1
|
Aydın M, Akyüz S, Yanik H, Yildirim E, Başak AM, Güven HE, Gülap Y, Yilmaz KB. Autologous adipose-derived tissue stromal vascular fraction and intralesional epidermal growth factor combined application in patients with diabetic foot. J Wound Care 2025; 34:xxx-xxxviii. [PMID: 40056382 DOI: 10.12968/jowc.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect on wound healing of intralesional epidermal growth factor (iEGF) (Heberprot-p; Hasbiotech, Cuba) and autologous adipose-derived tissue stromal vascular fraction (AD-tSVF) applied in the closure of tissue defects. METHOD The patients included in the study were separated into three approximately equal groups: Group 1 with iEGF+AD-tSVF applied; Group 2 with iEGF only applied; and Group 3 with conventional wound care products applied. Granulation tissue was taken from the wound bed before the application of iEGF and AD-tSVF and at intervals thereafter for flow cytometry analysis. RESULTS Group 1 included 11 patients; Group 2 included 10 patients; and Group 3 included 10 patients. The time to re-epithelialisation was determined as 187.60±68.78 days in Group 3 patients compared with Group 1 (72.27±10.33 days) and Group 2 (70.50±18.02 days) (p<0.001). Following the application of iEGF to the wound bed, an increase was observed in M2 macrophage (CD209+), and M1 macrophage (CD38+) levels. The (CD34+) stem cells obtained from the granulation tissue after the application of AD-tSVF were determined to still be statistically significantly increased in the wound bed on the 21st day. CONCLUSION The results of this study demonstrated that the application of iEGF and iEGF+ AD-tSVF significantly shortened the wound healing period compared with conventional methods. AD-tSVF stands as an effective option, especially in the patient group with halted or delayed wound healing despite the application of iEGF. Moreover, the significant increase (p<0.001) in the level of M2 macrophages (CD209+), M1 macrophages (CD38+) and stem cells (CD34+) provided by this treatment modality showed that it contributed to wound healing at the cellular level.
Collapse
Affiliation(s)
- Mustafa Aydın
- MD, Orthopaedic Surgeon, Department of Orthopedics and Traumatology, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Simay Akyüz
- PhD, RN, Assistant Professor, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
| | - Hamdullah Yanik
- PhD, Molecular Biology and Genetics Specialist, Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Eda Yildirim
- MD, Orthopaedic Surgeon, Department of Orthopedics and Traumatology, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Ali Murat Başak
- MD, Orthopaedic Surgeon, Department of Orthopedics and Traumatology, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Hikmet Erhan Güven
- MD, Associate Professor, General Surgeon, Department of General Surgery, Etlik City Hospital, Ankara, Turkey
| | - Yasin Gülap
- MD, General Surgeon, Department of General Surgery, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Kerim Bora Yilmaz
- PhD, Molecular Biology and Genetics Specialist, Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
- MD, General Surgeon, Department of General Surgery, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
- MD, Professor, General Surgeon, Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
O'Neill CG, Sawaya AP, Mehdizadeh S, Brooks SR, Hasneen K, Nayak S, Overmiller AM, Morasso MI. SOX2-Dependent Wound Repair Signature Triggers Prohealing Outcome in Hyperglycemic Wounds. J Invest Dermatol 2025; 145:451-455.e5. [PMID: 39127091 PMCID: PMC11745936 DOI: 10.1016/j.jid.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Christopher G O'Neill
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Spencer Mehdizadeh
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Ramírez-Ruiz F, Núñez-Tapia I, Piña-Barba MC, Alvarez-Pérez MA, Guarino V, Serrano-Bello J. Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and In Vivo Implications. Bioengineering (Basel) 2025; 12:46. [PMID: 39851320 PMCID: PMC11759179 DOI: 10.3390/bioengineering12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
In the last thirty years, tissue engineering (TI) has emerged as an alternative method to regenerate tissues and organs and restore their function by implanting specific lineage cells, growth factors, or biomolecules functionalizing a matrix scaffold. Recently, several pathologies have led to bone loss or damage, such as malformations, bone resorption associated with benign or malignant tumors, periodontal disease, traumas, and others in which a discontinuity in tissue integrity is observed. Bone tissue is characterized by different stiffness, mechanical traction, and compression resistance as a function of the different compartments, which can influence susceptibility to injury or destruction. For this reason, research into repairing bone defects began several years ago to find a scaffold to improve bone regeneration. Different techniques can be used to manufacture 3D scaffolds for bone tissue regeneration based on optimizing reproducible scaffolds with a controlled hierarchical porous structure like the extracellular matrix of bone. Additionally, the scaffolds synthesized can facilitate the inclusion of bone or mesenchymal stem cells with growth factors that improve bone osteogenesis, recruiting new cells for the neighborhood to generate an optimal environment for tissue regeneration. In this review, current state-of-the-art scaffold manufacturing based on the use of polycaprolactone (PCL) as a biomaterial for bone tissue regeneration will be described by reporting relevant studies focusing on processing techniques, from traditional-i.e., freeze casting, thermally induced phase separation, gas foaming, solvent casting, and particle leaching-to more recent approaches, such as 3D additive manufacturing (i.e., 3D printing/bioprinting, electrofluid dynamics/electrospinning), as well as integrated techniques. As a function of the used technique, this work aims to offer a comprehensive overview of the benefits/limitations of PCL-based scaffolds in order to establish a relationship between scaffold composition, namely integration of other biomaterial phases' structural properties (i.e., pore morphology and mechanical properties) and in vivo response.
