1
|
Foessleitner P, Cooley Demidkina B, El-Arar W, Goldenberg M, Murthy M, Bergerat A, Bar O, Kwon DS, Mitchell CM. Association between changes in genital immune markers and vaginal microbiome transitions in bacterial vaginosis. Sci Rep 2025; 15:3536. [PMID: 39875510 PMCID: PMC11775339 DOI: 10.1038/s41598-025-88208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Bacterial vaginosis (BV), characterized by an imbalance in the vaginal microbiota, is a prevalent condition among women of reproductive age and a risk factor for human immunodeficiency virus, sexually transmitted infections, and preterm birth. BV is generally considered to induce mucosal inflammation, but the specific pathways and cell types involved are not well characterized. This prospective study aimed to assess associations between microbial changes and mucosal immune responses in BV patients. Therefore, samples from 20 premenopausal women with BV and treated with metronidazole were analyzed. Vaginal swabs, menstrual cup, and endocervical cytobrush samples were collected before treatment, weekly for four weeks, and at 2, 4, and 6 months for Nugent scoring, immune cell populations and cytokine analysis. Of 105 study intervals, 27 (25.7%) showed improvement in Nugent category, 61 (58.1%) remained unchanged, and 17 (16.2%) worsened. Improvement correlated with decreased monocytes (p = 0.005), while worsening was linked to increased monocytes (p < 0.001) and dendritic cells (p = 0.02). B cells (p = 0.02) and IFN-γ-induced chemokines - IP-10 (p = 0.007), MIG (p = 0.049), and ITAC (p = 0.005) - were associated with improvement. In conclusion, although the T-cell-associated chemokines IP-10, ITAC, and MIG were strongly associated with improvements in Nugent category, our findings indicate that antigen-presenting cells, particularly monocytes, show the most dynamic response to shifts in the vaginal microbiota in patients with BV.
Collapse
Affiliation(s)
- Philipp Foessleitner
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Briah Cooley Demidkina
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA
| | - Wafae El-Arar
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA
| | - Miles Goldenberg
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA
| | - Meena Murthy
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA
| | - Agnes Bergerat
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA
| | - Ofri Bar
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem , Israel
| | - Douglas S Kwon
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Rahman N, Mian MF, Hayes CL, Nazli A, Kaushic C. G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo. Front Immunol 2024; 15:1487726. [PMID: 39650661 PMCID: PMC11621107 DOI: 10.3389/fimmu.2024.1487726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Clinically, a dysbiotic vaginal microbiota (VMB) colonized with anaerobic species such as Gardnerella vaginalis has been linked to increased susceptibility to viral sexually transmitted infections (STIs) such as Herpes Simplex Virus Type 2 (HSV-2). The mechanism is poorly understood due to the lack of small animal models. Methods Mice were inoculated with 107 CFU of the eubiotic bacteria Lactobacillus crispatus, the dysbiotic bacteria G. vaginalis, or PBS as a negative control every 48 h for ten days. On day ten, mice were inoculated with 105 PFU WT HSV-2 333 and survival, pathology, and viral titers were assessed. To elucidate changes in the vaginal microenvironment following bacterial inoculations, vaginal tissue and washes were collected following ten days of inoculations. To assess barrier integrity, tissue was fixed and stained for the barrier protein Desmoglein-1 (DSG-1). To evaluate the immune microenvironment, tissue was processed for flow cytometry to examine tissue-resident T cells and cytokine production by T cells. Vaginal washes were used for multiplex cytokine/chemokine analysis. Results G. vaginalis inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and L. crispatus inoculated mice. The vaginal epithelium of G. vaginalis inoculated mice showed decreased DSG-1 staining compared to other groups, indicating compromised barrier function. Decreased total numbers of CD4+ and CD8+ T cells expressing activated mucosal immune markers CD44, CD69, and CD103 were observed in the vaginal tract of G. vaginalis inoculated mice. They also showed increased proportions of T cells expressing inflammatory cytokines TNF-α and IFN-γ, while L. crispatus inoculated mice had increased proportions and absolute counts of T cells expressing the regulatory cytokine IL-10. In the multiplex assay, vaginal washes from G. vaginalis mice had increased inflammatory cytokines and chemokines compared to L. crispatus and PBS groups. Discussion These results suggest G. vaginalis inoculation may be increasing HSV-2 infection by disrupting the epithelial barrier, decreasing protective immune responses and increasing tissue inflammation in the vaginal tract.
