 mg/kg). Cell counting was done using confocal microscope and ImageJ software. Cognitive functions were evaluated with the Morris water maze (MWM) test. The level of several selected neurometabolites was measured with magnetic resonance spectroscopy (MRS). Obtained results indicated no significant impact of ETS treatment on the neurogenesis process in PILO mice. Interestingly, LCM significantly decreased the total amount of newborn neurons. The MWM test indicated no significant changes in the time and distance traveled by the ETS and LCM groups compared to PILO control mice, although all measured parameters were more favorable for the PILO mice treated with ASM. Conclusions: The presented results show that long term treatment with LCM and ETS seems to be safe for the cognitive functions and the proper course of neurogenesis in the mouse PILO-induced SE model, although one should remember that LCM administered chronically may act to reduce new neurons’ formation.
Collapse
Affiliation(s)
- Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Joanna Szala-Rycaj
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
- Correspondence: ; Tel.: +48-81-718-4488
| |
Collapse
|
14
|
Zhou P, Zhou L, Shi Y, Li Z, Liu L, Zuo L, Zhang J, Liang S, Kang J, Du S, Yang J, Sun Z, Zhang X. Neuroprotective Effects of Danshen Chuanxiongqin Injection Against Ischemic Stroke: Metabolomic Insights by UHPLC-Q-Orbitrap HRMS Analysis. Front Mol Biosci 2021; 8:630291. [PMID: 34026822 PMCID: PMC8138457 DOI: 10.3389/fmolb.2021.630291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
The incidence of cerebral ischemic stroke characterized by high mortality is increasing every year. Danshen Chuanxiongqin Injection (DSCXQ), a traditional Chinese medicine (TCM) preparation, is often applied to treat cerebral apoplexy and its related sequelae. However, there is a lack of systematic research on how DSCXQ mediates its protective effects against cerebral ischemia stroke. Metabolomic analysis based on UHPLC-Q-Orbitrap HRMS was employed to explore the potential mechanisms of DSCXQ on ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). Pattern analysis and metabolomic profiling, combined by multivariate analysis disclosed that 55 differential metabolites were identified between Sham group and Model group, involving sphingolipid metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, primary bile acid biosynthesis, pantothenate and CoA synthesis and valine, leucine and isoleucine biosynthesis pathways. DSCXQ could reverse brain metabolic deviations in stroke by significantly upregulating the levels of L-tryptophan, Lyso (18:0/0:0), LPC (18:2), Indole-3-methyl acetate, and downregulating the levels of sphinganine 1-phosphate, L-threonic acid, glutaconic acid and N6,N6,N6-Trimethyl-L-lysine. In our study, we focused on the neuroprotective effects of DSCXQ against neuroinflammatory responses and neuronal apoptosis on a stroke model based on sphingolipid metabolism. The expressions of Sphk1, S1PR1, CD62P, Bcl-2, Bax, and cleaved Caspase-3 in brain tissue were evaluated. The neurological deficit, cerebral infarct size and behavioral abnormality were estimated. Results showed that DSCXQ intervention significantly reduced cerebral infarct size, ameliorated behavioral abnormality, inhibited the expression of Sphk1, S1PR1, CD62P, Bax, Cleaved Caspase-3, while increased the level of Bcl-2, and prevented neuronal apoptosis. The limitations are that our study mainly focused on the verification of sphingolipid metabolism pathway in stroke, and while other metabolic pathways left unverified. Our study indicates that SphK1-SIP axis may potentiate neuroinflammatory responses and mediate brain damage through neuronal apoptosis, and DSCXQ could suppress the activity of SphK1-SIP axis to protect brain tissue in cerebral ischemia. In conclusion, this study facilitates our understanding of metabolic changes in ischemia stroke and the underlying mechanisms related to the clinical application of DSCXQ.