Collapse
Affiliation(s)
- Fernanda Ramírez-Ruiz
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| | - Israel Núñez-Tapia
- Materials Research Institute, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (I.N.-T.); (M.C.P.-B.)
| | - María Cristina Piña-Barba
- Materials Research Institute, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (I.N.-T.); (M.C.P.-B.)
| | - Marco Antonio Alvarez-Pérez
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad 20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| |
Collapse
|
4
|
Berlanga-Acosta J, Garcia-Ojalvo A, Fernández-Montequin J, Falcon-Cama V, Acosta-Rivero N, Guillen-Nieto G, Pujol-Ferrer M, Limonta-Fernandez M, Ayala-Avila M, Eriksson E. Epidermal Growth Factor Intralesional Delivery in Chronic Wounds: The Pioneer and Standalone Technique for Reversing Wound Chronicity and Promoting Sustainable Healing. Int J Mol Sci 2024; 25:10883. [PMID: 39456666 PMCID: PMC11507032 DOI: 10.3390/ijms252010883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The early expectations about growth factors' (GFs') discovery as an undisputed therapeutic solution for chronic wounds progressively eclipsed when they failed to accelerate acute wound closure and restore the healing trajectory of stagnant ulcers. Critical knowledge about chronic wound biology and GF pharmacology was a conundrum at that time. Diabetes undermines keratinocytes' and fibroblasts' physiology, impairing skin healing abilities. Diabetic ulcers, as other chronic wounds, are characterized by hyperinflammation, unbalanced proteolytic activity, catabolism, and free radical cytotoxicity. This hostile scenario for the chemical stability, integrity, and functionality of GFs led to the conclusion that topical administration may jeopardize GFs' clinical effectiveness. Epidermal growth factor (EGF) has a proximal position in tissues homeostasis by activating survival and mitogenic pathways from embryonic life to adulthood. Seminal experiments disclosed unprecedented pharmacological bounties of parenterally administered EGF. Accordingly, the experience accumulated for more than 20 years of EGF intralesional infiltration of diabetic wound bottoms and edges has translated into sustained healing responses, such as low recurrences and amputation rates. This delivery route, in addition to being safe and tolerated, has shown to restore a variety of circulating biochemical markers ordinarily disturbed in diabetic conditions. EGF infiltration triggers a cascade of local fibroblast reactions, supporting its molecular integrity, prolonged mean residence time, and ultimately eliciting its receptor trafficking and nuclear translocation. The intralesional delivery route seems to warrant that EGF reaches wound fibroblasts' epigenetic core, mitigating the consequences of metabolic memory imprinting.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Ariana Garcia-Ojalvo
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Jose Fernández-Montequin
- National Institute of Angiology and Vascular Surgery—Diabetic Angiopathy Service, Calzada del Cerro 1551 esq, Domínguez, Cerro, Havana 12000, Cuba;
| | - Viviana Falcon-Cama
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Nelson Acosta-Rivero
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Gerardo Guillen-Nieto
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Merardo Pujol-Ferrer
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Miladys Limonta-Fernandez
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Marta Ayala-Avila
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Elof Eriksson
- Joseph E. Murray Professor of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Main Pike, ASB-2, 75 Francis St, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
6
|
Li G, Wang Q, Liu H, Yang Z, Wu Y, He L, Deng X. Fabricating Composite Cell Sheets for Wound Healing: Cell Sheets Based on the Communication Between BMSCs and HFSCs Facilitate Full-Thickness Cutaneous Wound Healing. Tissue Eng Regen Med 2024; 21:421-435. [PMID: 37995084 PMCID: PMC10987453 DOI: 10.1007/s13770-023-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue. METHODS Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice. RESULTS Experiments confirmed that there is cell-cell communication between BMSCs and HFSCs, which enhances the cell proliferation and migration abilities of both cell types. Cell-cell talk also upregulates the gene expression of pro-angiogenic-related cytokines in BMSCs and pro-hair follicle-related cytokines in HFSCs, as well as causing changes in the properties of secreted extracellular matrix components. CONCLUSIONS Therefore, the composite cell sheet is more conducive for cutaneous wound healing and promoting the regeneration of blood vessels and hair follicles.
