1
|
Xu H, Wang T, Yang Y. BPIFA1 inhibits periodontitis by regulating the NF-κB/IκB signaling pathway and macrophage M1/M2 polarization. Arch Oral Biol 2025; 173:106190. [PMID: 39970751 DOI: 10.1016/j.archoralbio.2025.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease characterized by tissue destruction and oxidative stress, primarily driven by the imbalance of immune responses. Bactericidal/permeability-increasing fold-containing family A member 1 (BPIFA1) has emerged as a key modulator of inflammation and immune homeostasis. OBJECTIVES This study investigates the role of BPIFA1 in periodontitis by focusing on its regulatory effects on the NF-κB/IκB signaling pathway and macrophage M1/M2 polarization. METHODS Saliva and periodontal tissue samples were collected from 20 periodontitis patients and 20 healthy volunteers. BPIFA1 expression was analyzed using qRT-PCR and Western blot. In vivo studies were conducted in wild-type and BPIFA1-knockout (KO) mice, where periodontitis was induced via ligature placement and LPS injections. Oxidative stress markers (ROS, MDA, SOD), inflammatory cytokines (TNF-α, IL-6), and macrophage polarization markers (iNOS, CD86, Arg-1, CD206) were quantified. NF-κB pathway activation was assessed through Western blot analysis. RESULTS BPIFA1 expression was significantly reduced in periodontitis patients and BPIFA1-KO mice. Loss of BPIFA1 resulted in increased oxidative stress, heightened NF-κB activation, and an imbalance in macrophage polarization, with increased M1 (pro-inflammatory) and decreased M2 (anti-inflammatory) macrophages. Additionally, BPIFA1 deficiency promoted Th17 differentiation and suppressed Treg cells, exacerbating periodontal inflammation. CONCLUSION BPIFA1 plays a critical role in inhibiting periodontitis progression by regulating the NF-κB/IκB signaling pathway and restoring macrophage M1/M2 balance. These findings highlight BPIFA1 as a potential therapeutic target for periodontitis management.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of Stomatology, Shaanxi Provincial People's Hospital, China
| | - Tao Wang
- Department of Stomatology, Shaanxi Provincial People's Hospital, China
| | - Ying Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, China.
| |
Collapse
|
2
|
Chen YY, Tan L, Su XL, Chen NX, Liu Q, Feng YZ, Guo Y. NOD2 contributes to Parvimonas micra-induced bone resorption in diabetic rats with experimental periodontitis. Mol Oral Microbiol 2024; 39:446-460. [PMID: 38757737 DOI: 10.1111/omi.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) may affect the oral microbial community, exacerbating periodontal inflammation; however, its pathogenic mechanisms remain unclear. As nucleotide-binding oligomerization domain 2 (NOD2) plays a crucial role in the activation during periodontitis (PD), it is hypothesized that changes in the oral microbial community due to diabetes enhance periodontal inflammation through the activation of NOD2. METHODS We collected subgingival plaque from 180 subjects who were categorized into two groups based on the presence or absence of T2DM. The composition of oral microbiota was detected by 16S rRNA high-throughput sequencing. In animal models of PD with or without T2DM, we assessed alveolar bone resorption by micro-computerized tomography and used immunohistochemistry to detect NOD2 expression in alveolar bone. Primary osteoblasts were cultured in osteogenic induction medium with high or normal glucose and treated with inactivated bacteria. After 24 h of inactivated bacteria intervention, the osteogenic differentiation ability was detected by alkaline phosphatase (ALP) staining, and the expressions of NOD2 and interleukin-12 (IL-6) were detected by western blot. RESULTS The relative abundance of Parvimonas and Filifactor in the T2DM group was increased compared to the group without T2DM. In animal models, alveolar bone mass was decreased in PD, particularly in T2DM with PD (DMPD) group, compared to controls. Immunohistochemistry revealed NOD2 in osteoblasts from the alveolar bone in both the PD group and DMPD group, especially in the DMPD group. In vitro, intervention with inactivated Parvimonas significantly reduced ALP secretion of primary osteoblasts in high glucose medium, accompanied by increased expression of NOD2 and IL-6. CONCLUSIONS The results suggest that T2DM leading to PD may be associated with the activation of NOD2 by Parvimonas.