Collapse
Affiliation(s)
- Nuzhat Rahman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - M. Firoz Mian
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Christina L. Hayes
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Aisha Nazli
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Zhang Y, He Z. Inflammatory mediators in bacterial vaginosis: The role of cytokines. APMIS 2024; 132:245-255. [PMID: 38345182 DOI: 10.1111/apm.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024]
Abstract
BV is a significant concern in women's health with a varying prevalence rate in different cities of China. The condition has been linked to the acquisition of STIs, including HIV and HPV, and can lead to infertility, adverse obstetric outcomes. We conducted a comprehensive literature search in the PubMed. The search was performed from 01/01/2018 to 01/09/2023. The following search terms were used: bacterial vaginosis and cytokine. We also manually searched the reference lists of included studies and relevant reviews to identify additional articles. The presence of Gardnerella spp. can lead to changes in cytokine levels. The immune system of the female reproductive tract consists of various immune cells and molecules that play a vital role in defending against infections. Cytokines, signaling molecules involved in immune cell recruitment and activation, have been identified as potential biomarkers for diagnosing BV and predicting STIs. Current treatments for BV primarily involve antibiotics, but there is a high recurrence rate posttreatment. BV is a complex condition that affects a significant number of women worldwide. The role of cytokines in the onset, progression, and treatment of BV offers promising avenues for future research and potential diagnostic and therapeutic advancements.
Collapse
Affiliation(s)
- Yuexin Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhi He
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Shvartsman E, Hill JE, Sandstrom P, MacDonald KS. Gardnerella Revisited: Species Heterogeneity, Virulence Factors, Mucosal Immune Responses, and Contributions to Bacterial Vaginosis. Infect Immun 2023; 91:e0039022. [PMID: 37071014 PMCID: PMC10187134 DOI: 10.1128/iai.00390-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Gardnerella species are associated with bacterial vaginosis (BV) and have been investigated as etiological agents of the condition. Nonetheless, the isolation of this taxon from healthy individuals has raised important questions regarding its etiological role. Recently, using advanced molecular approaches, the Gardnerella genus was expanded to include several different species that exhibit differences in virulence potential. Understanding the significance of these different species with respect to mucosal immunity and the pathogenesis and complications of BV could be crucial to solving the BV enigma. Here, we review key findings regarding the unique genetic and phenotypic diversity within this genus, virulence factors, and effects on mucosal immunity as they stand. We also comment on the relevance of these findings to the proposed role of Gardnerella in BV pathogenesis and in reproductive health and identify key gaps in knowledge that should be explored in the future.
Collapse
Affiliation(s)
- Elinor Shvartsman
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paul Sandstrom
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kelly S. MacDonald
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and Cervical Microbiota Composition in Patients with Endometrial Cancer. Int J Mol Sci 2023; 24:ijms24098266. [PMID: 37175971 PMCID: PMC10179515 DOI: 10.3390/ijms24098266] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
According to recent data, changes in the vaginal microbiota could affect the risk of gynaecological cancers. Women suffering from endometrial cancer present significant changes in cervicovaginal microbiota composition. The objective of our study was to characterize the cervicovaginal microbiota of women undergoing hysterectomy due to benign disease, atypical hyperplasia, and endometrial cancer; The study included 96 patients, who undergone surgical treatment due to benign uterine disease, precancerous endometrial lesion, and endometrial cancer. Quantitative and qualitative real-time PCR analysis of DNA isolated from vaginal fornix and endocervical canal samples was performed to detect the 19 most commonly identified microorganisms, including different Lactobacillus spp., Atopobium, Bifidobacterium, Chlamydia, and Gardnerella; At least one of the tested microorganisms was identified in 88.5% of vaginal and 83.3% of cervical samples. Lactobacillus iners was significantly more frequent in patients with benign condition, whereas Dialister pneumosintes and Mobiluncus curtisii was more frequent in cancer patients; Mobiluncus curtisi and Dialister pneumosintes, which were identified as significantly more common in endometrial cancer vaginal samples, may be considered as potential endometrial cancer co-factors which promote/stimulate carcinogenesis. However, the exact mechanism of such activity remains unexplained and requires further investigations.