Collapse
Affiliation(s)
- Gongjian Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yuhan Wu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li He
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Raghav SS, Kumar B, Sethiya NK, Lal DK. Diabetic Foot Ulcer Management and Treatment: An Overview of Published Patents. Curr Diabetes Rev 2024; 20:e120623217906. [PMID: 37309771 DOI: 10.2174/1573399820666230612161846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND One of the most challenging effects of diabetes is diabetic foot ulceration (DFU). DFU may occur in up to one-third of individuals with diabetes mellitus (D.M.) at some point in their lives. The major cause of morbidity in D.M. patients is DFU. The length of treatment is difficult, and DFU recurrence is common. OBJECTIVE The most crucial element for the treatment and prevention of DFUs require a multidisciplinary approach. Patients who are at risk should be identified, depending on the type of risk, prophylactic actions etc. It is imperative to identify at-risk patients and take preventative measures accordingly. METHOD The at-risk diabetes-related foot ulcer was identified based on the risk category classification, while the foot ulcers were evaluated using Wagner's classification system. RESULTS Literature reported that patients with lower limb vascular insufficiency, loss of vibratory sensation, or protective sensation loss have an increased risk of developing foot ulcers. Proper categorization and therapeutic measures will be implemented after the DFU has been formed. The appropriate assessment and management of general health status should include glycemic control, the diagnosis and treatment of vascular disease, standard care for wounds, diagnosis, and infection treatments. CONCLUSION The review reflects the updated awareness of the treatment and management of DFU based on the current and past literature and patent analysis.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | | | - Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
8
|
Tarvestad-Laise KE, Ceresa BP. Modulating Growth Factor Receptor Signaling to Promote Corneal Epithelial Homeostasis. Cells 2023; 12:2730. [PMID: 38067157 PMCID: PMC10706396 DOI: 10.3390/cells12232730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The corneal epithelium is the first anatomical barrier between the environment and the cornea; it is critical for proper light refraction onto the retina and prevents pathogens (e.g., bacteria, viruses) from entering the immune-privileged eye. Trauma to the highly innervated corneal epithelium is extremely painful and if not resolved quickly or properly, can lead to infection and ultimately blindness. The healthy eye produces its own growth factors and is continuously bathed in tear fluid that contains these proteins and other nutrients to maintain the rapid turnover and homeostasis of the ocular surface. In this article, we review the roles of growth factors in corneal epithelial homeostasis and regeneration and some of the limitations to their use therapeutically.
Collapse
Affiliation(s)
- Kate E. Tarvestad-Laise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Department of Ophthalmology and Vision Sciences, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Kim HN, Elgundi Z, Lin X, Fu L, Tang F, Moh ESX, Jung M, Chandrasekar K, Bartlett-Tomasetig F, Foster C, Packer NH, Whitelock JM, Rnjak-Kovacina J, Lord MS. Engineered short forms of perlecan enhance angiogenesis by potentiating growth factor signalling. J Control Release 2023; 362:184-196. [PMID: 37648081 DOI: 10.1016/j.jconrel.2023.08.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Growth factors are key molecules involved in angiogenesis, a process critical for tissue repair and regeneration. Despite the potential of growth factor delivery to stimulate angiogenesis, limited clinical success has been achieved with this approach. Growth factors interact with the extracellular matrix (ECM), and particularly heparan sulphate (HS), to bind and potentiate their signalling. Here we show that engineered short forms of perlecan, the major HS proteoglycan of the vascular ECM, bind and signal angiogenic growth factors, including fibroblast growth factor 2 and vascular endothelial growth factor-A. We also show that engineered short forms of perlecan delivered in porous chitosan biomaterial scaffolds promote angiogenesis in a rat full thickness dermal wound model, with the fusion of perlecan domains I and V leading to superior vascularisation compared to native endothelial perlecan or chitosan scaffolds alone. Together, this study demonstrates the potential of engineered short forms of perlecan delivered in chitosan scaffolds as next generation angiogenic therapies which exert biological activity via the potentiation of growth factors.