Collapse
Affiliation(s)
- Peipei Zhou
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Zhou
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Shi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Zhuolun Li
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Liwei Liu
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Lihua Zuo
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Jun Zhang
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Shuhong Liang
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Kang
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Xiaojian Zhang
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| |
Collapse
|
15
|
Liu Y, Zhu X, Tong X, Tan Z. Syringin protects against cerebral ischemia/reperfusion injury via inhibiting neuroinflammation and TLR4 signaling. Perfusion 2021; 37:562-569. [PMID: 33832376 DOI: 10.1177/02676591211007025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear. METHODS Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4. RESULTS CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats. CONCLUSION Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| | - Xuyao Zhu
- Department of Imaging, Hongqi Hospital affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xiuxia Tong
- Department of Emergency, The Second Affliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| | - Ziqiang Tan
- Department of Pharmacy, The Second Affliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
16
|
Hippocampal Sector-Specific Metabolic Profiles Reflect Endogenous Strategy for Ischemia-Reperfusion Insult Resistance. Mol Neurobiol 2020; 58:1621-1633. [PMID: 33222147 PMCID: PMC7932963 DOI: 10.1007/s12035-020-02208-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
The gerbil is a well-known model for studying cerebral ischemia. The CA1 of the hippocampus is vulnerable to 5 min of ischemia, while the CA2–4 and dentate gyrus (DG) are resistant to it. Short-lasting ischemia, a model of transient ischemic attacks in men, results in CA1 neuron death within 2–4 days of reperfusion. Untargeted metabolomics, using LC-QTOF-MS, was used to enrich the knowledge about intrinsic vulnerability and resistance of hippocampal regions and their early post-ischemic response (IR). In total, 30 significant metabolites were detected. In controls, taurine was significantly lower and guanosine monophosphate was higher in CA1, as compared to that in CA2–4,DG. LysoPG and LysoPE were more abundant in CA1, while LysoPI 18:0 was detected only in CA2–4,DG. After IR, a substantial decrease in the citric acid level in CA1, an accumulation of pipecolic acid in both regions, and opposite changes in the amount of PE and LysoPE were observed. The following metabolic pathways were identified as being differentially active in control CA1 vs. CA2–4,DG: metabolism of taurine and hypotaurine, glycerophospholipid, and purine. These results may indicate that a regulation of cell volume, altered structure of cell membranes, and energy metabolism differentiate hippocampal regions. Early post-ischemia, spatial differences in the metabolism of aminoacyl-tRNA biosynthesis, and amino acids and their metabolites with a predominance of those which upkeep their well-being in CA2–4,DG are shown. Presented results are consistent with genetic, morphological, and functional data, which may be useful in further study on endogenous mechanisms of neuroprotection and search for new targets for therapeutic interventions.
Collapse
|
17
|
Gupta S, Sharma U, Jagannathan NR, Gupta YK. 1 H NMR metabolomic profiling elucidated attenuation of neurometabolic alterations by lercanidipine in MCAo model in rats. J Pharm Pharmacol 2020; 72:816-825. [PMID: 32163186 DOI: 10.1111/jphp.13249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Stroke is a leading cause of death and disability worldwide with limited therapeutic interventions. The current study explored proton nuclear magnetic resonance spectroscopy (1 H NMR)-based metabolomic approach to elucidate the effect of lercanidipine on neurometabolic alterations in transient model of ischaemic stroke in rats. METHODS In the present investigation, male Wistar rats were subjected to middle cerebral artery occlusion (MCAo) for 2 h followed by reperfusion using intraluminal filament method. Rats were randomly divided into three groups as vehicle-treated sham control, vehicle-treated MCAo control and lercanidipine-treated MCAo. Vehicle or lercanidipine (0.5 mg/kg, i.p.) was administered 120 min post-reperfusion. The rat brain cortex tissues were isolated 24 h post-MCAo and were investigated by 1 H NMR spectroscopy through perchloric extraction method. KEY FINDINGS A total of 23 metabolites were altered significantly after cerebral ischaemic-reperfusion injury in MCAo control as compared to sham control rats. Lercanidipine significantly reduced the levels of valine, alanine, lactate, acetate and tyrosine, while N-acetylaspartate, glutamate, glutamine, aspartate, creatine/phosphocreatine, choline, glycerophosphorylcholine, taurine, myo-inositol and adenosine di-phosphate were elevated as compared to MCAo control. CONCLUSIONS Present study illustrates effect of lercanidipine on neurometabolic alterations which might be mediated through its antioxidant, anti-inflammatory, vasodilatory and anti-apoptotic property in MCAo model of stroke.
