1
|
Hendrijantini N, Kuntjoro M, Agustono B, Maya Sitalaksmi R, Dimas Aditya Ari M, Theodora M, Effendi R, Setiawan Djuarsa I, Widjaja J, Sosiawan A, Hong G. Human umbilical cord mesenchymal stem cells induction in peri-implantitis Rattus norvegicus accelerates and enhances osteogenesis activity and implant osseointegration. Saudi Dent J 2023; 35:147-153. [PMID: 36942204 PMCID: PMC10024080 DOI: 10.1016/j.sdentj.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Peri-implantitis additional treatment generally aims to repair damaged tissue through a regenerative approach. Human umbilical cord mesenchymal stem cells (hUCMSCs) produce a high osteogenic effect and are capable of modulating the immune system by suppressing inflammatory response, modulating bone resorption, and inducing endogenous osteogenesis. AIM This study was intended to discover the effect of hUCMSCs on an implant osseointegration process in peri-implantitis rat subjects as assessed by several markers including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), receptor activator of nuclear factor kappa- β ligand (RANKL), bone morphogenic protein (BMP-2), osterix (Osx), and osteoprotegerin (OPG). MATERIAL AND METHODS The research design implemented during this study represented a true experimental design incorporating the use of Rattus norvegicus (Wistar strain) as subjects. RESULTS Data analysed by means of a Brown Forsythe test indicated differences between the increase in BMP-2 expression (p < 0.000) and Osx expression (p < 0.001) and between RANKL expression (p < 0.001, Tukey HSD) and OPG expression (p < 0.000, Games Howell). CONCLUSION According to the findings of this research, hUCMSCs induction is successful in accelerating and enhancing osteogenic activity and implant osseointegration in peri-implantitis rat subjects.
Collapse
Affiliation(s)
- Nike Hendrijantini
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author.
| | - Mefina Kuntjoro
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bambang Agustono
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratri Maya Sitalaksmi
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Dimas Aditya Ari
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Marcella Theodora
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rudy Effendi
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ivan Setiawan Djuarsa
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Jennifer Widjaja
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Agung Sosiawan
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Guang Hong
- Division for Globalization Initiative, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Chen H, Luo Y, Zhu Y, Ye Y, Chen D, Song X, Xiao Z, Liu M, Li S. Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats. Front Pharmacol 2023; 13:1070736. [PMID: 36726784 PMCID: PMC9885268 DOI: 10.3389/fphar.2022.1070736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) are a reportedly promising choice in the treatment of irreversible pulmonary fibrosis and lethal interstitial lung disease with limited drug treatment options. In this study, we investigated the therapeutic efficacy of UCMSCs overexpressing hepatocyte growth factor (HGF), which is considered one of the main anti-fibrotic factors secreted by MSCs. Adenovirus vector carrying the HGF gene was transfected into UCMSCs to produce HGF-modified UCMSCs (HGF-UCMSCs). Transfection promoted the proliferation of UCMSCs and did not change the morphology, and differentiation ability, or biomarkers. Rats were injected with HGF-UCMSCs on days 7 and 11 after intratracheal administration of bleomycin (10 mg/kg). We performed an analysis of histopathology and lung function to evaluate the anti-fibrotic effect. The results showed that HGF-UCMSCs decreased the Ashcroft scores in hematoxylin and eosin-stained sections, the percentage positive area in Masson trichrome-stained sections, and the hydroxyproline level in lungs. Forced expiratory volume in the first 300 m/forced vital capacity was also improved by HGF-UCMSCs. To explore the possible therapeutic mechanism of HGF-UCMSCs, we detected inflammatory factors in the lungs and performed mRNA sequencing in UCMSCs and HGF-UCMSCs. The data indicated that inhibition of interleukin-17 in the lung may be related to the anti-fibrosis of HGF-UCMSCs, and overexpressed HGF probably played a primary role in the treatment. Collectively, our study findings suggested that the overexpression of HGF may improve the anti-fibrotic effect of UCMSCs through directly or indirectly interacting with interleukin-17-producing cells in fibrotic lungs.
