1
|
Liang Q, He L, Wang J, Tang D, Wu C, Peng W. Targeting IL-17 and its receptors: A feasible way for natural herbal medicines to modulate fibroblast-like synoviocytes in rheumatoid arthritis. Biochem Pharmacol 2024; 230:116598. [PMID: 39481657 DOI: 10.1016/j.bcp.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Rheumatoid arthritis (RA) is characterized by processive synovial hyperplasia and abnormal proliferation of fibroblast-like synoviocytes (FLSs), and can eventually lead to progressive joint destruction. Increasing evidence has demonstrated that cytokines play pivotal roles in the pathogenesis of RA. In particular, the production of interleukin (IL)-17 by T helper 17 (Th17) cells is closely associated with the development of RA, and inhibition of IL-17/IL-17R could regulate the production of inflammatory factors by FLSs, which may be a feasible way to reduce inflammation and bone destruction in RA. Currently, accumulating evidence suggests that the utilization of natural herbal medicines is advantageous in the management of RA. In our present paper, a comprehensive reference search was conducted of the classic Materia Medica books, literature, online databases, academic search engines, and MS. or Ph. D theses. In conclusion, natural herbal medicines with antirheumatic activities that modulate FLSs by targeting IL-17/IL-17R were summarized. Furthermore, we also discuss the limitations and potential research directions for the future development of natural herbal medicines as candidate drugs for RA management in the clinic.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lin He
- MIIT Public Service Platforms for Industrial Technological Base, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611731, PR China
| | - Jingwen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dandan Tang
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, PR China
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Li X, Sun T, Liu J, Wei S, Yang Y, Liu J, Zhang B, Li W. Phloretin alleviates doxorubicin-induced cardiotoxicity through regulating Hif3a transcription via targeting transcription factor Fos. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155046. [PMID: 37659297 DOI: 10.1016/j.phymed.2023.155046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Doxorubicin (Dox), a chemotherapeutic agent known for its efficacy, has been associated with the development of severe cardiotoxicity, commonly referred to as doxorubicin-induced cardiotoxicity (DIC). The role and mechanism of action of phloretin (Phl) in cardiovascular diseases are well-established; however, its specific function and underlying mechanism in the context of DIC have yet to be fully elucidated. OBJECTIVE This research aimed to uncover the protective effect of Phl against DIC in vivo and in vitro, while also providing a comprehensive understanding of the underlying mechanisms involved. METHODS DIC cell and murine models were established. The action targets and mechanism of Phl against DIC were comprehensively examined by systematic network pharmacology, molecular docking, transcriptomics technologies, transcription factor (TF) prediction, and experimental validation. RESULTS Phl relieved Dox-induced cell apoptosis in vitro and in vivo. Through network pharmacology analysis, a total of 554 co-targeted genes of Phl and Dox were identified. Enrichment analysis revealed several key pathways including the PI3K-Akt signaling pathway, Apoptosis, and the IL-17 signaling pathway. Protein-protein interaction (PPI) analysis identified 24 core co-targeted genes, such as Fos, Jun, Hif1a, which were predicted to bind well to Phl based on molecular docking. Transcriptomics analysis was performed to identify the top 20 differentially expressed genes (DEGs), and 202 transcription factors (TFs) were predicted for these DEGs. Among these TFs, 10 TFs (Fos, Jun, Hif1a, etc.) are also the co-targeted genes, and 3 TFs (Fos, Jun, Hif1a) are also the core co-targeted genes. Further experiments validated the finding that Phl reduced the elevated levels of Hif3a (one of the top 20 DEGs) and Fos (one of Hif3a's predicted TFs) induced by Dox. Moreover, the interaction between Fos protein and the Hif3a promoter was confirmed through luciferase reporter assays. CONCLUSION Phl actively targeted and down-regulated the Fos protein to inhibit its binding to the promoter region of Hif3a, thereby providing protection against DIC.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; School of Pharmacy, Central South University, Changsha, Hunan 410078, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; School of Pharmacy, Central South University, Changsha, Hunan 410078, China.