Collapse
Affiliation(s)
- Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
18
|
Dynamic Alterations of Brain Injury, Functional Recovery, and Metabolites Profile after Cerebral Ischemia/Reperfusion in Rats Contributes to Potential Biomarkers. J Mol Neurosci 2020; 70:667-676. [PMID: 31907865 DOI: 10.1007/s12031-019-01474-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/26/2019] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia-reperfusion (I/R) is characterized by initial transient cerebral ischemia followed by reperfusion. Various pathophysiological processes are involved in brain injury and functional recovery during cerebral I/R. There are few studies on dynamic metabolic process after cerebral I/R. The present study was to observe dynamic alteration of brain injury, functional recovery, and metabolites after cerebral I/R in rats and discover potential metabolic markers. The cerebral I/R model was established by middle cerebral artery occlusion (MCAO) for 90 min, following reperfusion in rats. The results of cerebral infarction area, cerebral edema, and behavior test showed that there were dynamic changes in brain injury and functional recovery at different periods after cerebral I/R. Further analysis showed that the brain injury was severe on the first day of cerebral I/R, and there was a significant functional recovery from the 7th day of cerebral I/R, followed by an aggravation trend of brain injury from the days 7 to 28. Furthermore, Matrix-assisted laser desorption ionization mass spectrometry imaging analysis showed that the expression of ATP, glucose, and citric acid on 7th day was the highest during cerebral I/R, which indicated that energy metabolism and oxidative phosphorylation played important roles during cerebral I/R. In addition, the untargeted metabolomic results showed that the level of isocitric acid, the ratio of oxyglutaric acid/glutamic acid, and the level of pyruvic acid associated with the TCA cycle were also the highest on the 7th day during cerebral I/R, which indicated that the transient spontaneous recovery of ischemic brain on the 7th day after ischemia-reperfusion might be related to oxidative phosphorylation and energy metabolism in the brain in this period. In conclusion, the results suggest that some small molecule metabolites participate in the brain injury and functional recovery during cerebral I/R, which is of great significance to the development of therapeutic drugs and diagnostic markers.
Collapse
|
19
|
Ke C, Pan CW, Zhang Y, Zhu X, Zhang Y. Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review. Metabolomics 2019; 15:152. [PMID: 31754808 DOI: 10.1007/s11306-019-1615-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Ischemic stroke (IS) is a major contributor to the global disease burden, and effective biomarkers for IS management in clinical practice are urgently needed. Metabolomics can detect metabolites that are small enough to cross the blood-brain barrier in a high-throughput manner, and thus represents a powerful tool for discovering biomarkers of IS. OBJECTIVES In this study, we conducted a systematic review to identify potential metabolic biomarkers and pathways that might facilitate risk predictions, clinical diagnoses, the recognition of complications, predictions of recurrence and an understanding of the pathogenesis of IS. METHODS The PubMed and Web of Science databases were searched for relevant studies published between January 2000 and July 2019. The study objectives, study designs and reported metabolic biomarkers were systematically examined and compared. Pathway analysis was performed using the MetaboAnalyst online software. RESULTS Twenty-eight studies were included in this systematic review. Many consistent metabolites, including isoleucine, leucine, valine, glycine, lysine, glutamate, LysoPC(16:0), LysoPC(18:2), serine, uric acid, citrate and palmitic acid, possess potential as biomarkers of IS. Metabolic pathways and dysregulations that are implicated in excitotoxicity, inflammation, apoptosis, oxidative stress, neuroprotection, energy failure, and elevation of intracellular Ca2+ levels, were indicated as playing important roles in the development and progression of IS. CONCLUSIONS This systematic review summarizes potential metabolic biomarkers and pathways related to IS, which may provide opportunities for the construction of diagnostic or predictive models for IS and the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Yuxia Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xiaohong Zhu
