1
|
Bhupesh S, Chauhan N, Jyoti V, Ankit K, Sonia S, Bhupendra S. A Narrative Review of Signaling Pathway and Treatment Options for Diabetic Nephropathy. Curr Mol Med 2025; 25:113-131. [PMID: 37497682 DOI: 10.2174/1566524023666230727093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Diabetic nephropathy is a progressive kidney disease that frequently results in end-stage renal disorders and is characterized by proteinuria, albuminuria, decreased filtration, and renal fibrosis. Despite the fact that there are a number of therapeutic alternatives available, DN continues to be the main contributor to end-stage renal disease. Therefore, significant innovation is required to enhance outcomes in DN patients. METHODS Information was collected from online search engines like, Google Scholar, Web of Science, PubMed, Scopus, and Sci-Hub databases using keywords like diabetes, nephropathy, kidney disease, autophagy, etc. Results: Natural compounds have anti-inflammatory and antioxidant properties and impact various signaling pathways. They ameliorate kidney damage by decreasing oxidative stress, inflammatory process, and fibrosis and enhance the antioxidant system, most likely by activating and deactivating several signaling pathways. This review focuses on the role of metabolic memory and various signaling pathways involved in the pathogenesis of DN and therapeutic approaches available for the management of DN. Special attention is given to the various pathways modulated by the phytoconstituents.
Collapse
Affiliation(s)
- Semwal Bhupesh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Neha Chauhan
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Verma Jyoti
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Kumar Ankit
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Sonia
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Bhupendra
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
2
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Yu Y, Jia YY, Li HJ. Sodium butyrate improves mitochondrial function and kidney tissue injury in diabetic kidney disease via the AMPK/PGC-1α pathway. Ren Fail 2023; 45:2287129. [PMID: 38073119 PMCID: PMC11001342 DOI: 10.1080/0886022x.2023.2287129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE Investigate the mechanism of how sodium butyrate (NaBut) improves mitochondrial function and kidney tissue injury in diabetic kidney disease (DKD) via the AMPK/PGC-1α pathway. METHODS Assess the effects of NaBut on glucose and insulin tolerance, urine, and gut microbial composition in db/db and db/m mice. Use flow cytometry and western blotting to detect the effects of NaBut on apoptosis, kidney mitochondrial function, and AMPK/PGC-1α signaling. Use HK-2 cells induced by high glucose (HG) to establish the DKD model in vitro and detect changes in the AMPK/PGC-1α signaling pathway and mitochondrial function after NaBut intervention. RESULTS NaBut attenuated blood glucose levels and reversed increases in urine and serum levels of glucose, BUN, Ucr, TG, TC, and UAE in db/db mice. NaBut improved insulin tolerance, reversed PGC-1α and p-AMPK expression level in the kidneys of db/db mice, and improved lipid accumulation and mitochondrial function. NaBut was able to reverse the effects of elevated glucose, compound C, and siRNA-PGC on ROS and ATP levels. Additionally, it increased protein expression of PGC-1α and p-AMPK. CONCLUSION NaBut activates the kidney mitochondrial AMPK/PGC-1α signaling pathway and improves mitochondrial dysfunction in DKD, thus protecting kidney tissue in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Yu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuan-Yuan Jia
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong-Jun Li
- China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Meng FD, Yuan L, Xu DJ, Che MY, Hou SZ, Lu DD, Liu WJ, Nan Y. Exploring the targets and molecular mechanism of glycyrrhetinic acid against diabetic nephropathy based on network pharmacology and molecular docking. World J Diabetes 2023; 14:1672-1692. [DOI: 10.4239/wjd.v14.i11.1672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) stands as the most prevalent chronic microvascular complication of diabetes mellitus. Approximately 50% of DN patients progress to end-stage renal disease, posing a substantial health burden.
AIM To employ network pharmacology and molecular docking methods to predict the mechanism by which glycyrrhetinic acid (GA) treats DN, subsequently validating these predictions through experimental means.
METHODS The study initially identified GA targets using Pharm Mapper and the TCMSP database. Targets relevant to DN were obtained from the Genecards, OMIM, and TTD databases. The Venny database facilitated the acquisition of intersecting targets between GA and DN. The String database was used to construct a protein interaction network, while DAVID database was used to conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis. Molecular docking experiments were performed using Autodock software with selected proteins. Experimental validation was conducted using renal proximal tubular cells (HK-2) as the study subjects. A hyperglycemic environment was simulated using glucose solution, and the effect of GA on cell viability was assessed through the cell counting kit-8 method. Flow cytometry was employed to detect cell cycle and apoptosis, and protein immunoblot (western blot) was used to measure the expression of proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and insulin resistance pathway, including insulin receptor (INSR), PI3K, p-PI3K, AKT, p-AKT, and glycogen synthase kinase-3 (GSK3).
RESULTS A total of 186 intersecting targets between GA and DN were identified, which were associated with 144 KEGG-related enrichment pathways, 375 GO biological process entries, 45 GO cellular component entries, and 112 GO cellular function entries. Molecular docking demonstrated strong binding of GA to mitogen-activated protein kinase (MAPK)-1, SRC, PIK3R1, HSP90AA1, CASPASE9, HARS, KRAS, and MAPK14. In vitro experiments revealed that GA inhibited HK-2 cell viability, induced cell cycle arrest at the G2/M phase, and reduced apoptosis with increasing drug concentration. Western blot analysis showed that GA differentially up-regulated GSK3 protein expression, up-regulated AKT/p-AKT expression, down-regulated INSR, AKT, p-AKT, PI3K, and p-PI3K protein expression, and reduced p-PI3K/PI3K levels under high glucose conditions.
CONCLUSION GA may protect renal intrinsic cells by modulating the PI3K/AKT signaling pathway, thereby inhibiting HK-2 cell viability, reducing HK-2 cell apoptosis, and inducing cell cycle arrest at the G0/G1 phase.
Collapse
Affiliation(s)
- Fan-Di Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Duo-Jie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Meng-Ying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shao-Zhang Hou
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dou-Dou Lu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
7
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Wang Q, Tang T, Wu Z, Yang H, Gao Y, Zhang S, Song X, Chen X. Study on the liver Drug's dominant metabolic enzymes for six effective components of the Huang qi Liuyi decoction. Front Pharmacol 2023; 14:1175896. [PMID: 37124208 PMCID: PMC10146250 DOI: 10.3389/fphar.2023.1175896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Objective: To investigate the dominant metabolic enzymes of six effective components (astragaloside IV, glycyrrhizic acid, calycosin-glucuronide, formononetin, ononin, calycosin-7-O-β-D- glucoside) of Huangqi Liuyi decoction extract (HQD). Methods: Mouse liver microsomes were prepared. The effects of specific inhibitors of CYP450 enzymes on the metabolism of six effective components of HQD were studied using liver microsomal incubation in vitro. Results: The chemical inhibitors of CYP2C37 inhibit the metabolism of glycyrrhizic acid and astragaloside IV. Formononetin and astragaloside IV metabolism is inhibited by the chemical inhibitors of CYP2C11. The chemical inhibitors of CYP2E1 and CYP1A2 inhibit the metabolism of calycosin-glucuronide. Chemical CYP3A11 inhibitors prevent formononetin and glycyrrhizic acid from being metabolized. However, no inhibitor significantly affected the metabolism of ononin and calycosin-7-O-β-D-glucoside. Conclusion: CYP2C37 may be involved in the metabolism of astragaloside IV and glycyrrhizic acid, the metabolism of astragaloside IV and formononetin may be related to CYP2C11, the metabolism of calycosin-glucuronide may be related to CYP1A2 and CYP2E1, and CYP3A11 may be involved in the metabolism of glycyrrhizic acid and formononetin. This research provides an experimental basis for exploring the pharmacokinetic differences caused by metabolic enzymes.