Collapse
Affiliation(s)
- Ha Na Kim
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Molecular Surface Interaction Laboratory, Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zehra Elgundi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaoting Lin
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fengying Tang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia; School of Natural Science, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - MoonSun Jung
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Keerthana Chandrasekar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Florence Bartlett-Tomasetig
- Katherina Gaus Light Microscopy Facility, Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Candice Foster
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia; School of Natural Science, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Garcia-Orue I, Santos-Vizcaino E, Uranga J, de la Caba K, Guerrero P, Igartua M, Hernandez RM. Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing. J Mater Chem B 2023; 11:6896-6910. [PMID: 37377169 DOI: 10.1039/d2tb02796h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the current study, we produced a hydro-film dressing for the treatment of chronic wounds. The hydro-film structure was composed of gelatin cross-linked with citric acid, agar and Aloe vera extract (AV); additionally epidermal growth factor (EGF) was loaded to promote wound healing. Due to the excellent hydrogel-forming ability of gelatin, the obtained hydro-film was able to swell 884 ± 36% of its dry weight, which could help controlling wound moisture. To improve gelatin mechanical properties, polymer chains were cross-linked with citric acid and agar, reaching an ultimate tensile strength that was in the highest range of human skin. In addition, it showed a slow degradation profile that resulted in a remaining weight of 28 ± 8% at day 28. Regarding, biological activity, the addition of AV and citric acid provided the ability to reduce human macrophage activation, which could help reverse the permanent inflammatory state of chronic wounds. Moreover, loaded EGF, together with the structural AV of the hydro-film, promoted human keratinocyte and fibroblast migration, respectively. Furthermore, the hydro-films presented excellent fibroblast adhesiveness, so they could be useful as provisional matrices for cell migration. Accordingly, these hydro-films showed suitable physicochemical characteristics and biological activity for chronic wound healing applications.
Collapse
Affiliation(s)
- Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jone Uranga
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
- Proteinmat materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| |
Collapse
|
11
|
Shakhakarmi K, Seo JE, Lamichhane S, Thapa C, Lee S. EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies. Arch Pharm Res 2023; 46:299-322. [PMID: 36928481 DOI: 10.1007/s12272-023-01444-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Epidermal growth factor (EGF) has been used in wound management and regenerative medicine since the late 1980s. It has been widely utilized for a long time and still is because of its excellent tolerability and efficacy. EGF has many applications in tissue engineering, cancer therapy, lung diseases, gastric ulcers, and wound healing. Nevertheless, its in vivo and during storage stability is a primary concern. This review focuses on the topical use of EGF, especially in chronic wound healing, the emerging use of biomaterials to deliver it, and future research possibilities. To successfully deliver EGF to wounds, a delivery system that is proteolytically resistant and stable over the long term is required. Biomaterials are an area of interest for the development of such systems. These systems may be used in non-healing wounds such as diabetic foot ulcers, pressure ulcers, and burns. In these pathologies, EGF can reduce the risk of amputation of the lower extremities, as it accelerates the wound healing process. Furthermore, appropriate delivery system would also stabilize and control the EGF release profile in a wound. Several in vitro and in vivo studies have already proven the efficacy of such systems in the above-mentioned types of wounds. Moreover, several formulations such as ointments and intralesional injections are already available on the market. However, these products are still problematic in terms of inadequate diffusion of EGF, low bioavailability storage conditions, and shelf-life. This review discusses the nano formulations comprising biomaterials infused with EGF which could be a promising delivery system for chronic wound healing in the future.
Collapse
Affiliation(s)
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea
| | | | - Chhitij Thapa
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea.