- Suzhou Industrial Park Centers for Disease Control and Prevention (Institute of Health Inspection and Supervision), Suzhou, 215021, Jiangsu, People's Republic of China
| | - Yonghong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
20
|
A Metabonomics Investigation into the Therapeutic Effects of BuChang NaoXinTong Capsules on Reversing the Amino Acid-Protein Interaction Network of Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7258624. [PMID: 31015890 PMCID: PMC6446104 DOI: 10.1155/2019/7258624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
Background Amino acids (AAs) in cerebrospinal fluid (CSF) play a pivotal role in cerebral ischemia (CI). BuChang NaoXinTong Capsules (BNC) are widely prescribed in Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. Methods In order to investigate the therapeutic effects and pharmacological mechanisms of BNC on reversing CI from a system level, an amino acid-protein interaction imbalanced network of CI containing metabolites of AAs, key regulatory enzymes, and proteins was constructed for the first time. Furthermore, a novel method for detecting the ten AAs in CSF was developed by UPLC-QQQ-MS in an effort to validate the imbalanced networks and the therapeutic effects of BNC via analysis of metabolites. Results Based on a middle cerebral artery occlusion (MCAO) rat model, the dynamic levels of amino acids in CSF 3, 6, 12, and 24 h after MCAO were analyzed. Up to 24 h, the accumulated nine AA biomarkers were found to significantly change in the MCAO group compared to the sham group and exhibited an obvious tendency for returning to baseline values after BNC treatment. In addition, based on the imbalanced network of CI, four key enzymes that regulate the generation of BNC-mediated AA biomarkers were selected and validated using an enzyme-linked immunosorbent assay and western blotting. Finally, aromatic-L-amino-acid decarboxylase (AADC) was found to be one of the putative targets for BNC-mediated protection against CI. Conclusion This study provides new strategies to explore the mechanism of cerebral ischemia and help discover the potential mechanism of BNC.
Collapse
|
21
|
NMR metabolomic study of blood plasma in ischemic and ischemically preconditioned rats: an increased level of ketone bodies and decreased content of glycolytic products 24 h after global cerebral ischemia. J Physiol Biochem 2018; 74:417-429. [DOI: 10.1007/s13105-018-0632-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/23/2018] [Indexed: 10/16/2022]
|
22
|
McClenathan BM, Stewart DA, Spooner CE, Pathmasiri WW, Burgess JP, McRitchie SL, Choi YS, Sumner SCJ. Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics. Vaccine 2017; 35:1238-1245. [PMID: 28169076 DOI: 10.1016/j.vaccine.2017.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers.
Collapse
Affiliation(s)
- Bruce M McClenathan
- Defense Health Agency-Immunization Healthcare Branch Regional Office, Building 1-2532 Armistead Street, Fort Bragg, NC 28310, USA; Womack Army Medical Center, 2817 Reilly Road, Fort Bragg, NC 28310, USA.
| | - Delisha A Stewart
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Christina E Spooner
- Defense Health Agency-Immunization Healthcare Branch, 7700 Arlington Boulevard, Falls Church, VA 22042, USA.
| | - Wimal W Pathmasiri
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Jason P Burgess
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Susan L McRitchie
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Y Sammy Choi
- Womack Army Medical Center, 2817 Reilly Road, Fort Bragg, NC 28310, USA.
| | - Susan C J Sumner
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|