1
|
Li F, Wang W, Zhai Y, Fan J, Jiang Q, Zhang T. Simultaneous quantification of icaritin and its novel 3-methylcarbamate prodrug in rat plasma using HPLC-MS/MS and its application to pharmacokinetic study. Biomed Chromatogr 2024; 38:e5976. [PMID: 39126342 DOI: 10.1002/bmc.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
A sensitive, rapid, and simple HPLC-MS/MS method was first developed and fully validated to determine the icaritin (ICT) and its novel 3-methylcarbamate prodrug (3N) simultaneously in rat plasma. Analytes were extracted from rat plasma using a liquid-liquid extraction (LLE) method. Chromatographic separation was performed on ACE Excel 2 C18-Amide column. Quantitation of analytes was conducted on an LCMS-8060 triple-quadrupole tandem mass spectrometer. The quantitation mode was the multiple reaction monitoring via positive electrospray ionization. The calibration curve was linear over the concentration range of 1 to 200 ng/ml for ICT with a correlation coefficient of r = 0.9950 and 1 to 400 ng/ml for 3N with a correlation coefficient of r = 0.9956. The intra-precision RSDs were ≤12% for ICT and 3N. The inter-day precision RSDs were ≤10% for ICT and 3N. The accuracy RE was between -2.6% and 7.8% for ICT and 3N. The average ICT, 3N and IS recoveries were 87.9%, 83.6%, and 84.3%. The plasma matrix of ICT and 3N complied with the guidelines. ICT and 3N were stable in rat plasma under various tested conditions. This work has been successfully applied to studying the pharmacokinetics of ICT and 3N.
Collapse
Affiliation(s)
- Fengxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixiu Zhai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaqi Fan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
2
|
Ma Y, Zhao C, Hu H, Yin S. Liver protecting effects and molecular mechanisms of icariin and its metabolites. PHYTOCHEMISTRY 2023; 215:113841. [PMID: 37660725 DOI: 10.1016/j.phytochem.2023.113841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
As a detoxification and metabolism organ, the liver plays a vital role in human health. However, an excessive consumption of drugs and toxins, exposure to pathogenic viruses, and unhealthy living habits can lead to liver damage, which may even develop into liver cirrhosis and liver cancer. Epimedium brevicornum Maxim. is a traditional Chinese medicine and dietary supplement in which the flavonoid icariin is a main functional component. Although the protective mechanisms of icariin and its metabolites against liver injury are not yet comprehensively understood, an increasing number of studies have confirmed their liver-protective and anticancer effects. Indeed, icaritin, one of the metabolites of icariin, is currently utilized as an active component of an anti-cancer drug. This paper presents a review of the molecular mechanisms through which icariin and its metabolites actively protect against the occurrence and development of liver injury, and, thus, provides a comprehensive reference for further research and their application in liver protection.
Collapse
Affiliation(s)
- Yurong Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Bi Z, Zhang W, Yan X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed Pharmacother 2022; 151:113180. [PMID: 35676785 DOI: 10.1016/j.biopha.2022.113180] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
Inflammation and immunity dysregulation have received widespread attention in recent years due to their occurrence in the pathophysiology of many conditions. In this regard, several pharmacological studies have been conducted aiming to evaluate the potential anti-inflammatory and immunomodulatory effects of phytochemicals. Epimedium, a traditional Chinese medicine, is often used as a tonic, aphrodisiac, and anti-rheumatic agent. Icariin (ICA) is the main active ingredient of Epimedium and is, once ingested, mainly metabolized into Icaritin (ICT). Data from in vitro and in vivo studies suggested that ICA and its metabolite (ICT) regulated the functions and activation of immune cells, modulated the release of inflammatory factors, and restored aberrant signaling pathways. ICA and ICT were also involved in anti-inflammatory and immune responses in several diseases, including multiple sclerosis, asthma, atherosclerosis, lupus nephritis, inflammatory bowel diseases, rheumatoid arthritis, and cancer. Yet, data showed that ICA and ICT exhibited similar but not identical pharmacokinetic properties. Therefore, based on their higher solubility and bioavailability, as well as trends indicating that single-ingredient compounds offer broader and safer therapeutic capabilities, ICA and ICT delivery systems and treatment represent interesting avenues with promising clinical applications. In this study, we reviewed the anti-inflammatory and immunomodulatory mechanisms, as well as the pharmacokinetic properties of ICA and its metabolite ICT.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyan Yan
- Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Gao L, Zhang SQ. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals (Basel) 2022; 15:397. [PMID: 35455393 PMCID: PMC9032325 DOI: 10.3390/ph15040397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic skeletal disorder affecting over 200 million people worldwide and contributes dramatically to global healthcare costs. Available anti-osteoporotic drug treatments including hormone replacement therapy, anabolic agents, and bisphosphonates often cause adverse events which limit their long-term use. Therefore, the application of natural products has been proposed as an alternative therapy strategy. Icaritin (ICT) is not only an enzyme-hydrolyzed product of icariin but also an intestinal metabolite of eight major flavonoids of the traditional Chinese medicinal plant Epimedium with extensive pharmacological activities, such as strengthening the kidney and reinforcing the bone. ICT displays several therapeutic effects, including osteoporosis prevention, neuroprotection, antitumor, cardiovascular protection, anti-inflammation, and immune-protective effect. ICT inhibits bone resorption activity of osteoclasts and stimulates osteogenic differentiation and maturation of bone marrow stromal progenitor cells and osteoblasts. As for the mechanisms of effect, ICT regulates relative activities of two transcription factors Runx2 and PPARγ, determines the differentiation of MSCs into osteoblasts, increases mRNA expression of OPG, and inhibits mRNA expression of RANKL. Poor water solubility, high lipophilicity, and unfavorable pharmacokinetic properties of ICT restrict its anti-osteoporotic effects, and novel drug delivery systems are explored to overcome intrinsic limitations of ICT. The paper focuses on osteogenic effects and mechanisms, pharmacokinetics and delivery systems of ICT, and highlights bone-targeting strategies to concentrate ICT on the ideal specific site of bone. ICT is a promising potential novel therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Lifang Gao
- School of Public Health, Capital Medical University, 10 Youanmenwai Xitiao, Beijing 100069, China;
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| |
Collapse
|
5
|
Mbachu OC, Howell C, Simmler C, Garcia GRM, Skowron KJ, Dong H, Ellis SG, Hitzman RT, Hajirahimkhan A, Chen SN, Nikolic D, Moore TW, Vollmer G, Pauli GF, Bolton JL, Dietz BM. SAR Study on Estrogen Receptor α/β Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10651-10663. [PMID: 32945668 PMCID: PMC8294944 DOI: 10.1021/acs.jafc.0c03526] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many botanicals used for women's health contain estrogenic (iso)flavonoids. The literature suggests that estrogen receptor beta (ERβ) activity can counterbalance estrogen receptor alpha (ERα)-mediated proliferation, thus providing a better safety profile. A structure-activity relationship study of (iso)flavonoids was conducted to identify ERβ-preferential structures, overall estrogenic activity, and ER subtype estrogenic activity of botanicals containing these (iso)flavonoids. Results showed that flavonoids with prenylation on C8 position increased estrogenic activity. C8-prenylated flavonoids with C2-C3 unsaturation resulted in increased ERβ potency and selectivity [e.g., 8-prenylapigenin (8-PA), EC50 (ERβ): 0.0035 ± 0.00040 μM], whereas 4'-methoxy or C3 hydroxy groups reduced activity [e.g., icaritin, EC50 (ERβ): 1.7 ± 0.70 μM]. However, nonprenylated and C2-C3 unsaturated isoflavonoids showed increased ERβ estrogenic activity [e.g., genistein, EC50 (ERβ): 0.0022 ± 0.0004 μM]. Licorice (Glycyrrhiza inflata, [EC50 (ERα): 1.1 ± 0.20; (ERβ): 0.60 ± 0.20 μg/mL], containing 8-PA, and red clover [EC50 (ERα): 1.8 ± 0.20; (ERβ): 0.45 ± 0.10 μg/mL], with genistein, showed ERβ-preferential activity as opposed to hops [EC50 (ERα): 0.030 ± 0.010; (ERβ): 0.50 ± 0.050 μg/mL] and Epimedium sagittatum [EC50 (ERα): 3.2 ± 0.20; (ERβ): 2.5 ± 0.090 μg/mL], containing 8-prenylnaringenin and icaritin, respectively. Botanicals with ERβ-preferential flavonoids could plausibly contribute to ERβ-protective benefits in menopausal women.
Collapse
Affiliation(s)
- Obinna C. Mbachu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Caitlin Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Gonzalo R. Malca Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Kornelia J. Skowron
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Sarah G. Ellis
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Ryan T. Hitzman
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Terry W. Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612-7231, United States
| | - Günter Vollmer
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Molecular Cell Physiology and Endocrinology, Faculty of Biology, Dresden University of Technology, 01217 Dresden, Germany
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| |
Collapse
|
6
|
Feng X, Li Y, Guang C, Qiao M, Wang T, Chai L, Qiu F. Characterization of the In Vivo and In Vitro Metabolites of Linarin in Rat Biosamples and Intestinal Flora Using Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. Molecules 2018; 23:E2140. [PMID: 30149616 PMCID: PMC6225362 DOI: 10.3390/molecules23092140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
Linarin, a flavone glycoside, is considered to be a promising natural product due to its diverse pharmacological activities, including analgesic, antipyretic, anti-inflammatory and hepatoprotective activities. In this research, the metabolites of linarin in rat intestinal flora and biosamples were characterized using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS). Three ring cleavage metabolites (4-hydroxybenzoic acid, 4-hydroxy benzaldehyde and phloroglucinol) were detected after linarin was incubated with rat intestinal flora. A total of 17 metabolites, including one ring cleavage metabolite (phloroglucinol), were identified in rat biosamples after oral administration of linarin. These results indicate that linarin was able to undergo ring fission metabolism in intestinal flora and that hydrolysis, demethylation, glucuronidation, sulfation, glycosylation, methylation and ring cleavage were the major metabolic pathways. This study provides scientific support for the understanding of the metabolism of linarin and contributes to the further development of linarin as a drug candidate.
Collapse
Affiliation(s)
- Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Chenxi Guang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Miao Qiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Tong Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Liwei Chai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|