Collapse
Affiliation(s)
- Qun Wang
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
- *Correspondence: Qun Wang,
| | - Tiantian Tang
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
| | - Zengguang Wu
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
| | - Hong Yang
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
| | - Yuan Gao
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
- National Research Center of Miao Medicine and Engineering Technology, Huaxi University Town, Guiyang, China
| | - Shiyu Zhang
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
| | - Xinli Song
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
- National Research Center of Miao Medicine and Engineering Technology, Huaxi University Town, Guiyang, China
| | - Xiaolan Chen
- Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang, China
- National Research Center of Miao Medicine and Engineering Technology, Huaxi University Town, Guiyang, China
| |
Collapse
|
9
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
10
|
Mustafina LR, Logvinov SV, Naryzhnaya NV, Kurbatov BK, Maslov LN. The effect of age and a high-fat, high-carbohydrate diet on the development of arterial hypertension and kidney disease in the experiment. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-73-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aim. To identify the structural foundations of the pathogenesis of arterial hypertension and kidney disease associated with a high-fat, high-carbohydrate diet and age.Materials and methods. The study was carried out on male Wistar rats aged 60 and 450 days. The animals were divided into 4 groups: group 1 (n = 14) – intact rats (60 days old) fed with a standard diet for 90 days; group 2 (n = 14) – rats (aged 60 days) receiving a high-fat, high-carbohydrate diet for 90 days; group 3 (n = 14) – intact rats (aged 450 days) receiving a standard diet for 90 days; group 4 (n = 14) – rats (aged 450 days) fed with a high-fat, high-carbohydrate diet for 90 days. Clinical and instrumental research methods, enzyme-linked immunosorbent assay, and immunohistochemistry and histology techniques were used in the study.Results. Feeding 60-day-old animals with a high-fat, high-carbohydrate diet resulted in an increase in body weight and abdominal fat, a rise in systolic blood pressure, and moderately pronounced histologic changes in the kidneys. In intact 450-day-old rats, age-related changes prevailed: changes in the myocardial mass, an increase in TGF-β1, morphological changes in the renal tubules and glomeruli. In 450-day-old rats receiving a high-fat, highcarbohydrate diet, the most pronounced increase in both systolic and diastolic blood pressure, a significant rise in serum fibronectin, and destructive changes in the renal tissue were noted.Conclusion. Functional and biochemical signs of arterial hypertension and morphological changes in the kidneys were the most pronounced in 450-day-old rats fed with a high-fat, high-carbohydrate diet.
Collapse
Affiliation(s)
| | | | - N. V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - B. K. Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - L. N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
11
|
Tan D, Tseng HHL, Zhong Z, Wang S, Vong CT, Wang Y. Glycyrrhizic Acid and Its Derivatives: Promising Candidates for the Management of Type 2 Diabetes Mellitus and Its Complications. Int J Mol Sci 2022; 23:10988. [PMID: 36232291 PMCID: PMC9569462 DOI: 10.3390/ijms231910988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which is characterized by hyperglycemia, chronic insulin resistance, progressive decline in β-cell function, and defect in insulin secretion. It has become one of the leading causes of death worldwide. At present, there is no cure for T2DM, but it can be treated, and blood glucose levels can be controlled. It has been reported that diabetic patients may suffer from the adverse effects of conventional medicine. Therefore, alternative therapy, such as traditional Chinese medicine (TCM), can be used to manage and treat diabetes. In this review, glycyrrhizic acid (GL) and its derivatives are suggested to be promising candidates for the treatment of T2DM and its complications. It is the principal bioactive constituent in licorice, one type of TCM. This review comprehensively summarized the therapeutic effects and related mechanisms of GL and its derivatives in managing blood glucose levels and treating T2DM and its complications. In addition, it also discusses existing clinical trials and highlights the research gap in clinical research. In summary, this review can provide a further understanding of GL and its derivatives in T2DM as well as its complications and recent progress in the development of potential drugs targeting T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
12
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. 18β-Glycyrrhetinic Acid Protects against Cholestatic Liver Injury in Bile Duct-Ligated Rats. Antioxidants (Basel) 2022; 11:961. [PMID: 35624826 PMCID: PMC9138139 DOI: 10.3390/antiox11050961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
18β-Glycyrrhetinic acid is a nutraceutical agent with promising hepatoprotective effects. Its protective mechanisms against cholestatic liver injury were further investigated in a rodent model of extrahepatic cholestasis caused by Bile Duct Ligation (BDL) in rats. The daily oral administration of 18β-Glycyrrhetinic acid improved liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis. 18β-Glycyrrhetinic acid alleviated the BDL-induced hepatic and systemic retention of bile acids, matrix-producing cell activation, hepatic collagen deposition, Transforming Growth Factor beta-1/Smad activation, malondialdehyde elevation, glutathione reduction, High Mobility Group Box-1/Toll-Like Receptor-4 activation, NF-κB activation, inflammatory cell infiltration/accumulation, Interleukin-1β expression, Signal Transducer and Activator of Transcription-1 activation, Endoplasmic Reticulum stress, impairment autophagy, and caspase 3 activation. Conversely, the protein expression of Sirt1, Farnesoid X Receptor, nuclear NF-E2-Related Factor-2, Transcription Factor EB, bile acid efflux transporters, and LC3-II, as well as the protein phosphorylation of AMP-Activated Protein Kinase, was promoted in 18β-Glycyrrhetinic acid-treated BDL rats. The hepatoprotective effects of 18β-Glycyrrhetinic acid in the present investigation correlated well with co-activation and possible interactions among Sirt, FXR, and Nrf2. The concurrent or concomitant activation of Sirt1, FXR, and Nrf2 not only restored the homeostatic regulation of bile acid metabolism, but also alleviated oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| |
Collapse
|
13
|
Protective Effect of Pueraria lobate (Willd.) Ohwi root extract on Diabetic Nephropathy via metabolomics study and mitochondrial homeostasis-involved pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
15
|
Asseri SM, Elsherbiny NM, El-Sherbiny M, Sherif IO, Alsamman AM, Maysarah NM, Elsherbini AM. Glycyrrhizic acid ameliorates submandibular gland oxidative stress, autophagy and vascular dysfunction in rat model of type 1 diabetes. Sci Rep 2022; 12:725. [PMID: 35031620 PMCID: PMC8760281 DOI: 10.1038/s41598-021-04594-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
The burden of diabetes mellitus (DM) and associated complications is increasing worldwide, affecting many organ functionalities including submandibular glands (SMG). The present study aims to investigate the potential ameliorative effect of glycyrrhizic acid (GA) on diabetes-induced SMG damage. Experimental evaluation of GA treatment was conducted on a rat model of type I diabetes. Animals were assigned to three groups; control, diabetic and GA treated diabetic groups. After 8 weeks, the SMG was processed for assessment of oxidative stress markers, autophagy related proteins; LC3, Beclin-1 and P62, vascular regulator ET-1, aquaporins (AQPs 1.4 and 5), SIRT1 protein expressions in addition to LC3 and AQP5 mRNA expressions. Also, parenchymal structures of the SMG were examined. GA alleviated the diabetes-induced SMG damage via restoring the SMG levels of oxidative stress markers and ET-1 almost near to the normal levels most probably via regulation of SIRT1, AQPs and accordingly LC-3, P62 and Beclin-1levels. GA could be a promising candidate for the treatment of diabetes-induced SMG damage via regulating oxidative stress, autophagy and angiogenesis.