Collapse
Affiliation(s)
- Huanjie Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yulong Luo
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiping Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongshun Ye
- Huizhou Municipal Central Hospital, Guangzhou, Guangdong, China
| | - Difei Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhulin Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Ming Liu, ; Shiyue Li,
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Ming Liu, ; Shiyue Li,
| |
Collapse
|
3
|
Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience 2022; 25:105370. [PMID: 36339269 PMCID: PMC9626746 DOI: 10.1016/j.isci.2022.105370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to solve the clinical challenges related to bone grafting, several tissue engineering (TE) strategies have been proposed to repair critical-sized defects. Generally, the classical TE approaches are designed to promote bone repair via intramembranous ossification. Although promising, strategies that direct the osteogenic differentiation of mesenchymal stem/stromal cells are usually characterized by a lack of functional vascular supply, often resulting in necrotic cores. A less explored alternative is engineering bone constructs through a cartilage-mediated approach, resembling the embryological process of endochondral ossification. The remodeling of an intermediary hypertrophic cartilaginous template triggers vascular invasion and bone tissue deposition. Thus, employing this knowledge can be a promising direction for the next generation of bone TE constructs. This review highlights the most recent biomimetic strategies for applying endochondral ossification in bone TE while discussing the plethora of cell types, culture conditions, and biomaterials essential to promote a successful bone regeneration process.
Collapse
|
4
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
5
|
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells Int 2022; 2022:2454168. [PMID: 35035489 PMCID: PMC8758292 DOI: 10.1155/2022/2454168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.
Collapse
|
6
|
Zhao Z, Ma X, Zhao B, Tian P, Ma J, Kang J, Zhang Y, Guo Y, Sun L. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif 2021; 54:e13043. [PMID: 34008897 PMCID: PMC8249788 DOI: 10.1111/cpr.13043] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Large bone defects are a common, debilitating clinical condition that have substantial global health and economic burden. Bone tissue engineering technology has become one of the most promising approaches for regenerating defective bones. In this study, we fabricated a naringin-inlaid composite silk fibroin/hydroxyapatite (NG/SF/HAp) scaffold to repair bone defects. MATERIALS AND METHODS The salt-leaching technology was used to fabricate the NG/SF/HAp scaffold. The cytocompatibility of the NG/SF/HAp scaffold was assessed using scanning electron microscopy, live/dead cell staining and phalloidin staining. The osteogenic and angiogenic properties were assessed in vitro and in vivo. RESULTS The porous NG/SF/HAp scaffold had a well-designed biomimetic porous structure with osteoinductive and angiogenic activities. A gene microarray identified 854 differentially expressed genes between human umbilical cord-derived mesenchymal stem cells (hUCMSCs) cultured on SF-nHAp scaffolds and cells cultured on NG/SF/HAp scaffolds. The underlying osteoblastic mechanism was investigated using hUCMSCs in vitro. Naringin facilitated hUCMSC ingrowth into the SF/HAp scaffold and promoted osteogenic differentiation. The osteogenic and angiogenic capabilities of cells cultured in the NG/SF/HAp scaffold were superior to those of cells cultured in the SF/HAp scaffold. CONCLUSIONS The data indicate the potential of the SF/HAp composite scaffold incorporating naringin for bone regeneration.