| |
Collapse
|
12
|
Umar AK. Stem Cell's Secretome Delivery Systems. Adv Pharm Bull 2023; 13:244-258. [PMID: 37342369 PMCID: PMC10278206 DOI: 10.34172/apb.2023.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 09/01/2023] Open
Abstract
Stem cells' secretome contains biomolecules that are ready to give therapeutic activities. However, the biomolecules should not be administered directly because of their in vivo instability. They can be degraded by enzymes or seep into other tissues. There have been some advancements in localized and stabilized secretome delivery systems, which have increased their effectiveness. Fibrous, in situ, or viscoelastic hydrogel, sponge-scaffold, bead powder/ suspension, and bio-mimetic coating can maintain secretome retention in the target tissue and prolong the therapy by sustained release. Porosity, young's modulus, surface charge, interfacial interaction, particle size, adhesiveness, water absorption ability, in situ gel/film, and viscoelasticity of the preparation significantly affect the quality, quantity, and efficacy of the secretome. Therefore, the dosage forms, base materials, and characteristics of each system need to be examined to develop a more optimal secretome delivery system. This article discusses the clinical obstacles and potential solutions for secretome delivery, characterization of delivery systems, and devices used or potentially used in secretome delivery for therapeutic applications. This article concludes that secretome delivery for various organ therapies necessitates the use of different delivery systems and bases. Coating, muco-, and cell-adhesive systems are required for systemic delivery and to prevent metabolism. The lyophilized form is required for inhalational delivery, and the lipophilic system can deliver secretomes across the blood-brain barrier. Nano-sized encapsulation and surface-modified systems can deliver secretome to the liver and kidney. These dosage forms can be administered using devices such as a sprayer, eye drop, inhaler, syringe, and implant to improve their efficacy through dosing, direct delivery to target tissues, preserving stability and sterility, and reducing the immune response.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
13
|
Tabanjeh SF, Al-Malki T, Kharabsheh RA, Mahmood D. A case series of autologous platelet-rich plasma injection in treating chronic ulcers conducted in Saudi Arabia. Int J Health Sci (Qassim) 2023; 17:46-56. [PMID: 36891041 PMCID: PMC9986877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Objective This is a case series study of 14 cases of chronic unhealed ulcers involving patients of 19-85 years, aimed to demonstrate the positive therapeutic outcomes of using autologous platelet rich plasma (PRP) in diabetic foot ulcer (DFU) and other chronic wound healing. Methods This is a formal consecutive clinical case series. Patients with chronic unhealed ulcers were enrolled from the amputation prevention clinic by an interdisciplinary team includes podiatrist, general surgeon, orthopedic, vascular surgeon, and wound care nurses at Kahel Specialized Centre, a specialized center for managing foot and ankle diseases, located in Riyadh, Saudi Arabia. Those patients who presented with chronic wounds and showed no significant wound reduction despite following the standard wound care protocol were included in the study. There were no specific predetermined exclusion criteria when considering patients for treatment with this modality. Results In this case series, majority (80%) of the patients were above 50 years of age, and 10 (66.7%) patients were male and 5 (33.3%) were female. Of all the cases presented to the amputation prevention clinic, majority (73.3%) reported suffering from type 2 diabetes mellitus (DM) and also, one reported type 1 DM [6.7%]). All the cases of DFU received a combination of hydrogel and autologous PRP treatment and were put of suitable offloading devices, except one case received a combination of Cadexomer iodine, hydrogel and PRP treatment. In the present case series involving 3-14 weeks of the treatment duration, only 2-3 doses of autologous PRP provided complete healing and or maximum wound closure. Conclusion Autologous PRP therapy is efficacious in facilitating, enhancing wound healing and aids in complete wound closure. This case series was limited in term of the sample size which is the number patients enrolled for the study, hence, the study finding remain inconclusive to some extent and hence, further study is required with greater number of sample size. The strength of this study is that it is the first study in Saudi Arabia and gulf region, to report the beneficial effect of PRP in chronic unhealed ulcers including diabetic ulcers.