Collapse
Affiliation(s)
- Saad Mohamed Asseri
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, 11597, AlMaarefa University, Riyadh, P.O. Box 71666, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Alsamman M Alsamman
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, PO Box 12619, Giza, Egypt
| | - Nadia M Maysarah
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Amira M Elsherbini
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
16
|
Qi W, Hu C, Zhao D, Li X. SIRT1-SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms. Front Endocrinol (Lausanne) 2022; 13:801303. [PMID: 35634495 PMCID: PMC9136398 DOI: 10.3389/fendo.2022.801303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication in patients with diabetes and is one of the main causes of renal failure. The current clinical treatment methods for DKD are not completely effective, and further exploration of the molecular mechanisms underlying the pathology of DKD is necessary to improve and promote the treatment strategy. Sirtuins are class III histone deacetylases, which play an important role in many biological functions, including DNA repair, apoptosis, cell cycle, oxidative stress, mitochondrial function, energy metabolism, lifespan, and aging. In the last decade, research on sirtuins and DKD has gained increasing attention, and it is important to summarize the relationship between DKD and sirtuins to increase the awareness of DKD and improve the cure rates. We have found that miRNAs, lncRNAs, compounds, or drugs that up-regulate the activity and expression of sirtuins play protective roles in renal function. Therefore, in this review, we summarize the biological functions, molecular targets, mechanisms, and signaling pathways of SIRT1-SIRT7 in DKD models. Existing research has shown that sirtuins have the potential as effective targets for the clinical treatment of DKD. This review aims to lay a solid foundation for clinical research and provide a theoretical basis to slow the development of DKD in patients.
Collapse
Affiliation(s)
- Wenxiu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenxiu Qi,
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Zhao Y, Li W, Zhang D. Gycyrrhizic acid alleviates atherosclerotic lesions in rats with diabetes mellitus. Mol Med Rep 2021; 24:755. [PMID: 34476498 PMCID: PMC8436226 DOI: 10.3892/mmr.2021.12395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022] Open
Abstract
Gycyrrhizic acid (GA), an inhibitor of high mobility group box 1 (HMGB1), inhibits inflammatory responses and is involved in the occurrence and development of several inflammation-related diseases. However, the role of GA in the atherosclerotic lesions caused by diabetes mellitus (DM) remains unknown. In the present study, Sprague Dawley rats were selected to desi=gn a diabetic atherosclerosis (AS) model. Rats from the DM-AS group were subsequently divided into DM-AS, DM-AS + GA (50 mg/kg) and DM-AS + GA (150 mg/kg) groups. Biochemical analyzers were used to measure levels of blood glucose, fasting insulin, total cholesterol, total triglyceride, low-density lipoprotein and high-density lipoprotein. The number of plaques was recorded after collection of thoracic aortas from the rats. The intimal thickness of arterial tissue was detected by hematoxylin and eosin staining. The expression levels of CD68 and α-smooth muscle actin (α-SMA) were detected by immunohistochemistry. The expression of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β in the serum of the rats was detected by ELISA. The expression of fatty acid synthetase, sterol regulatory element binding protein 1C, HMGB1 and receptor for advanced glycation end products (RAGE) was detected by western blotting. Reverse transcription quantitative PCR was used to detect the mRNA expression of HMGB1 and RAGE. The results demonstrated that GA treatment could decrease the body weight, blood glucose level and biochemical parameters of AS DM rats in a dose-dependent manner. In addition, GA decreased the intimal thickness of carotid artery and the formation of plaque in rats with diabetic AS. Furthermore, GA inhibited macrophage activation and decreased α-SMA expression in vascular smooth muscle cells, and decreased the expression of proteins (FAS and SREBP-1c) and inflammatory factors. Taken together, the findings from the present study demonstrated that GA may have a therapeutic effect on DM-associated AS. This study provides a theoretical basis for the treatment of diabetic AS.
Collapse
Affiliation(s)
- Yaodong Zhao
- Department of General Internal Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhenzhou, Henan 450052, P.R. China
| | - Wei Li
- Department of General Internal Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhenzhou, Henan 450052, P.R. China
| | - Daimin Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
18
|
Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U, Kayed R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep 2021; 36:109419. [PMID: 34289368 PMCID: PMC8341760 DOI: 10.1016/j.celrep.2021.109419] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Aging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD. TauO exposure triggers astrocyte senescence through high mobility group box 1 (HMGB1) release and inflammatory senescence-associated secretory phenotype (SASP), which mediates paracrine senescence in adjacent cells. HMGB1 release inhibition using ethyl pyruvate (EP) and glycyrrhizic acid (GA) prevents TauO-induced senescence through inhibition of p38-mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB)-the essential signaling pathways for SASP development. Despite the developed tauopathy in 12-month-old hTau mice, EP+GA treatment significantly decreases TauO and senescent cell loads in the brain, reduces neuroinflammation, and thus ameliorates cognitive functions. Collectively, TauO-induced HMGB1 release promotes cellular senescence and neuropathology, which could represent an important common pathomechanism in tauopathies including AD and FTD.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
19
|
Protective Effect of Jiang Tang Xiao Ke Granules against Skeletal Muscle IR via Activation of the AMPK/SIRT1/PGC-1 α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5566053. [PMID: 34326919 PMCID: PMC8277912 DOI: 10.1155/2021/5566053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
The Jiang Tang Xiao Ke (JTXK) granule is a classic Chinese herbal formula that has been put into clinical use in the treatment of type 2 diabetes mellitus for decades. However, whether its ability to ameliorate skeletal muscle insulin resistance (IR) is through modulation of the AMPK/SIRT1/PGC-1α signaling pathway remains unknown. Therefore, we aimed to investigate the effects of JTXK granules on IR in skeletal muscle of high-fat diet-induced diabetic mice and C2C12 cells and analyze the underlying mechanisms. In the present study, we showed that JTXK granules attenuated body weight gain, reduced body fat mass, improved body lean mass, and enhanced muscle performance of diabetic mice. JTXK granules also improved glucose metabolism and skeletal muscle insulin sensitivity and partially reversed abnormal serum lipid levels, which might be related to the regulation of the AMPK/SIRT1/PGC-1α pathway, both in skeletal muscle tissue of diabetic mice and in C2C12 cells. Furthermore, drug-containing serum of JTXK granules was capable of enhancing glucose uptake and mitochondrial respiration in C2C12 cells, and AMPKα was proven to be closely involved in this process. Taken together, these results suggest that the JTXK granule ameliorates skeletal muscle IR through activation of the AMPK/SIRT1/PGC-1α signaling pathway, which offers a novel perspective of this formula to combat IR-related metabolic diseases.