Collapse
Affiliation(s)
- Bartłomiej Barczyński
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Karolina Frąszczak
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Wong YP, Cheah FC, Wong KK, Shah SA, Phon SE, Ng BK, Lim PS, Khong TY, Tan GC. Gardnerella vaginalis infection in pregnancy: Effects on placental development and neonatal outcomes. Placenta 2022; 120:79-87. [PMID: 35231793 DOI: 10.1016/j.placenta.2022.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Gardnerella vaginalis (GV)-associated bacterial vaginosis is recognised for its detrimental effects on pregnancy resulting in poor obstetric and neonatal outcomes. There is limited knowledge of the effects on placental histomorphology following GV infection in pregnancy. We investigated the effects of GV infection on the placenta, particularly with regards to the syncytiotrophoblasts and vascular development, and related these to neonatal outcomes. METHODS A prospective cohort study involving GV-positive pregnant women presented with abnormal vaginal discharge, with gestational age-matched healthy pregnant women controls. Placental sampling was performed upon delivery and examined histologically. Vascular endothelial growth factor-A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α) mRNA and protein expression were analysed by real-time PCR and immunohistochemistry respectively. The standard measures in neonatal outcomes were recorded. RESULTS Placentas from GV-positive mothers were found to have significant histological evidence of maternal and/or fetal inflammatory response compared with the controls (17/28: 60.7% vs 2/20: 10%) (p = 0.0011). There was an increase in the percentage of syncytial nuclear aggregates (SNAs) per villus (47.4 ± 11.09%) in placentas from GV-positive mothers (p < 0.0001). VEGF-A was significantly increased in specifically, the villous endothelial cells of placentas with GV infection, but no difference in the immunoexpression of HIF-1α in these cells between groups. However, these were not associated with adverse neonatal outcomes. DISCUSSION Increased placental VEGF-A expression associated with increased SNAs in pregnant women with GV infection of the genital tract may be an intrauterine response towards placental vascular remodeling, that may also serve as a protective role in moderating birth outcomes.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Fook Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Kon Ken Wong
- Department of Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Shamsul Azhar Shah
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Su Ee Phon
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Beng Kwang Ng
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Pei Shan Lim
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Teck Yee Khong
- Department of Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, SA, 5006, Australia.
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Swaminathan A, Abd Aziz NH, Ayub NA, Wong KK, Cheah FC. Maternal and umbilical cord blood polymorphonuclear leukocytes showed moderate oxidative burst at phagocytosis of Gardnerella vaginalis. BMC Res Notes 2021; 14:420. [PMID: 34809696 PMCID: PMC8607577 DOI: 10.1186/s13104-021-05842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Pregnant women with bacterial vaginosis due to Gardnerella vaginalis (GV) infection presents with a wide-ranging disease symptomatology. We speculate this may be due to interaction that varies between host immune response and the pathogen. We studied the oxidative burst in polymorphonuclear leukocytes (PMNL)s from maternal blood (MB) and cord blood (CB) upon phagocytosis of GV and compared against E. coli and Group B Streptococcus (GBS). RESULTS The PHAGOBURST™ assay detects fluorescence from oxidized dihydrorhodamine during oxidative burst. The average percentage of PMNL showing oxidative burst was almost two-fold greater with GBS (99.5%) and E. coli (98.2%) than GV (56.9%) (p < 0.01) in MB, but a similar proportion of PMNL with burst activity was seen in CB (84.7%). The mean fluorescence intensity (MFI) of oxidative burst in MB PMNL with GV was lower compared to E. coli but comparable to GBS. The MFI of CB PMNL (1580 ± 245.8) was significantly higher than MB PMNL (1198 ± 262.1) with GV, p = 0.031. The live-cell imaging showed neutrophil oxidative burst upon phagocytosis of GV produces hypochlorous acid (HOCl). Overall, the HOCL-mediated microbicidal activity against GV is more variable and less robust than E. coli and GBS, especially in maternal than CB PMNL.