Collapse
Affiliation(s)
- Zhi‐Hu Zhao
- Department of OrthopaedicsTianjin HospitalTianjinChina
| | - Xin‐Long Ma
- Department of OrthopaedicsTianjin HospitalTianjinChina
| | - Bin Zhao
- Department of OrthopaedicsTianjin HospitalTianjinChina
| | - Peng Tian
- Department of OrthopaedicsTianjin HospitalTianjinChina
| | - Jian‐Xiong Ma
- Tianjin Institute of Orthopedics in Traditional Chinese and Western MedicineTianjinChina
| | - Jia‐Yu Kang
- Department of OrthopedicsJinhua Municipal Central HospitalJinhuaZhejiang ProvinceChina
| | - Yang Zhang
- Tianjin Institute of Orthopedics in Traditional Chinese and Western MedicineTianjinChina
| | - Yue Guo
- Tianjin Institute of Orthopedics in Traditional Chinese and Western MedicineTianjinChina
| | - Lei Sun
- Tianjin Institute of Orthopedics in Traditional Chinese and Western MedicineTianjinChina
| |
Collapse
|
7
|
Sharma S, Jeyaraman M, Muthu S, Anudeep TC, Jeyaraman N, Shringeri AS, Kumar V, Somasundaram R, Jain R, Jha SK. A Step Toward Optimizing Regenerative Medicine Principle to Combat COVID-19. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1731597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractDrugs are currently not licensed in specific to pulverize COVID-19. On an emergency basis, vaccines were approved to prevent the further spread of COVID-19. This serves as a potential background for considering the optimization of biologics. In this context, evidence on convalescent plasma and stem cells has shown a beneficial role. Here, we have considered this as plausible therapy, and further hypothesize that their cocktails will synergistically boost the immunogenicity to relegate COVID-19. This warrants a large volume clinical trial on an emergent basis, because the sooner we establish a safe and effective cure, the better.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | | | | | | | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, Boruczkowski D, Madeja Z, Zuba-Surma E. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int J Mol Sci 2020; 21:ijms21176172. [PMID: 32859105 PMCID: PMC7504399 DOI: 10.3390/ijms21176172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.
Collapse
Affiliation(s)
- Anna Labedz-Maslowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Natalia Bryniarska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrzej Kubiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Krakow, Poland;
| | - Malgorzata Sekula-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Correspondence: ; Tel.: +48-12-664-61-80
| |
Collapse
|
10
|
Alghwiri AA, Jamali F, Aldughmi M, Khalil H, Al-Sharman A, Alhattab D, Al-Radaideh A, Awidi A. The effect of stem cell therapy and comprehensive physical therapy in motor and non-motor symptoms in patients with multiple sclerosis: A comparative study. Medicine (Baltimore) 2020; 99:e21646. [PMID: 32846775 PMCID: PMC7447403 DOI: 10.1097/md.0000000000021646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION People with multiple sclerosis (PwMS) experience a wide range of disabilities which negatively impact their quality of life (QOL). Several interventions have been used in PwMS such as medication, physical therapy exercises and stem cell therapy to improve their QOL. However, there is a limited evidence on the benefits of combining interventions. The purpose of this study is to explore the effect of combining physical therapy exercises (PTE) and Wharton Jelly mesenchymal stem cell (WJ-MSCs) injections on motor and non-motor symptoms versus each intervention alone in PwMS. METHODS Sixty PwMS will be allocated to either PTE, WJ-MSCs, or a combined group, followed up for 12 months and examined using a comprehensive battery of measures. Participants in the PTE group will receive 2 sessions per week of a supervised exercise program for 6 months followed by a home exercise program for another 6 months. The WJ-MSCs group will receive 3 WJ-MSCs injections in the first 6 months then they will be encouraged to follow an active life style. The third group will receive both interventions. DISCUSSION This study will aid in a better understanding of the combined effect of physical therapy and mesenchymal stem cell therapy. The results from this proposed study may reduce disability, improve QOL in PwMS, and consequently, reduce the cost associated with the life-time care of these individuals worldwide. TRIAL REGISTRATION NUMBER NCT03326505.