Collapse
|
20
|
Sun T, Liu J, Xie C, Yang J, Zhao L, Yang J. Metformin attenuates diabetic renal injury via the AMPK-autophagy axis. Exp Ther Med 2021; 21:578. [PMID: 33850550 PMCID: PMC8027752 DOI: 10.3892/etm.2021.10010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a clinical condition characterized by kidney damage that is observed in patients with diabetes. DN is the main cause of end-stage renal disease (ESRD), which is the final stage of chronic kidney disease. Increasing evidence suggests that metformin, a characteristic oral hypoglycemic drug used for treating diabetes, exerts beneficial effects on various medical conditions and diseases, including cancer, cardiovascular diseases and thyroid-related disorders. However, the impact of metformin on DN remains unknown. The present study investigated whether metformin could attenuate the inflammatory response, fibrosis and increased oxidative stress observed during DN in diabetic/dyslipidemic (db/db) mice. The kidneys of the mice (12-16 weeks) were isolated for immunohistochemistry and western blotting. The results demonstrated that metformin significantly reduced the oxidative damage and fibrosis in the kidneys of db/db mice. Furthermore, metformin treatment significantly inhibited the generation of inflammatory cytokines, including TNF-α and IL-1β in db/db mice. These effects were induced by the activation of the AMP-activated protein kinase (AMPK) pathway, which was mediated by increased phosphorylation of AMPK and mammalian target of rapamycin (mTOR), resulting in autophagy and the simultaneous decrease in reactive oxygen species production, cell apoptosis and inflammatory response. These findings suggested that metformin may reduce DN damage via regulation of the AMPK-mTOR-autophagy axis and indicated that metformin may be considered as a potential target in the treatment of DN.
Collapse
Affiliation(s)
- Tingli Sun
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Jizhang Liu
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Changying Xie
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Jun Yang
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Lijie Zhao
- Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Jingbo Yang
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|
21
|
Jiang S, Oh DS, Dorotea D, Son E, Kim DS, Ha H. Dojuksan ameliorates tubulointerstitial fibrosis through irisin-mediated muscle-kidney crosstalk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153393. [PMID: 33120292 DOI: 10.1016/j.phymed.2020.153393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sarcopenia progresses in chronic kidney disease (CKD) and is positively correlated with mortality in end-stage kidney disease patients. Circulating irisin, an exercise-induced myokine, gradually decreases during CKD stage progression. Irisin inhibits the progression of kidney fibrosis, which is the final common outcome of CKD. Our preliminary study with C2C12 cells showed that Dojuksan, a herbal decoction, increases the expression of PGC1α (a regulator of irisin) and FNDC5 (a precursor of irisin). HYPOTHESIS Dojuksan may increase circulating irisin and prevent the progression of kidney fibrosis. STUDY DESIGN AND METHODS Unilateral ureteral obstruction (UUO) was performed on seven-week-old male C57BL/6 mice to induce kidney tubulointerstitial fibrosis. Dojuksan (50, 100, or 200 mg/kg/day) or losartan (1.5 mg/kg/day), a standard clinical treatment for CKD, was administered orally one day prior to surgery and continued for seven days thereafter. To determine the role of irisin released from muscles, TGFβ-stimulated murine proximal tubular epithelial cells (mProx24 cells) were treated with conditioned media (CM) from Dojuksan-treated C2C12 muscle cells transfected with FNDC5 siRNA. RESULTS UUO mice exhibited muscle wasting along with progressive kidney injury. Similar to losartan, Dojuksan ameliorated kidney inflammation and fibrosis in UUO mice. Dojuksan, but not losartan, increased plasma irisin concentration in UUO mice. Dojuksan significantly increased basal FNDC5 expression and inhibited TNFα-induced and indoxyl sulfate-induced FNDC5 down-regulation in C2C12 cells. The TGFβ-induced collagen I (COL1) up-regulation in mProx24 cells was effectively inhibited by CM from C2C12 cells after Dojuksan treatment. Moreover, irisin inhibited TGFβ-induced COL1 in mProx24 cells, which was not affected by CM from C2C12 cells transfected with FNDC5 siRNA. CONCLUSION Dojuksan ameliorates kidney fibrosis through irisin-mediated muscle-kidney crosstalk, suggesting that Dojuksan may be used as an alternative therapeutic agent against CKD.