Collapse
Affiliation(s)
- Anushia Swaminathan
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Najiah Ajlaa Ayub
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kon-Ken Wong
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Selis NN, Oliveira HBM, Souza CLS, Almeida JB, Andrade YMFS, Silva LSC, Romano CC, Rezende RP, Yatsuda R, Uetanabaro APT, Marques LM. Lactobacillus plantarum Lp62 exerts probiotic effects against Gardnerella vaginalis ATCC 49154 in bacterial vaginosis. Lett Appl Microbiol 2021; 73:579-589. [PMID: 34338346 DOI: 10.1111/lam.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The severe side-effects elicited by conventional antibiotic therapy and the recurrence of Bacterial vaginosis-associated bacteria and bacterial resistance have led to the development of novel alternative therapies, among which genital probiotics are widely used. In this study, we aimed to evaluate the antimicrobial activities of Lactobacillus plantarum Lp62 and its supernatant against Gardnerella vaginalis, using both in vitro and in vivo approaches. In vitro assays were used to evaluate the viability of the strain and the antimicrobial activities of the supernatant in different pH ranges. An in vivo assay was performed on female BALB/c mice, wherein the animals were divided into eight groups: four control groups and four treated groups (for curative and preventive therapies). After infecting and treating the mice, the animals were killed to quantify the bacterial load using qPCR, evaluate leucocyte cellular response, determine vaginal cytokine levels and perform cytokine tissue gene expression. Our analyses revealed significant activity of the strain and its supernatant against G. vaginalis. Preliminary in vitro tests showed that the strain grew with equal efficiency in different pH ranges. Meanwhile, the presence of halo and inhibition of pathogen growth established the significant activity of the supernatant against G. vaginalis. We observed that both micro-organisms are resident bacteria of mouse microbiota and that the lactobacilli population growth was affected by G. vaginalis and vice versa. We also observed that the treated groups, with their low bacterial load, absence of leucocyte recruitment, reduced cytokine levels in the vaginal lavage and normalized cytokine gene expression, successfully controlled the infection.
Collapse
Affiliation(s)
- N N Selis
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - H B M Oliveira
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - C L S Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - J B Almeida
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Y M F S Andrade
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - L S C Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - C C Romano
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - R P Rezende
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - R Yatsuda
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - A P T Uetanabaro
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil.,Departamento de Ciências Biológicas, Laboratório de Microbiologia da Agroindústria, Universidade Estadual de Santa Cruz, BA, Brazil
| | - L M Marques
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil.,Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| |
Collapse
|
9
|
Bohbot JM, Brami G, Goubard A, Harvey T. [Ten questions about bacterial vaginosis]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2020; 48:693-702. [PMID: 32438010 DOI: 10.1016/j.gofs.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Indexed: 06/11/2023]
Abstract
The physiopathology of bacterial vaginosis (BV), the ultimate stage of vaginal dysbiosis, has benefited from recent advances in molecular biology, highlighting, among others, the important role of A. vaginae. Certain immunological specificities (variants of TLR4, elevation of IL-1β, for example) explain the variations in the prevalence of this infection, the poor clinical and cellular inflammatory response and the promoting influence of BV on the acquisition and progression of some sexually transmitted infections. These advances do not fully elucidate the causes of the high rate of recurrences. Some risk factors for relapses of BV have been identified such as tobacco use, stress or hygienic errors have been associated to relapses of BV. However, other paths are beginning to be explored such as the role of sexual transmission, the resistance of certain bacteria associated to BV to nitroimidazoles or the lack of efficacy of conventional treatments on dysbiosis itself. Taking into acount this vaginal dysbiosis appears to be important or even essential to better control the natural history of HPV-hr infection or improve the success rate of IVF, for example. Despite heterogeneous results, the use of probiotics as a complement to conventional treatments (nitroimidazoles, dequalinium chloride) has demonstrated a preventive effect on BV recurrences. Further studies are needed to customize the contribution of probiotics (or synbiotics) according to the individual specificities of the vaginal microbiome.