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. Biomedicines 2023; 11:biomedicines11010143. [PMID: 36672652 PMCID: PMC9855955 DOI: 10.3390/biomedicines11010143] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The isolation of phlorizin from the bark of an apple tree in 1835 led to a flurry of research on its inhibitory effect on glucose transporters in the intestine and kidney. Using phlorizin as a prototype drug, antidiabetic agents with more selective inhibitory activity towards glucose transport at the kidney have subsequently been developed. In contrast, its hydrolysis product in the body, phloretin, which is also found in the apple plant, has weak antidiabetic properties. Phloretin, however, displays a range of pharmacological effects including antibacterial, anticancer, and cellular and organ protective properties both in vitro and in vivo. In this communication, the molecular basis of its anti-inflammatory mechanisms that attribute to its pharmacological effects is scrutinised. These include inhibiting the signalling pathways of inflammatory mediators' expression that support its suppressive effect in immune cells overactivation, obesity-induced inflammation, arthritis, endothelial, myocardial, hepatic, renal and lung injury, and inflammation in the gut, skin, and nervous system, among others.
Collapse
|
4
|
Tiwari P, Mishra R, Mazumder A, Mazumder R, Singh A. An Insight into Diverse Activities and Targets of Flavonoids. Curr Drug Targets 2023; 24:89-102. [PMID: 36111764 DOI: 10.2174/1389450123666220915121236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoids belong to the chemical class of polyphenols and are in the category of secondary metabolites imparting a wide protective effect against acute and chronic diseases. OBJECTIVE The study aims to investigate and summarize the information of various flavonoids extracted, isolated from various sources, and possess different pharmacological properties by acting on multiple targets. METHODS This comprehensive review summarizes the research information related to flavonoids and their pharmacological action targets from various sources like PubMed, Google Scholar and Google websites. RESULTS Extracted information in the paper discusses various therapeutic effects of flavonoids isolated from medicinal plant sources, which have the property to inhibit several enzymes, which finally results in health benefits like anti-cancer, anti-bacterial, antioxidant, anti-allergic, and anti-viral effects. This study also showed the different solvents and methods involved in the extraction and characterization of the isolated phytochemical constituents. CONCLUSION The findings showed the contribution of several flavonoids in the management and inhibition of various acute and chronic sicknesses by acting on different sites in the body. This study may lead to gaining interest for more research on the bioactives of different medicinal plants for the discovery of new lead compounds or further improvement of the efficacy of the existing compound.
Collapse
Affiliation(s)
- Prashant Tiwari
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Ayushi Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Nakhate KT, Badwaik H, Choudhary R, Sakure K, Agrawal YO, Sharma C, Ojha S, Goyal SN. Therapeutic Potential and Pharmaceutical Development of a Multitargeted Flavonoid Phloretin. Nutrients 2022; 14:nu14173638. [PMID: 36079895 PMCID: PMC9460114 DOI: 10.3390/nu14173638] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Phloretin is a flavonoid of the dihydrogen chalcone class, present abundantly in apples and strawberries. The beneficial effects of phloretin are mainly associated with its potent antioxidant properties. Phloretin modulates several signaling pathways and molecular mechanisms to exhibit therapeutic benefits against various diseases including cancers, diabetes, liver injury, kidney injury, encephalomyelitis, ulcerative colitis, asthma, arthritis, and cognitive impairment. It ameliorates the complications associated with diabetes such as cardiomyopathy, hypertension, depression, memory impairment, delayed wound healing, and peripheral neuropathy. It is effective against various microbial infections including Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Escherichia coli, Candida albicans and methicillin-resistant Staphylococcus aureus. Considering the therapeutic benefits, it generated interest for the pharmaceutical development. However, poor oral bioavailability is the major drawback. Therefore, efforts have been undertaken to enhance its bioavailability by modifying physicochemical properties and molecular structure, and developing nanoformulations. In the present review, we discussed the pharmacological actions, underlying mechanisms and molecular targets of phloretin. Moreover, the review provides insights into physicochemical and pharmacokinetic characteristics, and approaches to promote the pharmaceutical development of phloretin for its therapeutic applications in the future. Although convincing experimental data are reported, human studies are not available. In order to ascertain its safety, further preclinical studies are needed to encourage its pharmaceutical and clinical development.
Collapse
Affiliation(s)
- Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Bhilai 490020, Chhattisgarh, India
| | - Rajesh Choudhary
- Department of Pharmacology, Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai 490020, Chhattisgarh, India
| | - Kalyani Sakure
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai 490024, Chhattisgarh, India
| | - Yogeeta O. Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.O.); (S.N.G.)