Collapse
Affiliation(s)
- Songling Jiang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Dal-Seok Oh
- The Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Eunjung Son
- The Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- The Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Clark AJ, Parikh SM. Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α. Kidney Int 2020; 99:828-840. [PMID: 33307105 DOI: 10.1016/j.kint.2020.09.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The kidney has extraordinary metabolic demands to sustain the active transport of solutes that is critical to renal filtration and clearance. Mitochondrial health is vital to meet those demands and maintain renal fitness. Decades of studies have linked poor mitochondrial health to kidney disease. Key regulators of mitochondrial health-adenosine monophosphate kinase, sirtuins, and peroxisome proliferator-activated receptor γ coactivator-1α-have all been shown to play significant roles in renal resilience against disease. This review will summarize the latest research into the activities of those regulators and evaluate the roles and therapeutic potential of targeting those regulators in acute kidney injury, glomerular kidney disease, and renal fibrosis.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113216. [PMID: 32763420 DOI: 10.1016/j.jep.2020.113216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus. AIM OF THE STUDY To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus. METHODS PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019. RESULTS Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds. CONCLUSION Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA, 15261, USA
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
24
|
Chan CM, Sekar P, Huang DY, Hsu SH, Lin WW. Different Effects of Metformin and A769662 on Sodium Iodate-Induced Cytotoxicity in Retinal Pigment Epithelial Cells: Distinct Actions on Mitochondrial Fission and Respiration. Antioxidants (Basel) 2020; 9:antiox9111057. [PMID: 33126710 PMCID: PMC7693507 DOI: 10.3390/antiox9111057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress-associated retinal pigment epithelium (RPE) cell death is critically implicated in the pathogenesis of visual dysfunction and blindness of retinal degenerative diseases. Sodium iodate (NaIO3) is an oxidative retinotoxin and causes RPE damage. Previously, we found that NaIO3 can induce human ARPE-19 cell death via inducing mitochondrial fission and mitochondrial dysfunction. Although metformin has been demonstrated to benefit several diseases possibly via AMP-activated protein kinase (AMPK) activation, it remains unknown how AMPK affects retinopathy in NaIO3 model. Therefore, in this study, we compared the effects of metformin and AMPK activator A769662 on NaIO3-induced cellular stress and toxicity. We found that A769662 can protect cells against NaIO3-induced cytotoxicity, while metformin exerts an enhancement in cell death. The mitochondrial reactive oxygen species (ROS) production as well as mitochondrial membrane potential loss induced by NaIO3 were not altered by both agents. In addition, NaIO3-induced cytosolic ROS production, possibly from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and counteracting cell death, was not altered by A769662 and metformin. Notably, NaIO3-induced mitochondrial fission and inhibition of mitochondrial respiration for ATP turnover were reversed by A769662 but not by metformin. In agreement with the changes on mitochondrial morphology, the ERK-Akt signal axis dependent Drp-1 phosphorylation at S616 (an index of mitochondrial fission) under NaIO3 treatment was blocked by A769662, but not by metformin. In summary, NaIO3-induced cell death in ARPE cells primarily comes from mitochondrial dysfunction due to dramatic fission and inhibition of mitochondrial respiration. AMPK activation can exert a protection by restoring mitochondrial respiration and inhibition of ERK/Akt/Drp-1 phosphorylation, leading to a reduction in mitochondrial fission. However, inhibition of respiratory complex I by metformin might deteriorate mitochondrial dysfunction and cell death under NaIO3 stress.
Collapse
Affiliation(s)
- Chi-Ming Chan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (P.S.); (D.-Y.H.)
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (C.-M.C.); (W.-W.L.); Fax: +886-2-2391-5297
| | - Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (P.S.); (D.-Y.H.)
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (P.S.); (D.-Y.H.)
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Shu-Hao Hsu
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan;
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (P.S.); (D.-Y.H.)
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (C.-M.C.); (W.-W.L.); Fax: +886-2-2391-5297
| |
Collapse
|
25
|
Wu G, Liu J, Li S, Gao W, Qiu M, Yang C, Ma Y, Song X. Glycyrrhizic acid protects juvenile epileptic rats against hippocampal damage through activation of Sirtuin3. Brain Res Bull 2020; 164:98-106. [PMID: 32800785 DOI: 10.1016/j.brainresbull.2020.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022]
Abstract
Glycyrrhizic acid (GA) and Sirtuin3 (Sirt3) were both found to be involved in epilepsy (EP), but their interaction was rarely studied. Herein, we aim to investigate the underlying mechanism of GA with the interaction of Sirt3 in juvenile EP rats. The EP model in juvenile rats was established by lithium chloride-pilocarpine and treated with different concentrations of GA, GA + DMSO or GA + 3-TYP [a selective inhibitor of Sirtuin3 (Sirt3)]. The expression of Sirt3, mitochondrial autophagy-related genes (C-III core 1, COX IV, LC3-I, LC3-II), apoptosis-related genes (Bcl-2, Bax, Caspase-3), glutathione (GSH), superoxide dismutase (SOD), malondialchehyche (MDA) and reactive oxygen species (ROS) as well as mitochondrial membrane potential were subsequently detected. The juvenile EP rats treated with GA showed increased level of C-III core 1 and COX IV, increased LC3-I/LC3-II, GSH and SOD, decreased MDA, increased expression of Sirt3, and Bcl-2, and decreased expression of Bax and Caspase-3. However, inhibition of Sirt3 caused reverse results. Collectively, GA could alleviate hippocampal pathological damage, promote mitochondrial autophagy and reduce oxidative stress in juvenile EP rats through activation of Sirt3. Understanding of these mechanisms may allow devising of novel therapeutics for pediatric EP.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, PR China
| | - Jun Liu
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, PR China
| | - Shize Li
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, PR China
| | - Weiqin Gao
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, PR China
| | - Mingxing Qiu
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, PR China
| | - Changjin Yang
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, PR China
| | - Yiming Ma
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, PR China
| | - Xinghui Song
- Department of Rheumatism and Immunology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, Guangxi, PR China.
| |
Collapse
|
26
|
Shrikanth CB, Nandini CD. AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152808. [PMID: 30935723 DOI: 10.1016/j.phymed.2018.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder with the risk of micro- and macro-vascular complications. High glucose-induced derangements in metabolic pathways are primarily associated with the initiation and progression of secondary complications namely, diabetic nephropathy, neuropathy, and retinopathy. Adenosine monophosphate-activated protein kinase (AMPK) has emerged as an attractive therapeutic target to treat various metabolic disorders including diabetes mellitus. It is a master metabolic regulator that helps in maintaining cellular energy homeostasis by promoting ATP-generating catabolic pathways and inhibiting ATP-consuming anabolic pathways. Numerous pharmacological and plant-derived bioactive compounds that increase AMP-activated protein kinase activation has shown beneficial effects by mitigating secondary complications namely retinopathy, nephropathy, and neuropathy. PURPOSE The purpose of this review is to highlight current knowledge on the role of AMPK and its activators from plant origin in diabetic microvascular complications. METHODS Search engines such as Google Scholar, PubMed, Science Direct and Web of Science are used to extract papers using relevant key words. Papers mainly focusing on the role of AMPK and AMPK activators from plant origin in diabetic nephropathy, retinopathy, and neuropathy was chosen to be highlighted. RESULTS According to results, decrease in AMPK activation during diabetes play a causative role in the pathogenesis of diabetic microvascular complications. Some of the plant-derived bioactive compounds were beneficial in restoring AMPK activity and ameliorating diabetic microvascular complications. CONCLUSION AMPK activators from plant origin are beneficial in mitigating diabetic microvascular complications. These pieces of evidence will be helpful in the development of AMPK-centric therapies to mitigate diabetic microvascular complications.