Collapse
Affiliation(s)
- J-M Bohbot
- Institut Fournier, 25, boulevard Saint-Jacques, 75014 Paris, France.
| | - G Brami
- Institut Fournier, 25, boulevard Saint-Jacques, 75014 Paris, France
| | - A Goubard
- Institut Fournier, 25, boulevard Saint-Jacques, 75014 Paris, France
| | - T Harvey
- Maternité des Diaconnesses, 12-18, rue du Sergent Bauchat, 75012 Paris, France
| |
Collapse
|
10
|
Immunomodulatory Effects of Lactobacillus plantarum on Inflammatory Response Induced by Klebsiella pneumoniae. Infect Immun 2019; 87:IAI.00570-19. [PMID: 31481408 DOI: 10.1128/iai.00570-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Some respiratory infections have been associated with dysbiosis of the intestinal microbiota. The underlying mechanism is incompletely understood, but cross talk between the intestinal microbiota and local immune cells could influence the immune response at distal mucosal sites. This has led to the concept of enhancing respiratory defenses by modulating the intestinal microbiota with exogenous supplementation of beneficial strains. In this study, we examined the effect of Lactobacillus plantarum CIRM653 on the inflammatory response induced by the pathogen Klebsiella pneumoniae Oral administration of L. plantarum CIRM653 to mice subsequently infected by K. pneumoniae via the nasal route (i) reduced the pulmonary inflammation response, with decreased numbers of lung innate immune cells (macrophages and neutrophils) and cytokines (mouse keratinocyte-derived chemokine [KC], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) in the bronchoalveolar fluid, and (ii) induced an immunosuppressive Treg response in lungs. In vitro coincubation of L. plantarum CIRM653 and K. pneumoniae with human dendritic cells and peripheral blood mononuclear cells resulted in decreased Th1 (IL-12p70 and interferon gamma [IFN-γ]) and Th17 (IL-23 and IL-17) and increased Treg (IL-10) cytokine levels compared to those observed for K. pneumoniae-infected cells. Neither K. pneumoniae nor L. plantarum CIRM653 had any effect on cytokine production by intestinal epithelial cells in vitro, but the induction of the NF-κB pathway and IL-8 and IL-6 production by K. pneumoniae in airway epithelial cells was significantly reduced when the pathogen was coincubated with L. plantarum CIRM653. The remote IL-10-mediated modulation of the K. pneumoniae inflammatory response by L. plantarum CIRM653 supports the concept of immunomodulation by beneficial bacteria through the gut-lung axis.
Collapse
|
11
|
Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol 2019; 10:2034. [PMID: 31555269 PMCID: PMC6722227 DOI: 10.3389/fimmu.2019.02034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are severely affecting women's quality of life. Our understanding of the vaginal defense mechanisms have broadened recently with studies uncovering the inflammatory nature of bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type 17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and oxidative stress during vaginal infections. However, the pathogens have fine mechanisms to subvert or manipulate the host immune responses, hijack them and use them for their own advantage. The odds of hijacking increases, due to impaired immune responses, the net magnitude of which is the result of numerous genetic variations, present in multiple host genes, detailed in this review. Thus, by underlining the role of the host immune responses in disease etiology, modern research has clarified a major hypothesis shift in the pathophilosophy of RVVI. This knowledge can further be used to develop efficient immune-based diagnosis and treatment strategies for this enigmatic disease conditions. As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based therapies have been reported to be safe and efficacious in infectious diseases. Therefore, these emerging immune-therapies could possibly be the future therapeutic options for RVVI.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
12
|