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
- Correspondence: (S.O.); (S.N.G.)
| |
Collapse
|
6
|
Cheng WJ, Yang HT, Chiang CC, Lai KH, Chen YL, Shih HL, Kuo JJ, Hwang TL, Lin CC. Deer Velvet Antler Extracts Exert Anti-Inflammatory and Anti-Arthritic Effects on Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Distinct Mouse Arthritis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1617-1643. [PMID: 35850642 DOI: 10.1142/s0192415x22500689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint deformity and disability. Deer velvet antler (DA), a traditional Chinese medicine, has been used to treat various types of arthritis for several thousands of years, but the underlying mechanisms are unknown. Herein, we investigated the anti-arthritic and anti-inflammatory effects of DA in vitro and in vivo. The ethyl acetate layer of DA ethanol extract (DA-EE-EA) was used to treat tumor necrosis factor (TNF)-[Formula: see text]-stimulated fibroblast-like synoviocyte MH7A cells, collagen-induced arthritis DBA/1 mice, and SKG mice with zymosan-induced arthritis. DA-EE-EA reduced nitric oxide production, prostaglandin E2 levels, and levels of pro-inflammatory cytokines including interleukin (IL)-1[Formula: see text], IL-6, and IL-8 in MH7A cells. DA-EE-EA also downregulated the phosphorylation of mitogen-activated protein kinase p38 and c-Jun N-terminal kinase and the translocation of nuclear factor kappa B p65. Intraperitoneal injection of DA-EE-EA for 3 weeks substantially reduced clinical arthritis scores in vivo models. Pathohistological images of the hind paws showed that DA-EE-EA reduced immune cell infiltration, synovial hyperplasia, and cartilage damage. The levels of pro-inflammatory cytokines, such as tumor necrosis factor alpha, IL-1[Formula: see text], IL-6, IL-8, IL-17A, and interferon-gamma, decreased in the hind paw homogenates of DA-EE-EA-treated mice. We also identified several potential components, such as hexadecanamide, oleamide, erucamide, and lysophosphatidylcholines, that might contribute to the anti-inflammatory effects of DA-EE-EA. In conclusion, DA-EE-EA has the potential to treat RA by regulating inflammatory responses. However, the individual components of DA-EE-EA and the underlying anti-inflammatory mechanisms need further investigation in future studies.
Collapse
Affiliation(s)
- Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Tzu Yang
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Huei-Lin Shih
- Division of Chinese Internal Medicine, Center of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Jen Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science, College of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Microencapsulated Recombinant Human Epidermal Growth Factor Ameliorates Osteoarthritis in a Murine Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9163279. [PMID: 34603477 PMCID: PMC8483914 DOI: 10.1155/2021/9163279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022]
Abstract
Osteoarthritis, a highly age-related and chronic inflammatory disorder with cartilage loss, causes patients difficultly in movement; there is no efficient and sustainable remedy for osteoarthritis currently. Although hyaluronic acid (HA) and platelet-rich plasma (PRP) have been used to alleviate osteoarthritis, the effects could be short and multiple injections might be required. To address this issue, we exploited the property of chitosan to encapsulate recombinant human epidermal growth factor and obtained microencapsulated rhEGF (Me-rhEGF). In the current study, we induced the osteoarthritis-like symptoms with monosodium iodoacetate (MIA) in rats and investigated the therapeutic effects of Me-rhEGF. Following administration of HA/Me-rhEGF in vivo, we observed that the total Mankin scores, cartilage oligomeric protein, C-telopeptide of type II collagen, IL-1β, IL-6, IL-17A, and TNF-α cytokines, nitric oxide, and prostaglandin E2 expressions were significantly inhibited. Our results also strongly indicate that individual use of HA or rhEGF slightly decreased the inflammation and restored the destructive joint structure, but was not as drastic as seen in the HA/Me-rhEGF. Moreover, HA/Me-rhEGF profoundly reduced cartilage destruction and proteoglycan loss and downregulated matrix metalloproteinase expressions. These findings reveal that the treatment of HA/Me-rhEGF could be more beneficial than the use of single HA or rhEGF in reliving osteoarthritis and demonstrate the therapeutic application of microencapsulation technology in difficult joint disorders. In essence, we believe that the Me-rhEGF could be promising for further research and development as a clinical treatment against osteoarthritis.