Collapse
Affiliation(s)
| | - Fatima Jamali
- Cell Therapy Center, the University of Jordan, Amman
| | - Mayis Aldughmi
- Department of Physiotherapy, School of Rehabilitation Sciences
| | - Hanan Khalil
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid
| | - Alham Al-Sharman
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid
| | - Dana Alhattab
- Laboratory for Nanomedicine, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Applied Medical Sciences, Hashemite University, Zarqa, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, the University of Jordan, Amman
- School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Enciso N, Avedillo L, Fermín ML, Fragío C, Tejero C. Cutaneous wound healing: canine allogeneic ASC therapy. Stem Cell Res Ther 2020; 11:261. [PMID: 32600465 PMCID: PMC7325024 DOI: 10.1186/s13287-020-01778-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Wound healing is a complex biological process comprised of a series of sequential events aiming to repair injured tissue. Adult mesenchymal stem cells (MSCs) have been used in cellular therapy in preclinical animal studies; a promising source of MSCs is adipose tissue (AT). In this paper, we evaluated the clinical value and safety of the application of cultured allogenic MSCs from AT for acute and chronic skin wound healing in a canine model. Methods Twenty-four dogs of different breeds between 1 and 10 years of age with acute and chronic wounds were studied. Morphology of the wounded skin was monitored for changes over time via serial photographs and histopathological studies. Results The percentage of the wounds that exhibited contraction and re-epithelialization were significantly different between wounds treated with adipose mesenchymal stem cells (ASCs) and control wounds; this effect was observed in both acute and chronic conditions. At 90 days, re-epithelization of acute and chronic wounds reached more than 97%. Histopathological study revealed a reduction in inflammatory infiltrate and the presence of multiple hair follicles on day 7 after treatment with ASCs, promoting epidermal and dermal regeneration. To guarantee the safety of our treatment, we determined the serum levels of cytokine markers in our patients. ASC treatment upregulated granulocyte-macrophage colony stimulating factor (GM-CSF) at the gene level, which may contribute to the recruitment of cells that participate in skin repair to the site of injury. Conclusions The development of an allogenic ASC therapy to improve wound healing in a canine model could have a clinical impact in human treatment.
Collapse
Affiliation(s)
- Nathaly Enciso
- "Experimental Hematology" UCM-Research Group, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Luis Avedillo
- "Experimental Hematology" UCM-Research Group, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain
| | - María Luisa Fermín
- "Experimental Hematology" UCM-Research Group, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain.,Department of Animal Surgery and Medicine, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Cristina Fragío
- "Experimental Hematology" UCM-Research Group, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain.,Department of Animal Surgery and Medicine, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Concepción Tejero
- "Experimental Hematology" UCM-Research Group, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain. .,Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Seetharaman R, Mahmood A, Kshatriya P, Patel D, Srivastava A. An Overview on Stem Cells in Tissue Regeneration. Curr Pharm Des 2020; 25:2086-2098. [PMID: 31298159 DOI: 10.2174/1381612825666190705211705] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deteriorations in tissues and decline in organ functions, due to chronic diseases or with advancing age or sometimes due to infections or injuries, can severely compromise the quality of life of an individual. Regenerative medicine, a field of medical research focuses on replacing non-functional or dead cells or repairing or regenerating tissues and organs to restore normal functions of an impaired organ. Approaches used in regenerative therapy for achieving the objective employ a number of means which include soluble biomolecules, stem cell transplants, tissue engineering, gene therapy and reprogramming of cells according to target tissue types. Stem cells transplant and tissue regeneration methods for treating various diseases have rapidly grown in usage over the past decades or so. There are different types of stem cells such as mesenchymal, hematopoietic, embryonic, mammary, intestinal, endothelial, neural, olfactory, neural crest, testicular and induced pluripotent stem cells. METHODS This review covers the recent advances in tissue regeneration and highlights the application of stem cell transplants in treating many life-threatening diseases or in improving quality of life. RESULTS Remarkable progress in stem cell research has established that the cell-based therapy could be an option for treating diseases which could not be cured by conventional medical means till recent. Stem cells play major roles in regenerative medicine with its exceptional characteristics of self-renewal capacity and potential to differentiate into almost all types of cells of a body. CONCLUSION Vast number of reports on preclinical and clinical application of stem cells revealed its vital role in disease management and many pharmacological industries around the globe working to achieve effective stem cell based products.