Collapse
MESH Headings
- Animals
- Nod2 Signaling Adaptor Protein/metabolism
- Periodontitis/microbiology
- Periodontitis/metabolism
- Rats
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/metabolism
- Alveolar Bone Loss/microbiology
- Alveolar Bone Loss/metabolism
- Male
- Osteoblasts/metabolism
- Humans
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/microbiology
- Interleukin-6/metabolism
- Female
- Disease Models, Animal
- Middle Aged
- Osteogenesis
- Rats, Sprague-Dawley
- X-Ray Microtomography
- RNA, Ribosomal, 16S
- Dental Plaque/microbiology
- Adult
- Interleukin-12/metabolism
Collapse
Affiliation(s)
- Ying-Yi Chen
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Stomatology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences(Qingdao Central Hospital), Qingdao, China
| | - Li Tan
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Lin Su
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ning-Xin Chen
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Liu
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Zhi Feng
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Jia SY, Zhang YL, Sun XY, Yuan C, Zheng SG. Impact of the Glycemic Level on the Salivary Proteome of Middle-Aged and Elderly People With Type 2 Diabetes Mellitus: An Observational Study. Front Mol Biosci 2021; 8:790091. [PMID: 34957219 PMCID: PMC8703016 DOI: 10.3389/fmolb.2021.790091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an increasing global public health concern, but its impact on the salivary proteome is still unclear. To evaluate the effect of glycemic levels in middle-aged and elderly individuals with T2DM on salivary proteomics, we compared the differences by liquid chromatography tandem mass spectrometry (LC–MS/MS). Unstimulated whole saliva samples from 8 T2DM patients with good glycemic control (G group, HbA1c <6.5%) and 16 patients with poor control (P group, HbA1c ≥6.5%) were analyzed by LC–MS/MS in the data-independent acquisition mode (Clinical register number: ChiCTR1900023582.). After functional annotation, cluster analysis and receiver operating characteristic (ROC) curve analysis were carried out to screen and evaluate candidate proteins. A total of 5,721 proteins were quantified, while 40 proteins differed significantly. In the P group, proteins involved in oxidative stress-related processes were upregulated, whereas proteins related to salivary secretion were downregulated. The combination of thioredoxin domain-containing protein 17, zymogen granule protein 16B, and FAM3 metabolism regulating signaling molecule D yielded an area under the curve of 0.917 which showed a robust ability to distinguish the P and G groups. In conclusion, poorly controlled hyperglycemia may affect salivary proteins through various pathways, including oxidative stress and glandular secretion. Furthermore, the differentially expressed proteins, especially the three proteins with the best differentiation, might serve as an anchor point for the further study of hyperglycemia and oral diseases.
Collapse
Affiliation(s)
- Shu Yuan Jia
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yan Ling Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Xiang Yu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Shu Guo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
4
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Lucena S, Coelho AV, Muñoz-Prieto A, Anjo SI, Manadas B, Capela E Silva F, Lamy E, Tvarijonaviciute A. Changes in the salivary proteome of beagle dogs after weight loss. Domest Anim Endocrinol 2020; 72:106474. [PMID: 32361424 DOI: 10.1016/j.domaniend.2020.106474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Being overweight or obese represents an important health issue in humans and pets. The aim of this study was to investigate changes in the salivary proteome of overweight beagles after induced weight loss to better understand the physiological changes involved in this process. Five overweight/obese neutered males of pure breed beagles were evaluated. During the 3-mo period of weight loss, each animal received a strictly controlled amount of a low fat commercial diet per day. Body condition scores (BCS), body weight (BW), and serum biochemical parameters (total cholesterol, triglycerides, and C-reactive protein) were assessed weekly. Quantitative proteomics analysis by SWATH was used to evaluate the salivary proteome changes induced by weight loss treatment. BCS, BW, serum total cholesterol concentration, and abundances of 23 salivary proteins differed significantly between before and after treatment. Some of the altered protein amounts, namely of peptidyl-prolyl cis-trans isomerase, fructose-bisphosphate aldolase C, and 78-kDa glucose-regulated protein, increased after weight loss. These proteins are related with the immune system, inflammatory status, oxidative stress, and glucose metabolism. The results obtained suggest a potential use of salivary proteins in monitoring physiological changes in dogs subjected to weight loss. Moreover, the type of changes identified reinforces the postulated physiological improvements, which weight loss induces. Further research is needed to determine whether the changes observed in this study are due to weight loss, dietary changes, or a combination of both.