Collapse
|
8
|
Hsu CY, Lin YS, Weng WC, Panny L, Chen HL, Tung MC, Ou YC, Lin CC, Yang CH. Phloretin Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by Regulating the Inflammatory Response, Oxidative Stress and Apoptosis. Life (Basel) 2021; 11:life11080743. [PMID: 34440487 PMCID: PMC8399389 DOI: 10.3390/life11080743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
The inflammatory process is proposed to be one of the factors to benign prostatic enlargement (BPH), and this is the first study examining the anti-inflammatory ability of phloretin in treating rats with testosterone-induced BPH. BPH would be induced by testosterone (10 mg/kg/day testosterone subcutaneously for 28 days), and the other groups of rats were treated with phloretin 50 mg/kg/day or 100 mg/kg/day orally (phr50 or phr100 group) after induction. Prostate weight and prostate weight to body weight ratio were significantly reduced in the Phr100 group. Reduced dihydrotestosterone without interfering with 5α-reductase was observed in the phr100 group. In inflammatory proteins, reduced IL-6, IL-8, IL-17, NF-κB, and COX-2 were seen in the phr100 group. In reactive oxygen species, malondialdehyde was reduced, and superoxide dismutase and glutathione peroxidase were elevated in the phr100 group. In apoptotic assessment, elevated cleaved caspase-3 was observed in rats of the phr100 group. Enhanced pro-apoptotic Bax and reduced anti-apoptotic Bc1-2 could be seen in the phr100 group. In histological stains, markedly decreased glandular hyperplasia and proliferative cell nuclear antigen were observed with reduced expression in the phr100 group. Meanwhile, positive cells of terminal deoxynucleotidyl transferase dUTP nick end labeling were increased in the phr100 group. In conclusion, the treatment of phloretin 100 mg/kg/day could ameliorate testosterone-induced BPH.
Collapse
Affiliation(s)
- Chao Yu Hsu
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (C.Y.H.); (Y.S.L.); (W.C.W.); (H.L.C.); (M.C.T.)
- PhD Program in Translational Medicine, Rong Hsing Research Center for Transitional Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi Sheng Lin
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (C.Y.H.); (Y.S.L.); (W.C.W.); (H.L.C.); (M.C.T.)
| | - Wei Chun Weng
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (C.Y.H.); (Y.S.L.); (W.C.W.); (H.L.C.); (M.C.T.)
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Hsiang Lai Chen
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (C.Y.H.); (Y.S.L.); (W.C.W.); (H.L.C.); (M.C.T.)
- PhD Program in Translational Medicine, Rong Hsing Research Center for Transitional Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Min Che Tung
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (C.Y.H.); (Y.S.L.); (W.C.W.); (H.L.C.); (M.C.T.)
| | - Yen Chuan Ou
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (C.Y.H.); (Y.S.L.); (W.C.W.); (H.L.C.); (M.C.T.)
- Correspondence: (Y.C.O.); (C.C.L.); (C.H.Y.)
| | - Chi Chien Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (Y.C.O.); (C.C.L.); (C.H.Y.)
| | - Che Hsueh Yang
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (C.Y.H.); (Y.S.L.); (W.C.W.); (H.L.C.); (M.C.T.)
- Correspondence: (Y.C.O.); (C.C.L.); (C.H.Y.)
| |
Collapse
|
9
|
Phloretin suppresses neuroinflammation by autophagy-mediated Nrf2 activation in macrophages. J Neuroinflammation 2021; 18:148. [PMID: 34218792 PMCID: PMC8254976 DOI: 10.1186/s12974-021-02194-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. Methods Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2–related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. Results We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5′ AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. Conclusions This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS. Trial registration Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02194-z.