Collapse
Affiliation(s)
| | | | | | | | - Anand Srivastava
- Global Institute of Stem Cell Therapy and Research, 4660 La Jolla Village Drive, San Diego, CA 92122, United States
| |
Collapse
|
13
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
14
|
Zheng Z, Li C, Ha P, Chang GX, Yang P, Zhang X, Kim JK, Jiang W, Pang X, Berthiaume EA, Mills Z, Haveles CS, Chen E, Ting K, Soo C. CDKN2B upregulation prevents teratoma formation in multipotent fibromodulin-reprogrammed cells. J Clin Invest 2019; 129:3236-3251. [PMID: 31305260 PMCID: PMC6668700 DOI: 10.1172/jci125015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Tumorigenicity is a well-documented risk to overcome for pluripotent or multipotent cell applications in regenerative medicine. To address the emerging demand for safe cell sources in tissue regeneration, we established a novel, protein-based reprogramming method that does not require genome integration or oncogene activation to yield multipotent fibromodulin (FMOD)-reprogrammed (FReP) cells from dermal fibroblasts. When compared with induced pluripotent stem cells (iPSCs), FReP cells exhibited a superior capability for bone and skeletal muscle regeneration with markedly less tumorigenic risk. Moreover, we showed that the decreased tumorigenicity of FReP cells was directly related to an upregulation of cyclin-dependent kinase inhibitor 2B (CDKN2B) expression during the FMOD reprogramming process. Indeed, sustained suppression of CDKN2B resulted in tumorigenic, pluripotent FReP cells that formed teratomas in vivo that were indistinguishable from iPSC-derived teratomas. These results highlight the pivotal role of CDKN2B in cell fate determination and tumorigenic regulation and reveal an alternative pluripotent/multipotent cell reprogramming strategy that solely uses FMOD protein.
Collapse
Affiliation(s)
- Zhong Zheng
- Division of Growth and Development, School of Dentistry, and
| | - Chenshuang Li
- Division of Growth and Development, School of Dentistry, and
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, and
| | - Grace X. Chang
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Pu Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xinli Zhang
- Division of Growth and Development, School of Dentistry, and
| | - Jong Kil Kim
- Division of Growth and Development, School of Dentistry, and
| | - Wenlu Jiang
- Division of Growth and Development, School of Dentistry, and
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Pang
- Division of Growth and Development, School of Dentistry, and
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatology Hospital of Chongqing Medical University, Chongqing, China
| | | | - Zane Mills
- Department of Ecology and Evolutionary Biology, and
| | | | - Eric Chen
- Division of Growth and Development, School of Dentistry, and
| | - Kang Ting
- Division of Growth and Development, School of Dentistry, and
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA, Los Angeles, California, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
15
|
Allen SR, Wright A. Stem cell therapy for knee osteoarthritis: a narrative review of a rapidly evolving treatment with implications for physical therapy management. PHYSICAL THERAPY REVIEWS 2019. [DOI: 10.1080/10833196.2019.1585674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sophie Ruth Allen
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Anthony Wright
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Enterococcus faecium L-15 Cell-Free Extract Improves the Chondrogenic Differentiation of Human Dental Pulp Stem Cells. Int J Mol Sci 2019; 20:ijms20030624. [PMID: 30709061 PMCID: PMC6386954 DOI: 10.3390/ijms20030624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Hyaline cartilage is a tissue of very low regenerative capacity because of its histology and limited nutrient supply. Cell-based therapies have been spotlighted in the regeneration of damaged cartilage. Dental pulp stem cells (DPSCs) are multipotent and are easily accessible for therapeutic purposes. In human gastrointestinal tracts, Enterococcus faecium is a naturally occurring commensal species of lactic acid bacteria. In this work, the human DPSCs were differentiated into chondrocytes using a chondrogenic differentiation medium with or without L-15 extract. We observed that chondrogenic differentiation improved in an E. faecium L-15 extract (L-15)-treated DPSC group via evaluation of chondrogenic-marker mRNA expression levels. In particular, we found that L-15 treatment promoted early-stage DPSC differentiation. Cells treated with L-15 were inhibited at later stages and were less likely to transform into hypertrophic chondrocytes. In L-15-treated groups, the total amount of cartilage extracellular matrix increased during the differentiation process. These results suggest that L-15 promotes chondrogenic differentiation, and that L-15 may be used for cartilage repair or cartilage health supplements. To our knowledge, this is the first report demonstrating the beneficial effect of L-15 treatment on chondrogenic differentiation.