Buhmann MT, Abt D, Nolte O, Neu TR, Strempel S, Albrich WC, Betschart P, Zumstein V, Neels A, Maniura-Weber K, Ren Q. Encrustations on ureteral stents from patients without urinary tract infection reveal distinct urotypes and a low bacterial load. MICROBIOME 2019; 7:60. [PMID: 30981280 PMCID: PMC6462311 DOI: 10.1186/s40168-019-0674-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/28/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Current knowledge of the urinary tract microbiome is limited to urine analysis and analysis of biofilms formed on Foley catheters. Bacterial biofilms on ureteral stents have rarely been investigated, and no cultivation-independent data are available on the microbiome of the encrustations on the stents. RESULTS The typical encrustations of organic and inorganic urine-derived material, including microbial biofilms formed during 3-6 weeks on ureteral stents in patients treated for kidney and ureteral stones, and without reported urinary tract infection at the time of stent insertion, were analysed. Next-generation sequencing of the 16S rRNA gene V3-V4 region revealed presence of different urotypes, distinct bacterial communities. Analysis of bacterial load was performed by combining quantification of 16S rRNA gene copy numbers by qPCR with microscopy and cultivation-dependent analysis methods, which revealed that ureteral stent biofilms mostly contain low numbers of bacteria. Fluorescence microscopy indicates the presence of extracellular DNA. Bacteria identified in biofilms by microscopy had mostly morphogenic similarities to gram-positive bacteria, in few cases to Lactobacillus and Corynebacterium, while sequencing showed many additional bacterial genera. Weddellite crystals were absent in biofilms of patients with Enterobacterales and Corynebacterium-dominated microbiomes. CONCLUSIONS This study provides novel insights into the bacterial burden in ureteral stent encrustations and the urinary tract microbiome. Short-term (3-6 weeks) ureteral stenting is associated with a low load of viable and visible bacteria in ureteral stent encrustations, which may be different from long-term stenting. Patients could be classified according to different urotypes, some of which were dominated by potentially pathogenic species. Facultative pathogens however appear to be a common feature in patients without clinically manifested urinary tract infection. TRIAL REGISTRATION ClinicalTrials.gov, NCT02845726 . Registered on 30 June 2016-retrospectively registered.
Collapse
Affiliation(s)
- Matthias T. Buhmann
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Dominik Abt
- Department of Urology, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Oliver Nolte
- Zentrum für Labormedizin, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Thomas R. Neu
- Microbiology of Interfaces, Department River Ecology, Helmholtz Centre for Environmental Research – UFZ, Brueckstrasse 3A, 39114 Magdeburg, Germany
| | | | - Werner C. Albrich
- Division of Infectious Diseases/Hospital Epidemiology, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Patrick Betschart
- Department of Urology, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Valentin Zumstein
- Department of Urology, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
13
|
Schroeder HA, Nunn KL, Schaefer A, Henry CE, Lam F, Pauly MH, Whaley KJ, Zeitlin L, Humphrys MS, Ravel J, Lai SK. Herpes simplex virus-binding IgG traps HSV in human cervicovaginal mucus across the menstrual cycle and diverse vaginal microbial composition. Mucosal Immunol 2018; 11:1477-1486. [PMID: 29988116 PMCID: PMC6485947 DOI: 10.1038/s41385-018-0054-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/04/2023]
Abstract
IgG possesses an important yet little recognized effector function in mucus. IgG bound to viral surface can immobilize otherwise readily diffusive viruses to the mucin matrix, excluding them from contacting target cells and facilitating their elimination by natural mucus clearance mechanisms. Cervicovaginal mucus (CVM) is populated by a microbial community, and its viscoelastic and barrier properties can vary substantially not only across the menstrual cycle, but also in women with distinct microbiota. How these variations impact the "muco-trapping" effector function of IgGs remains poorly understood. Here we obtained multiple fresh, undiluted CVM specimens (n = 82 unique specimens) from six women over time, and employed high-resolution multiple particle tracking to quantify the mobility of fluorescent Herpes Simplex Viruses (HSV-1) in CVM treated with different HSV-1-binding IgG. The IgG trapping potency was then correlated to the menstrual cycle, and the vaginal microbial composition was determined by 16 s rRNA. In the specimens studied, both polyclonal and monoclonal HSV-1-binding IgG appeared to consistently and effectively trap HSV-1 in CVM obtained at different times of the menstrual cycle and containing a diverse spectrum of commensals, including G. vaginalis-dominant microbiota. Our findings underscore the potential broad utility of this "muco-trapping" effector function of IgG to reinforce the vaginal mucosal defense, and motivates further investigation of passive immunization of the vagina as a strategy to protect against vaginally transmitted infections.