Collapse
|
10
|
Pai FT, Lu CY, Lin CH, Wang J, Huang MC, Liu CT, Song YC, Ku CL, Yen HR. Psoralea corylifolia L. Ameliorates Collagen-Induced Arthritis by Reducing Proinflammatory Cytokines and Upregulating Myeloid-Derived Suppressor Cells. Life (Basel) 2021; 11:life11060587. [PMID: 34205531 PMCID: PMC8235662 DOI: 10.3390/life11060587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Rheumatoid arthritis is an autoimmune disease that may lead to severe complications. The fruit of Psoralea corylifolia L. (PCL) is widely used in traditional Chinese medicine as a well-known herbal treatment for orthopedic diseases. However, there is a lack of studies of its effects on rheumatoid arthritis. The purpose of the study was to investigate the effects and mechanisms of concentrated herbal granules of PCL on rheumatoid arthritis to provide some insights for future development of new drug for the treatment of rheumatoid arthritis. Methods: We used collagen-induced arthritis (CIA) DBA/1J mice as an experimental model to mimic human rheumatoid arthritis. The mice were immunized with collagen on days 0 and 21 and then orally administered 200 mg/kg/day PCL on days 22–49. Starch was used as a control. The mice were sacrificed on day 50. Clinical phenotypes, joint histopathology, and immunological profiles were measured. Results: Compared to the CIA or CIA + Starch group, the CIA + PCL group had significantly ameliorated clinical severity and decreased paw swelling. Histopathological analysis of the hind paws showed that PCL mitigated the erosion of cartilage and the proliferation of synovial tissues. There were significant differences in the levels of TNF-α, IL-6 and IL-17A, as measured by ELISA, and the percentages of CD4 + IL-17A+, CD4 + TNF-α+, CD4 + IFN-γ+ T cells. Furthermore, we also found that in mice treated with CIA + PCL, the percentage and number of bone marrow-derived suppressor cells (MDSCs; Gr1+ CD11b+) increased significantly. Conclusions: We provided evidence for the potential antiarthritic effects of PCL through the inhibition of inflammation and increase of MDSCs. These findings indicate that PCL may be a promising therapeutic herb for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Fu-Tzu Pai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan; (C.-H.L.); (C.-T.L.); (Y.-C.S.)
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Chia-Hsin Lin
- Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan; (C.-H.L.); (C.-T.L.); (Y.-C.S.)
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
| | - John Wang
- Department of Pathology, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ming-Cheng Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chuan-Teng Liu
- Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan; (C.-H.L.); (C.-T.L.); (Y.-C.S.)
| | - Ying-Chyi Song
- Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan; (C.-H.L.); (C.-T.L.); (Y.-C.S.)
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Lung Ku
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: (C.-L.K.); (H.-R.Y.); Tel.: +886-3-211-8800 (ext. 3496) (C.-L.K.); +886-4-2205-3366 (ext. 3313) (H.-R.Y.)
| | - Hung-Rong Yen
- Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan; (C.-H.L.); (C.-T.L.); (Y.-C.S.)
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Correspondence: (C.-L.K.); (H.-R.Y.); Tel.: +886-3-211-8800 (ext. 3496) (C.-L.K.); +886-4-2205-3366 (ext. 3313) (H.-R.Y.)
| |
Collapse
|
11
|
Wu CS, Lin SC, Li S, Chiang YC, Bracci N, Lehman CW, Tang KT, Lin CC. Phloretin alleviates dinitrochlorobenzene-induced dermatitis in BALB/c mice. Int J Immunopathol Pharmacol 2021; 34:2058738420929442. [PMID: 32571120 PMCID: PMC7313336 DOI: 10.1177/2058738420929442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease of the skin that substantially affects a patient's quality of life. While steroids are the most common therapy used to temporally alleviate the symptoms of AD, effective and nontoxic alternatives are urgently needed. In this study, we utilized a natural, plant-derived phenolic compound, phloretin, to treat allergic contact dermatitis (ACD) on the dorsal skin of mice. In addition, the effectiveness of phloretin was evaluated using a mouse model of ACD triggered by 2,4-dinitrochlorobenzene (DNCB). In our experimental setting, phloretin was orally administered to BALB/c mice for 21 consecutive days, and then, the lesions were examined histologically. Our data revealed that phloretin reduced the process of epidermal thickening and decreased the infiltration of mast cells into the lesion regions, subsequently reducing the levels of histamine and the pro-inflammatory cytokines interleukin (IL)-6, IL-4, thymic stromal lymphopoietin (TSLP), interferon-γ (IFN-γ) and IL-17A in the serum. These changes were associated with lower serum levels after phloretin treatment. In addition, we observed that the mitogen-activated protein kinase (MAPK) and NF-κB pathways in the dermal tissues of the phloretin-treated rodents were suppressed compared to those in the AD-like skin regions. Furthermore, phloretin appeared to limit the overproliferation of splenocytes in response to DNCB stimulation, reducing the number of IFN-γ-, IL-4-, and IL-17A-producing CD4+ T cells in the spleen back to their normal ranges. Taken together, we discovered a new therapeutic role of phloretin using a mouse model of DNCB-induced ACD, as shown by the alleviated AD-like symptoms and the reversed immunopathological effects. Therefore, we believe that phloretin has the potential to be utilized as an alternative therapeutic agent for treating AD.