Collapse
|
17
|
Jing H, Zhang X, Gao M, Luo K, Fu W, Yin M, Wang W, Zhu Z, Zheng J, He X. Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and β‐catenin–related pathways. FASEB J 2019; 33:5641-5653. [DOI: 10.1096/fj.201802137rrr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Jing
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiaoyang Zhang
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Manchen Gao
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Kai Luo
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Wei Fu
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Meng Yin
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Wei Wang
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhongqun Zhu
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Jinghao Zheng
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiaomin He
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
18
|
Rim YA, Nam Y, Ju JH. Application of Cord Blood and Cord Blood-Derived Induced Pluripotent Stem Cells for Cartilage Regeneration. Cell Transplant 2018; 28:529-537. [PMID: 30251563 PMCID: PMC7103603 DOI: 10.1177/0963689718794864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regeneration of articular cartilage is of great interest in cartilage tissue engineering
since articular cartilage has a low regenerative capacity. Due to the difficulty in
obtaining healthy cartilage for transplantation, there is a need to develop an alternative
and effective regeneration therapy to treat degenerative or damaged joint diseases. Stem
cells including various adult stem cells and pluripotent stem cells are now actively used
in tissue engineering. Here, we provide an overview of the current status of cord blood
cells and induced pluripotent stem cells derived from these cells in cartilage
regeneration. The abilities of these cells to undergo chondrogenic differentiation are
also described. Finally, the technical challenges of articular cartilage regeneration and
future directions are discussed.
Collapse
Affiliation(s)
- Yeri Alice Rim
- 1 CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojun Nam
- 1 CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Ju
- 1 CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,2 Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
19
|
Pulsed Electromagnetic Fields Improve Tenogenic Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells: A Potential Strategy for Tendon Repair-An In Vitro Study. Stem Cells Int 2018; 2018:9048237. [PMID: 30154867 PMCID: PMC6091420 DOI: 10.1155/2018/9048237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023] Open
Abstract
Tendon repair is a challenging procedure in orthopaedics. The use of mesenchymal stem cells (MSCs) and pulsed electromagnetic fields (PEMF) in tendon regeneration is still investigational. In this perspective, MSCs isolated from the human umbilical cord (UC) may represent a possible candidate for tendon tissue engineering. The aim of the study is to evaluate the effect of low-frequency PEMF on tenogenic differentiation of MSCs isolated from the human umbilical cord (UC-MSCs) in vitro. 15 fresh UC samples from women with healthy pregnancies were retrieved at the end of caesarean deliveries. UC samples were manually minced into small fragments (less than 4 mm length) and cultured in MSC expansion medium. Part of the UC-MSCs was subsequently cultured with PEMF and tenogenic growth factors. UC-MSCs were subjected to pulsed electromagnetic fields for 2 h/day, 4 h/day, or 8 h/day. UC-MSCs cultured with FGF-2 and stimulated with PEMF showed a greater production of collagen type I and scleraxis. The prolonged exposure to PEMF was also related to the greatest expression of tenogenic markers. Thus, the exposure to PEMF provides a positive preconditioning biophysical stimulus, which may enhance UC-MSC tenogenic potential.
Collapse
|