Collapse
Affiliation(s)
- S Lucena
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal; Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Evora, Portugal
| | - A V Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - A Muñoz-Prieto
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - S I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - B Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - F Capela E Silva
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal; Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Evora, Portugal
| | - E Lamy
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal.
| | - A Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
6
|
Guo ZL, Gan SL, Cao CY, Fu R, Cao SP, Xie C, Chen JW, Gibson A, Zheng X, Teng NC. Advanced glycosylated end products restrain the osteogenic differentiation of the periodontal ligament stem cell. J Dent Sci 2019; 14:146-151. [PMID: 31210888 PMCID: PMC6562104 DOI: 10.1016/j.jds.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/06/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/PURPOSE Many studies have confirmed that periodontal disease interacts with diabetes. The aim of this study was to examine whether the advanced glycosylated end products (AGEs), which are generated by diabetics, have important effects on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS In this study PDLSCs were isolated from the periodontal ligaments of extracted third molar teeth. The subjects were divided into two groups, which included the normal control group (N-PDLSCs) and the AGEs-stimulating group (A-PDLSCs). Changes of receptor of AGEs (RAGE) and cumulative ROS in PDLSCs were monitored by western blot and flow cytometry, respectively. RESULTS In the study AGEs noticeably inhibited the osteogenic differentiation of PDLSCs, with significant lower calcification nodules detected in A-PDLSCs (P < 0.01). RAGE expression level and ROS accumulation in A-PDLSCs were clearly higher than those in N-PDLSCs (P < 0.01). CONCLUSION Our conclusions were that AGEs may cause the apoptosis of stem cells, which could lead to the disorder of bone differentiation function of PDLSCs.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Hainan, PR China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Hainan, PR China
| | - Shan-Ling Gan
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Chun-Yi Cao
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Rao Fu
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Sheng-Ping Cao
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Chen Xie
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Jing-Wei Chen
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Alex Gibson
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Xu Zheng
- School of Dentistry, Hainan Medical University, Hainan, PR China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Hainan, PR China
| | - Nai-chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taiwan
| |
Collapse
|
7
|
Tang X, You J, Liu D, Xia M, He L, Liu H. 5-Hydroxyhexanoic Acid Predicts Early Renal Functional Decline in Type 2 Diabetes Patients with Microalbuminuria. Kidney Blood Press Res 2019; 44:245-263. [DOI: 10.1159/000498962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/14/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. Microalbuminuria (MA) is widely used to predict early progressive renal function decline (ERFD) of DN in type 2 diabetes mellitus (T2D) patients, but the sensitivity and specificity of MA have been questioned. Here, we determined the urine metabolites differences between T2D patients with MA who maintained stable renal function and those who progressed to ERFD in order to identify specific biomarkers of the progression of renal dysfunction. Methods: A total of 102 T2D patients with MA and normal renal function at baseline were followed up for 5–6 years. Of these, 52 patients were selected and classified into two groups according to the later renal function; 25 patients who experienced ERFD were regarded as the progressive group, while 27 patients who maintained stable renal function were considered as the stable group. In the pilot study, untargeted, broad-spectrum urine metabolomics was performed on the urine of 12 subjects from the progressive group (5 patients as “progressors”) and stable group (7 patients as “non-progressors”) to discover candidate markers. We then used a targeted metabolomics analysis to identify the selected markers in the urine of an additional 40 patients (20 from the progressive group as cases, and 20 from the stable group as controls) in the validation study. Results: A total of 318 known metabolites were detected in the pilot study and 6 metabolites with significant difference between progressors and non-progressors were identified. The levels of 4 metabolites, including azelaic acid, adipic acid, 5-hydroxyhexanoic acid, and L-tryptophan decreased significantly, while levels of L-pyroglutamic acid and D-norvaline increased observably in the progressors compared with non-progressors. Furthermore, in the validation study, 6 metabolites were confirmed by quantitative measurements and their concentrations were consistent with the changes in the pilot study. Concentrations of L-pyroglutamic acid and D-norvaline still increased in the cases, but were not statistically significant. Of the 4 metabolites with decreased concentrations among the cases, only 5-hydroxyhexanoic acid remained statistically significant while the other 3 metabolites did not differ between cases and controls. Conclusion: We have identified urine metabolites and shown that 5-hydroxyhexanoic acid can be used as a predictor of progression of ERFD in T2D patients with MA. This finding provides the new perspective that 5-hydroxyhexanoic acid may be useful to identify T2D patients with MA who are at risk of ERFD.
Collapse
|