Collapse
Affiliation(s)
- Chieh-Shan Wu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Shiming Li
- Hubei Key Laboratory for Processing & Application of Catalytic Materials, College of Chemistry & Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Yu-Chih Chiang
- Department of Restaurant, Hotel and Institutional Management, College of Human Ecology, Fu Jen Catholic University, New Taipei City
| | - Nicole Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Caitlin W Lehman
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung
| | - Chi-Chien Lin
- Department of Life Sciences, Institute of Biomedical Sciences, The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung.,Department of Medical Research, China Medical University Hospital, Taichung.,Department of Medical Research, Taichung Veterans General Hospital, Taichung
| |
Collapse
|
12
|
Chiang CC, Li YR, Lai KH, Cheng WJ, Lin SC, Wang YH, Chen PJ, Yang SH, Lin CC, Hwang TL. Aqueous Extract of Kan-Lu-Hsiao-Tu-Tan Ameliorates Collagen-Induced Arthritis in Mice by Inhibiting Oxidative Stress and Inflammatory Responses. Life (Basel) 2020; 10:life10120313. [PMID: 33260891 PMCID: PMC7760413 DOI: 10.3390/life10120313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Kan-Lu-Hsiao-Tu-Tan (KLHTT) exhibits anti-psoriatic effects through anti-inflammatory activity in mice. However, the therapeutic effects of KLHTT on rheumatoid arthritis (RA), another significant autoimmune inflammatory disorder, have not been elucidated. Herein, we explored the anti-arthritic effects of KLHTT on collagen-induced arthritis (CIA) in mice. Methods: KLHTT was extracted by boiling water and subjected to spectroscopic analysis. Chicken collagen type II (CII) with complete Freund’s adjuvant was intradermally injected to induce CIA in DBA/1J mice. Anti-CII antibody, cytokines, malondialdehyde (MDA), and hydrogen peroxide (H2O2) were measured using ELISA, thiobarbituric acid reactive substances, and a hydrogen peroxide assay kit. Splenocyte proliferation was tested using thymidine incorporation. Th1 and Th17 cells were analyzed by flow cytometry. Results: Oral KLHTT treatment (50 and 100 mg/kg) ameliorated mouse CIA by decreasing the levels of interleukin (IL)-1β, IL-6, IL-17A, and tumour necrosis factor-α in the paw homogenates and serum. KLHTT also suppressed anti-CII antibody formation, splenocyte proliferation, and splenic Th1 and Th17 cell numbers. Additionally, KLHTT showed antioxidant activity by reducing the concentrations of MDA and H2O2 in paw tissues. Conclusions: The therapeutic effects of KLHTT in CIA mice were through regulating oxidative stress and inflammatory responses. Our results suggest that KLHTT has potential to treat RA.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; or or
- Puxin Fengze Chinese Medicine Clinic, Taoyuan 326, Taiwan
| | - Yi-Rong Li
- Changhua Christian Hospital, Thoracic Medicine Research Center, Changhua 500, Taiwan; or
| | - Kuei-Hung Lai
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; or
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; or or
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; or
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung 433, Taiwan; or
| | - Sien-Hung Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; or or
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (S.-H.Y.); (C.-C.L.); (T.-L.H.)
| | - Chi-Chien Lin
- Institute of Biomedical Science, College of Life Sciences, National Chung-Hsing University, 250 Guoguang Road, Taichung 402, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: (S.-H.Y.); (C.-C.L.); (T.-L.H.)
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; or
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; or
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
- Correspondence: (S.-H.Y.); (C.-C.L.); (T.-L.H.)