Collapse
Affiliation(s)
- C B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India.
| |
Collapse
|
27
|
Chen L, Hu C, Hood M, Zhang X, Zhang L, Kan J, Du J. A Novel Combination of Vitamin C, Curcumin and Glycyrrhizic Acid Potentially Regulates Immune and Inflammatory Response Associated with Coronavirus Infections: A Perspective from System Biology Analysis. Nutrients 2020; 12:E1193. [PMID: 32344708 PMCID: PMC7230237 DOI: 10.3390/nu12041193] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Novel coronaviruses (CoV) have emerged periodically around the world in recent years. The recurrent spreading of CoVs imposes an ongoing threat to global health and the economy. Since no specific therapy for these CoVs is available, any beneficial approach (including nutritional and dietary approach) is worth investigation. Based on recent advances in nutrients and phytonutrients research, a novel combination of vitamin C, curcumin and glycyrrhizic acid (VCG Plus) was developed that has potential against CoV infection. System biology tools were applied to explore the potential of VCG Plus in modulating targets and pathways relevant to immune and inflammation responses. Gene target acquisition, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment were conducted consecutively along with network analysis. The results show that VCG Plus can act on 88 hub targets which are closely connected and associated with immune and inflammatory responses. Specifically, VCG Plus has the potential to regulate innate immune response by acting on NOD-like and Toll-like signaling pathways to promote interferons production, activate and balance T-cells, and regulate the inflammatory response by inhibiting PI3K/AKT, NF-κB and MAPK signaling pathways. All these biological processes and pathways have been well documented in CoV infections studies. Therefore, our findings suggest that VCG Plus may be helpful in regulating immune response to combat CoV infections and inhibit excessive inflammatory responses to prevent the onset of cytokine storm. However, further in vitro and in vivo experiments are warranted to validate the current findings with system biology tools. Our current approach provides a new strategy in predicting formulation rationale when developing new dietary supplements.
Collapse
Affiliation(s)
- Liang Chen
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Chun Hu
- Nutrilite Health Institute, 5600 Beach Boulevard, Buena Park, CA 90621, USA;
| | - Molly Hood
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA;
| | - Xue Zhang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Lu Zhang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| |
Collapse
|
28
|
Zheng Y, Lee J, Lee EH, In G, Kim J, Lee MH, Lee OH, Kang IJ. A Combination of Korean Red Ginseng Extract and Glycyrrhiza glabra L. Extract Enhances Their Individual Anti-Obesity Properties in 3T3-L1 Adipocytes and C57BL/6J Obese Mice. J Med Food 2020; 23:215-223. [DOI: 10.1089/jmf.2019.4660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Jaesun Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-hye Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Gyo In
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - JongHan Kim
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - Mi-Hyang Lee
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| |
Collapse
|
29
|
Bai H, Bao F, Fan X, Han S, Zheng W, Sun L, Yan N, Du H, Zhao H, Yang Z. Metabolomics study of different parts of licorice from different geographical origins and their anti-inflammatory activities. J Sep Sci 2020; 43:1593-1602. [PMID: 32032980 DOI: 10.1002/jssc.201901013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023]
Abstract
Glycyrrhiza uralensis Fisch., known as licorice, is one of the most famous traditional Chinese medicines. In this study, we perform a metabolome analysis using liquid chromatography-tandem mass spectrometry to assign bioactive components in different parts of licorice from different geographical origins in Gansu province of China. Sixteen potential biomarkers of taproots from different geographical origins were annotated, such as glycycoumarin, gancaonin Z, licoricone, and dihydroxy kanzonol H mainly exist in the sample of Jiuquan; neoliquiritin, 6'-acetylliquiritin, licochalcone B, isolicoflavonol, glycyrol, and methylated uralenin mainly exist in Glycyrrhiza uralensis from Lanzhou; gancaonin L, uralenin, and glycybridin I mainly exist in licorice from Wuwei for the first time.
Collapse
Affiliation(s)
- Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fang Bao
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenhui Zheng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
30
|
Activation of sirtuin1 protects against ischemia/reperfusion-induced acute kidney injury. Biomed Pharmacother 2020; 125:110021. [PMID: 32092826 DOI: 10.1016/j.biopha.2020.110021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Sirtuin1 (SIRT1), a class III histone deacetylase, exerts a protective role against kidney injury. However, its functions in renal ischemia/reperfusion (I/R) injury remains unclear as yet. In this study, we established acute kidney injury (AKI) rat model through renal ischemia and reperfusion, and the role of SIRT1 in I/R-induced AKI was investigated both in vivo and in vitro. In in vivo study, SIRT1 was expressed in tubular epithelial cells (TECs) and its expression was upregulated after I/R treatment. Meanwhile, our in vitro experiment confirmed that the expression of SIRT1 was also elevated in human renal proximal tubular epithelial (HK2) cells treated with hypoxia and reoxygenation (H/R). Notably, activation of SIRT1 by resveratrol (Res, an activator of SIRT1) could significantly ameliorate renal function and reduce the TECs apoptosis in rats. Likewise, Res intervention also reduced the apoptosis and the production of reactive oxygen species in HK2 cells. Furthermore, we found that the autophagy level was upregulated in I/R injury, which could be raised further through resveratrol intervention; and chloroquine (CQ, an autophagy inhibitor) did reverse these protective effects of SIRT1 activation. Taken together, our results suggest that SIRT1 plays a protective role by autophagy induction in I/R- induced AKI. Its role might serve as a preventive approach in I/R-associated AKI.
Collapse
|
31
|
Bazyluk A, Malyszko J, Hryszko T, Zbroch E. State of the art - sirtuin 1 in kidney pathology - clinical relevance. Adv Med Sci 2019; 64:356-364. [PMID: 31125865 DOI: 10.1016/j.advms.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/17/2018] [Accepted: 04/19/2019] [Indexed: 01/19/2023]
Abstract
Sirtuins represent a group of nicotinamide adenine dinucleotide dependent histone deacetylases, which regulates various biological pathways by promoting chromatin silencing and transcriptional repression. Therefore, they are linked to cellular energy metabolism, mitochondrial biogenesis, stress response, apoptosis, inflammation and fibrosis. Since sirtuin 1 became a promising candidate for targeted therapies of numerous conditions, researchers have been investigating its activator. As for now, natural agents and antidiabetic drug - metformin, have been found to activate sirtuin 1. Sirtuin 1 is able to improve kidney outcomes by direct impact on kidney cells, regulation of non-specific processes generally involved in pathogenesis of age-dependent and metabolic disorders and improvement of the comorbid diseases. This review discusses the state of the art knowledge on the role of sirtuin 1 on kidney pathology.