Collapse
Affiliation(s)
- Holly A. Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27519, USA
| | - Kenetta L. Nunn
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27519, USA.,UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27519, USA
| | - Alison Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27519, USA
| | - Christine E. Henry
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27519, USA
| | - Felix Lam
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27519, USA
| | | | | | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, CA, 92121, USA
| | - Mike S. Humphrys
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27519, USA.,UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27519, USA
| |
Collapse
|
14
|
Campisciano G, Zanotta N, Licastro D, De Seta F, Comar M. In vivo microbiome and associated immune markers: New insights into the pathogenesis of vaginal dysbiosis. Sci Rep 2018; 8:2307. [PMID: 29396486 PMCID: PMC5797242 DOI: 10.1038/s41598-018-20649-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/23/2018] [Indexed: 02/03/2023] Open
Abstract
The microbiota fulfils a key role in the training and function of the immune system, which contributes to the symbiosis between the host and complex microbial communities. In this study, we characterized the interplay between vaginal bacteria and local immune mediators during dysbiosis in selected women of reproductive age who were grouped according to Nugent’s criteria. The abundance of Gardnerella vaginalis and Bifidobacterium breve was increased in the intermediate dysbiotic status, while the presence of a plethora of non-resident bacteria characterized the group with overt vaginosis. In response to these increases, the anti-inflammatory IL1ra and pro-inflammatory IL2 increased, while the embryo trophic factors FGFβ and GMCSF decreased compared to the healthy milieu. A specific pattern, including IL1α, IL1β, IL8, MIG, MIP1α and RANTES, distinguished the intermediate group from the vaginosis group, while IL5 and IL13, which are secreted by Th2 cells, were significantly associated with the perturbation of the commensals Lactobacilli, Gardnerella and Ureaplasma. Summarizing, we postulate that although the dysbiotic condition triggers a pro-inflammatory process, the presence of a steady state level of Th2 may influence clinical manifestations. These results raise clinically relevant questions regarding the use of vaginal immunological markers as efficacious tools to monitor microbial alterations.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Nunzia Zanotta
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Danilo Licastro
- CBM Scrl-Genomics, Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Francesco De Seta
- Medical Sciences Department, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy.,SC of Gynecology - Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Manola Comar
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy. .,Medical Sciences Department, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy.
| |
Collapse
|
15
|
Jung HS, Ehlers MM, Lombaard H, Redelinghuys MJ, Kock MM. Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol 2017; 43:651-667. [PMID: 28358585 DOI: 10.1080/1040841x.2017.1291579] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microorganisms in nature rarely exist in a planktonic form, but in the form of biofilms. Biofilms have been identified as the cause of many chronic and persistent infections and have been implicated in the etiology of bacterial vaginosis (BV). Bacterial vaginosis is the most common form of vaginal infection in women of reproductive age. Similar to other biofilm infections, BV biofilms protect the BV-related bacteria against antibiotics and cause recurrent BV. In this review, an overview of BV-related bacteria, conceptual models and the stages involved in the polymicrobial BV biofilm formation will be discussed.
Collapse
Affiliation(s)
- Hyun-Sul Jung
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Marthie M Ehlers
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa.,b Department of Medical Microbiology, Tshwane Academic Division , National Health Laboratory Service (NHLS) , Pretoria , South Africa
| | - Hennie Lombaard
- c Gauteng Department of Health, Rahima Moosa Mother and Child Hospital, Wits Obstetrics and Gynaecology Clinical Research Division, Department of Obstetrics and Gynaecology , University of Witwatersrand , Johannesburg , South Africa
| | - Mathys J Redelinghuys
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Marleen M Kock
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa.,b Department of Medical Microbiology, Tshwane Academic Division , National Health Laboratory Service (NHLS) , Pretoria , South Africa
| |
Collapse
|