| |
Collapse
|
13
|
Shang A, Liu HY, Luo M, Xia Y, Yang X, Li HY, Wu DT, Sun Q, Geng F, Li HB, Gan RY. Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Crit Rev Food Sci Nutr 2020; 62:917-934. [DOI: 10.1080/10408398.2020.1830363] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ao Shang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hong-Yan Liu
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yu Xia
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiao Yang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
14
|
Mariadoss AVA, Vinyagam R, Rajamanickam V, Sankaran V, Venkatesan S, David E. Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review. Mini Rev Med Chem 2019; 19:1060-1067. [PMID: 30864525 DOI: 10.2174/1389557519666190311154425] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/18/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022]
Abstract
Over the past two decades, many researchers have concluded that a diet rich in polyphenolic compounds plays an important therapeutic role in reducing the risk of cancer, cardiovascular disease, inflammation, diabetes, and other degenerative diseases. Polyphenolic compounds have been reported to be involved in neutralization of reactive oxygen species and charged radicals, and have anticarcinogenic effects, hepatoprotective effects, low-glycaemic response, and other benefits. The benefits of fruits and vegetables may be partly attributable to polyphenolic compounds, which have antioxidant and free radical scavenging properties. Fruits such as apples contain a variety of phytochemicals, including (+)-catechin and (-)-epicatechin, phlorizin, phloretin quercetin, cyanidin-3-Ogalactoside, chlorogenic acid, and p-coumaric acid, all of which are strong antioxidants. Phloretin, a natural phenolic compound, is a dihydrochalcone, which is present in the apple. It exhibits a wide variety of activities such as antioxidative, anti-inflammatory, anti-microbial, anti-allergic, anticarcinogenic, anti-thrombotic, and hepatoprotective, besides being involved in the activation of apoptotic associated gene expression and signal transduction in molecular pathways. Despite a multitude of clinical studies, new efforts are needed in clinical research to determine the complete therapeutic potential of phloretin.
Collapse
Affiliation(s)
- Arokia V A Mariadoss
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ramachandran Vinyagam
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Vijayalakshmi Sankaran
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Sathish Venkatesan
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| |
Collapse
|
15
|
Takeno A, Kanazawa I, Tanaka KI, Notsu M, Sugimoto T. Phloretin Suppresses Bone Morphogenetic Protein-2-Induced Osteoblastogenesis and Mineralization via Inhibition of Phosphatidylinositol 3-kinases/Akt Pathway. Int J Mol Sci 2019; 20:ijms20102481. [PMID: 31137461 PMCID: PMC6566987 DOI: 10.3390/ijms20102481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Phloretin has pleiotropic effects, including glucose transporter (GLUT) inhibition. We previously showed that phloretin promoted adipogenesis of bone marrow stromal cell (BMSC) line ST2 independently of GLUT1 inhibition. This study investigated the effect of phloretin on osteoblastogenesis of ST2 cells and osteoblastic MC3T3-E1 cells. Treatment with 10 to 100 µM phloretin suppressed mineralization and expression of osteoblast differentiation markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), type 1 collagen, runt-related transcription factor 2 (Runx2), and osterix (Osx), while increased adipogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid-binding protein 4, and adiponectin. Phloretin also inhibited mineralization and decreased osteoblast differentiation markers of MC3T3-E1 cells. Phloretin suppressed phosphorylation of Akt in ST2 cells. In addition, treatment with a phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor, LY294002, suppressed the mineralization and the expression of osteoblast differentiation markers other than ALP. GLUT1 silencing by siRNA did not affect mineralization, although it decreased the expression of OCN and increased the expression of ALP, Runx2, and Osx. The effects of GLUT1 silencing on osteoblast differentiation markers and mineralization were inconsistent with those of phloretin. Taken together, these findings suggest that phloretin suppressed osteoblastogenesis of ST2 and MC3T3-E1 cells by inhibiting the PI3K/Akt pathway, suggesting that the effects of phloretin may not be associated with glucose uptake inhibition.
Collapse
Affiliation(s)
- Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
16
|
Phloretin as a Potent Natural TLR2/1 Inhibitor Suppresses TLR2-Induced Inflammation. Nutrients 2018; 10:nu10070868. [PMID: 29976865 PMCID: PMC6073418 DOI: 10.3390/nu10070868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptor 2 (TLR2) responses are involved in various inflammatory immune disorders. Phloretin is a naturally occurring dietary flavonoid that is abundant in fruit. Here, we investigated whether the anti-inflammatory activity of phloretin is mediated through TLR2 pathways, and whether phloretin acts as an inhibitor of TLR2/1 heterodimerization using the TLR2/1 agonist Pam3CSK4. We tested the effects of phloretin on tumor necrosis factor (TNF)-α production induced by various TLRs using known TLR-specific agonists. Phloretin significantly inhibited Pam3CSK4-induced TRL2/1 signaling in Raw264.7 cells compared to TLR signaling induced by the other agonists tested. Therefore, we further tested the effects of phloretin in human embryonic kidney (HEK) 293-hTLR2 cells induced by Pam3CSK4, and confirmed that phloretin has comparable inhibition of TLR2/1 heterodimerization to that induced by the known TLR2 inhibitor CU-CPT22. Moreover, phloretin reduced the secretion of the inflammatory cytokines TNF-α and interleukin (IL)-8 in Pam3CSK4-induced HEK293-hTLR2 cells, whereas it did not significantly reduce these cytokines under Pam2CSK4-induced activation. Western blot results showed that phloretin significantly suppressed Pam3CSK4-induced TLR2 and NF-κB p65 expression. The molecular interactions between phloretin and TLR2 were investigated using bio-layer interferometry and in silico docking. Phloretin bound to TLR2 with micromolar binding affinity, and we proposed a binding model of phloretin at the TLR2–TLR1 interface. Overall, we confirmed that phloretin inhibits the heterodimerization of TLR2/1, highlighting TLR2 signaling as a therapeutic target for treating TLR2-mediated inflammatory immune diseases.