Collapse
|
32
|
Huang J, Liu W, Doycheva DM, Gamdzyk M, Lu W, Tang J, Zhang JH. Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1α/AMPK/Sirt1/PGC-1α/UCP2 pathway in a rat model of neonatal HIE. Free Radic Biol Med 2019; 141:322-337. [PMID: 31279091 PMCID: PMC6718314 DOI: 10.1016/j.freeradbiomed.2019.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/26/2022]
Abstract
Neuronal apoptosis induced by oxidative stress is one of the major pathological processes involved in neurological impairment after hypoxic-ischemic encephalopathy (HIE). Ghrelin, the unique endogenous ligand for the growth hormone secretagogue receptor-1α (GHSR-1α), could take an anti-apoptotic role in the brain. However, whether ghrelin can attenuate neuronal apoptosis by attenuating oxidative stress after hypoxia-ischemia (HI) insult remains unknown. To investigate the beneficial effects of ghrelin on oxidative stress injury and neuronal apoptosis induced by HI, ten-day old unsexed rat pups were subjected to HI injury and exogenous recombinant human ghrelin(rh-Ghrelin) was administered intranasally at 1 h and 24 h after HI induction. [D-Lys3]-GHRP-6, a selective inhibitor of GHSR-1α and Ex527, a selective inhibitor of GHSR-1α were administered intranasally at 1 h before HI induction respectively. Small interfering ribonucleic acid (siRNA) for GHSR-1α were administered by intracerebroventricular (i.c.v) injection at 24 h before HI induction. Neurological tests, immunofluorescence, MitoSox staining, Fluoro-Jade C staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blot experiments were performed. Our results indicated that ghrelin significantly improved neurobehavioral outcomes and reduced oxidative stress and neuronal apoptosis. Moreover, ghrelin treatment significantly promoted phosphorylation of AMPK, upregulated the expression of Sirt1, PGC-1α, UCP2 and the ratio of Bcl2/Bax, while it downregulated cleaved caspase-3 levels. The protective effects of ghrelin were reversed by [D-Lys3]-GHRP-6, GHSR-1α siRNA or Ex527. In conclusion, our data demonstrated that ghrelin reduced oxidative stress injury and neuronal apoptosis which was in part via the GHSR-1α/AMPK/Sirt1/PGC-1α/UCP2 signalling pathway after HI. Ghrelin may be a novel therapeutic target for treatment after neonatasl HI injury.
Collapse
Affiliation(s)
- Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wei Liu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
33
|
Wang S, Li L, Shi L. Identification of a key candidate gene‑phenotype network mediated by glycyrrhizic acid using pharmacogenomic analysis. Mol Med Rep 2019; 20:2657-2666. [PMID: 31322195 PMCID: PMC6691250 DOI: 10.3892/mmr.2019.10494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022] Open
Abstract
Glycyrrhizic acid (GA) is primarily used as an anti-inflammatory agent in cases of chronic hepatitis. However, its underlying mechanisms in diverse biological processes and its reported benefits are yet to be fully elucidated. In the current study, an analytical method based on pharmacogenomics was established to mine disease-modulatory activities mediated by GA. Five primary protein targets and 138 functional partners were identified for GA by querying open-source databases, including Drugbank and STRING. Subsequently, GA-associated primary and secondary protein targets were integrated into Cytoscape to construct a protein-protein interaction network to establish connectivity. GA-associated target genes were then clustered based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The tumor necrosis factor axis was revealed to be a primary module regulated by GA-associated targets. Furthermore, 12 hub genes were queried to assess their potential anti-cancer effects using cBioPortal. The results indicated that pharmacogenomics-based analysis improved understanding of the underlying drug-target events of GA and provided predictive and definitive leads for future studies.
Collapse
Affiliation(s)
- Shiqun Wang
- Xiaoshan Biotechnology Center, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, Zhejiang 311231, P.R. China
| | - Lu Li
- Department of Nephrology, Affiliated Children's Hospital of Zhejiang University, Hangzhou, Zhejiang 310052, P.R. China
| | - Long Shi
- Xiaoshan Biotechnology Center, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, Zhejiang 311231, P.R. China
| |
Collapse
|
34
|
Liu L, Jiang Y, Steinle JJ. Epac1 and Glycyrrhizin Both Inhibit HMGB1 Levels to Reduce Diabetes-Induced Neuronal and Vascular Damage in the Mouse Retina. J Clin Med 2019; 8:jcm8060772. [PMID: 31159195 PMCID: PMC6616522 DOI: 10.3390/jcm8060772] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/25/2022] Open
Abstract
The role of high mobility group box 1 (HMGB1) in acute diabetic retinal damage has been demonstrated. We recently reported that glycyrrhizin, a HMGB1 inhibitor, protected the diabetic retina against neuronal, vascular, and permeability changes. In this study, we wanted to investigate the role of exchange protein for cAMP 1 (Epac1) on HMGB1 and the actions of glycyrrhizin. Using endothelial cell specific knockout mice for Epac1, we made some mice diabetic using streptozotocin, and treated some with glycyrrhizin for up to 6 months. We measured permeability, neuronal, and vascular changes in the Epac1 floxed and knockout mice. We also investigated whether Epac1 and glycyrrhizin work synergistically to reduce the retinal inflammatory mediators, tumor necrosis factor alpha (TNFα) and interleukin-1-beta (IL1β), as well as sirtuin 1 (SIRT1) levels. Epac1 and glycyrrhizin reduced inflammatory mediators with synergistic actions. Glycyrrhizin also increased SIRT1 levels in the Epac1 mice. Overall, these studies demonstrate that glycyrrhizin and Epac1 can work together to protect the retina. Finally, glycyrrhizin may regulate HMGB1 through increased SIRT1 actions.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Youde Jiang
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Jena J Steinle
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
35
|
Wang W, Sun W, Cheng Y, Xu Z, Cai L. Role of sirtuin-1 in diabetic nephropathy. J Mol Med (Berl) 2019; 97:291-309. [PMID: 30707256 PMCID: PMC6394539 DOI: 10.1007/s00109-019-01743-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a research priority for scientists around the world because of its high prevalence and poor prognosis. Although several mechanisms have been shown to be involved in its pathogenesis and many useful drugs have been developed, the management of DN remains challenging. Increasing amounts of evidence show that silent information regulator 2 homolog 1 (sirtuin-1), a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, plays a crucial role in the pathogenesis and development of DN. Clinical data show that gene polymorphisms of sirtuin-1 affect patient vulnerability to DN. In addition, upregulation of sirtuin-1 attenuates DN in various experimental models of diabetes and in renal cells, including podocytes, mesangial cells, and renal proximal tubular cells, incubated with high concentrations of glucose or advanced glycation end products. Mechanistically, sirtuin-1 has its renoprotective effects by modulating metabolic homeostasis and autophagy, resisting apoptosis and oxidative stress, and inhibiting inflammation through deacetylation of histones and the transcription factors p53, forkhead box group O, nuclear factor-κB, hypoxia-inducible factor-1α, and others. Furthermore, some microRNAs have been implicated in the progression of DN because they target sirtuin-1 mRNA. Several synthetic drugs and natural compounds have been identified that upregulate the expression and activity of sirtuin-1, which protects against DN. The present review will summarize advances in knowledge regarding the role of sirtuin-1 in the pathogenesis of DN. The available evidence implies that sirtuin-1 has great potential as a clinical target for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
- Pediatric Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, KY 40292 USA
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, KY 40292 USA
- Departments of Radiation Oncology, Pharmacology and Toxicology, The University of Louisville School of Medicine, 570 S. Preston Str., Baxter I, Suite 304F, Louisville, KY 40292 USA
| |
Collapse
|
36
|
Tang LX, Wang B, Wu ZK. Aerobic Exercise Training Alleviates Renal Injury by Interfering with Mitochondrial Function in Type-1 Diabetic Mice. Med Sci Monit 2018; 24:9081-9089. [PMID: 30551123 PMCID: PMC6302662 DOI: 10.12659/msm.912877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Diabetic nephropathy was one of the most serious and harmful diabetic complications, characterized by progressive loss of renal function and renal fibrosis. Aerobic exercise training is an important non-pharmacologic method to prevent and treat diabetes mellitus and diabetic complications. MATERIAL AND METHODS Intraperitoneal (i.p.) injection of streptozocin (STZ) was used to construct a type 1 diabetic mouse model. Renal function and mitochondrial function were measured by urinary protein level, Masson staining and ATP, superoxide production, and membrane potential, respectively. The purpose of the research was to explore the effect of aerobic exercise training on renal and renal mitochondrial function, as well as the expression of Sirt1and PGC1α in type-1 diabetic mice. RESULTS Sedentary diabetic mice exhibited increased urinary protein level, blood glucose, and collagen deposition in renal tissues compared with sedentary control mice, which were significantly mitigated by aerobic exercise training. Diabetic mice displayed renal tissue mitochondrial dysfunction (decreased mitochondrial ATP production and membrane potential), as well as increased mitochondrial superoxide production, which were reversed by aerobic exercise. By using Western blot analysis, we identified the decreased expression of Sirt1 and PGC1α in the renal tissue of diabetic mice, which were partly reversed by aerobic exercise training. Data showed that silencing of Sirt1 abrogated the beneficial effect of aerobic exercise training against diabetes-induced mitochondrial abnormalities and renal damage in mice. CONCLUSIONS Aerobic exercise training alleviates diabetes-induced renal injury by improving mitochondrial function.