Collapse
|
17
|
Phloretin Promotes Adipogenesis via Mitogen-Activated Protein Kinase Pathways in Mouse Marrow Stromal ST2 Cells. Int J Mol Sci 2018; 19:ijms19061772. [PMID: 29904032 PMCID: PMC6032296 DOI: 10.3390/ijms19061772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Phloretin, a glucose transporter (GLUT) inhibitor, has pleiotropic effects. The present study examined the effects of phloretin on the commitment of marrow stromal cells to adipocytes, using the mouse marrow stromal cell line ST2. Oil red O staining showed that treatment with phloretin 10–100 µM promoted lipid accumulation. Real-time PCR showed that phloretin significantly increased the expression of adipogenic markers, including PPARγ, C/EBPα, fatty acid synthase, fatty acid-binding protein 4, and adiponectin. Western blotting showed that phloretin inhibited ERK1/2 and JNK but activated p38 MAPK. Treatment with a MAPK/ERK kinase inhibitor and a JNK inhibitor enhanced adipogenesis, similar to phloretin. In contrast, a p38 MAPK inhibitor suppressed phloretin-induced adipogenesis. Although phloretin phosphorylated AMP-activated protein kinase (AMPK), co-incubation with an AMPK inhibitor did not block phloretin-induced adipogenesis. The 2-deoxyglucose colorimetric assay showed that phloretin and siRNA silencing of GLUT1 decreased glucose uptake. However, unlike phloretin treatment, GLUT1 silencing inhibited adipogenesis. In addition, phloretin enhanced adipogenesis in GLUT1 knocked-down cells. Taken together, phloretin induced adipogenesis of marrow stromal cells by inhibiting ERK1/2 and JNK and by activating p38 MAPK. The adipogenic effects of phloretin were independent of glucose uptake inhibition. Phloretin may affect energy metabolism by influencing adipogenesis and adiponectin expression.
Collapse
|
18
|
Sujitha S, Rasool M. MicroRNAs and bioactive compounds on TLR/MAPK signaling in rheumatoid arthritis. Clin Chim Acta 2017; 473:106-115. [DOI: 10.1016/j.cca.2017.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 12/17/2022]
|
19
|
Dextromethorphan Exhibits Anti-inflammatory and Immunomodulatory Effects in a Murine Model of Collagen-Induced Arthritis and in Human Rheumatoid Arthritis. Sci Rep 2017; 7:11353. [PMID: 28900117 PMCID: PMC5595833 DOI: 10.1038/s41598-017-11378-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/23/2017] [Indexed: 01/04/2023] Open
Abstract
Dextromethorphan (d-3-methoxy-17-methylmorphinan, DXM) is a commonly used antitussive with a favorable safety profile. Previous studies have demonstrated that DXM has anti-inflammatory and immunomodulatory properties; however, the effect of DXM in rheumatoid arthritis (RA) remains unknown. Herein, we found that DXM treatment attenuated arthritis severity and proinflammatory cytokine expression levels, including TNF-α, IL-6, and IL-17A, in paw tissues of CIA mice. DXM treatment also reduced serum TNF-α, IL-6, and IL-17A levels of CIA mice and patients with RA. DXM further decreased the production of anti-CII IgG, IFN-γ, and IL-17A in collagen-reactive CD4+ T cells extracted from the lymph nodes of CIA mice. In vitro incubation of bone marrow–derived dendritic cells with DXM limited CD4+ T-cell proliferation and inflammatory cytokine secretion. In conclusion, our results showed that DXM attenuated arthritis symptoms in CIA mice and significantly reduced proinflammatory cytokines in patients with RA, suggesting that it can be used as an anti-arthritic agent.
Collapse
|