Collapse
Affiliation(s)
- Lin-Xia Tang
- Department of Sports, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Bin Wang
- Department of Sports, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Zhi-Kun Wu
- Department of Sports, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| |
Collapse
|
37
|
Xu W, Wang L, Li J, Cai Y, Xue Y. TXNIP mediated the oxidative stress response in glomerular mesangial cells partially through AMPK pathway. Biomed Pharmacother 2018; 107:785-792. [PMID: 30142540 DOI: 10.1016/j.biopha.2018.08.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Thioredoxin-interacting protein (TXNIP) plays an important role in the development of diabetic nephropathy. In the present study, we investigated role of TXNIP on oxidative stress in glomerular mesangial cells (GMCs) cultured in high glucose or normal glucose, and explored the potential mechanism related to TXNIP as well. METHODS Oxidative stress in GMCs under high or normal glucose was detected. TXNIP knockdown by specific siRNA or over expression by pcDNA3.0-TXNIP vector was performed to evaluate the role of TXNIP on injury of GMCs caused by oxidative stress. Activator of AMPK AICAR and AMPK inhibitor Compound C were treated the GMCs. Reactive oxygen species (ROS) and mitochondrial membrane potential were detected by flow cytometry. Activities of superoxide dismutase (SOD) and superoxide dismutase (CAT) were measured by ELISA. Activity of thioredoxin (Trx) was determined using Trx activity assay kit. mRNA expression of AMPK, TXNIP, Trx1 and Trx2 were tested by qRT-PCR. Expressions of P-AMPK, TXNIP and fibronectin proteins were detected by Western blotting. RESULTS High glucose induced the increase of ROS level, activation of TXNIP, but restricted mitochondrial membrane potential and activities of p-AMPK, SOD and CAT, and Trx. TXNIP siRNA and AICAR inhibited high glucose-induced oxidative stress response in GMCs and fibronectin expression, but promoted cell viability. In contrast, pcDNA3.0-TXNIP and Compound C increased oxidative stress response in normal glucose cultured GMCs, but decreased cell viability. The combined effect of TXNIP siRNA and AICAR on the inhibition of oxidative stress was obviously stronger than that of single use of TXNIP siRNA. CONCLUSION TXNIP facilitates the oxidative stress response in GMCs partially through AMPK pathway, which may provide potential therapeutic target for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Wenwei Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China.
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Jimin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yingying Cai
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| |
Collapse
|
38
|
Gu L, Tao Y, Chen C, Ye Y, Xiong X, Sun Y. Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation. Int Urol Nephrol 2018; 50:2027-2035. [PMID: 29974405 DOI: 10.1007/s11255-018-1918-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 01/22/2023]
Abstract
Ischemia/reperfusion injury (IRI) occurs commonly during renal transplantation. It has been well demonstrated that the inflammatory response has an important role in the pathogenesis and pathological processes of IRI. However, the signaling events that trigger the activation of the inflammatory response are less clear. Accumulated evidence has identified the role of various injury factors released from or exposed in ischemic, damaged, or dying cells, which serve as initiators of the inflammatory response and exacerbate kidney injury after renal IRI. Signaling pathways triggered by these endogenous molecules that activate different pathogen recognition receptors have also been widely investigated. Here, we review the molecular signaling molecules that initiate the inflammatory response during renal IRI and that provide potential therapeutic options for the disease.
Collapse
Affiliation(s)
- Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Tao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Hubei International Scientific and Technology Cooperation Base of Pesticide and Green Synthesis, Chemical Biology Center, College of Chemistry, Central China Normal Universtiy, Wuhan, 430079, China.
| |
Collapse
|
39
|
Zhong Y, Lee K, He JC. SIRT1 Is a Potential Drug Target for Treatment of Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2018; 9:624. [PMID: 30386303 PMCID: PMC6199382 DOI: 10.3389/fendo.2018.00624] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple studies have demonstrated a critical role of Sirtuin-1 (SIRT1) deacetylase in protecting kidney cells from cellular stresses. A protective role of SIRT1 has been reported in both podocytes and renal tubular cells in multiple kidney disease settings, including diabetic kidney disease (DKD). We and others have shown that SIRT1 exerts renoprotective effects in DKD in part through the deacetylation of transcription factors involved in the disease pathogenesis, such as p53, FOXO, RelA/p65NF-κB, STAT3, and PGC1α/PPARγ. Recently we showed that the podocyte-specific overexpression of SIRT1 attenuated proteinuria and kidney injury in an experimental model of DKD, further confirming SIRT1 as a potential target to treat kidney disease. Known agonists of SIRT1 such as resveratrol diminished diabetic kidney injury in several animal models. Similarly, we also showed that puerarin, a Chinese herbal medicine compound, activates SIRT1 to provide renoprotection in mouse models of DKD. However, as these are non-specific SIRT1 agonists, we recently developed a more specific and potent SIRT1 agonist (BF175) that significantly attenuated diabetic kidney injury in type 1 diabetic OVE26 mice. We also previously reported that MS417, a bromodomain inhibitor that disrupts the interaction between the acetyl-residues of NF-κB and bromodomain-containing protein 4 (BRD4) also attenuates DKD. These results suggest that SIRT1 agonists and bromodomain inhibitors could be potential new therapuetic treatments against DKD progression.
Collapse
Affiliation(s)
- Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yifei Zhong
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Renal Section, James J. Peters VA Medical Center, Bronx, NY, United States
- John Cijiang He
| |
Collapse
|