Collapse
Affiliation(s)
| | - Talal Al-Malki
- Department of Orthopedics and Trauma, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Rola Al Kharabsheh
- Department of Nursing, Sultan Bin Abdulaziz Humanitarian City, Riyadh, Saudi Arabia
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Bhardwaj H, Khute S, Sahu R, Jangde RK. Advanced Drug Delivery System for Management of Chronic Diabetes Wound Healing. Curr Drug Targets 2023; 24:1239-1259. [PMID: 37957907 DOI: 10.2174/0113894501260002231101080505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
The diabetic wound is excessively vulnerable to infection because the diabetic wound suggests delayed and incomplete healing techniques. Presently, wounds and ulcers related to diabetes have additionally increased the medical burden. A diabetic wound can impair mobility, lead to amputations, or even death. In recent times, advanced drug delivery systems have emerged as promising approaches for enhancing the efficacy of wound healing treatments in diabetic patients. This review aims to provide an overview of the current advancements in drug delivery systems in managing chronic diabetic wound healing. This review begins by discussing the pathophysiological features of diabetic wounds, including impaired angiogenesis, elevated reactive oxygen species, and compromised immune response. These factors contribute to delayed wound healing and increased susceptibility to infection. The importance of early intervention and effective wound management strategies is emphasized. Various types of advanced drug delivery systems are then explored, including nanoparticles, hydrogels, transferosomes, liposomes, niosomes, dendrimers, and nanosuspension with incorporated bioactive agents and biological macromolecules are also utilized for chronic diabetes wound management. These systems offer advantages such as sustained release of therapeutic agents, improved targeting and penetration, and enhanced wound closure. Additionally, the review highlights the potential of novel approaches such as antibiotics, minerals, vitamins, growth factors gene therapy, and stem cell-based therapy in diabetic wound healing. The outcome of advanced drug delivery systems holds immense potential in managing chronic diabetic wound healing. They offer innovative approaches for delivering therapeutic agents, improving wound closure, and addressing the specific pathophysiological characteristics of diabetic wounds.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Sulekha Khute
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Ram Sahu
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Rajendra Kumar Jangde
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| |
Collapse
|
15
|
Lyttle BD, Vaughn AE, Bardill JR, Apte A, Gallagher LT, Zgheib C, Liechty KW. Effects of microRNAs on angiogenesis in diabetic wounds. Front Med (Lausanne) 2023; 10:1140979. [PMID: 37020673 PMCID: PMC10067680 DOI: 10.3389/fmed.2023.1140979] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetes mellitus is a morbid condition affecting a growing number of the world population, and approximately one third of diabetic patients are afflicted with diabetic foot ulcers (DFU), which are chronic non-healing wounds that frequently progress to require amputation. The treatments currently used for DFU focus on reducing pressure on the wound, staving off infection, and maintaining a moist environment, but the impaired wound healing that occurs in diabetes is a constant obstacle that must be faced. Aberrant angiogenesis is a major contributor to poor wound healing in diabetes and surgical intervention is often necessary to establish peripheral blood flow necessary for healing wounds. Over recent years, microRNAs (miRNAs) have been implicated in the dysregulation of angiogenesis in multiple pathologies including diabetes. This review explores the pathways of angiogenesis that become dysregulated in diabetes, focusing on miRNAs that have been identified and the mechanisms by which they affect angiogenesis.
Collapse
Affiliation(s)
- Bailey D. Lyttle
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Bailey D. Lyttle,
| | - Alyssa E. Vaughn
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - James R. Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Lauren T. Gallagher
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| |
Collapse
|
16
|
Demonstration of the Effectiveness of Epidermal Growth Factor in Diabetic Foot Ulcers. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1143566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose: Diabetes affects more than 170 million people over the age of 20 worldwide. Diabetic foot ulcers (DFU) are one of the most common complications of diabetes. It negatively influence the patients' quality of life. Multidisciplinary treatment is required in the treatment of DFUs. In our study, we aimed to investigate the effectiveness of intralesional epidermal growth factor (EGF) in diabetic neuropathy foot ulcers.
Materials and Methods: The study was conducted with 29 patients who applied to our clinic due to diabetic foot wounds between January 2014 and December 2020, who had no wound infection and osteomyelitis, who underwent EGF in accordance with the study criteria. In our study, EGF of 75µg/day 3 times a week was applied intralesionally to diabetic ulcers for 4-8 weeks.
Results: A total of 29 patients were included in the study. 21 of the patients were male and 8 of them were female. The mean age was 59,82. One patient had signs of osteomyelitis. Additional disease was detected in 93,1% of the patients. The mean ulcer width of the patients was found to be 3,44 cm2.
Conclusion: Three important results were obtained from the study. First; epidermal growth factor has been quite effective in the treatment of patients with DFU. The second important finding was to ensure the safe epithelialization of the standing ulcers without impairing the quality of life of the patients. Thirdly, after debridement, treatment with EGF was found to provide a significant improvement in wounds.
Collapse
|
17
|
Rao SS, Venkatesan J, Yuvarajan S, Rekha PD. Self-assembled polyelectrolyte complexes of chitosan and fucoidan for sustained growth factor release from PRP enhance proliferation and collagen deposition in diabetic mice. Drug Deliv Transl Res 2022; 12:2838-2855. [PMID: 35445942 DOI: 10.1007/s13346-022-01144-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Diabetic wound management is a serious health care challenge due to higher rates of relapse, expensive treatment approaches, and poor healing outcomes. Among cell-based therapies, use of platelet-rich plasma (PRP) has been shown to be effective for diabetic wounds, but its poor shelf-life limits its clinical use. Here, we demonstrate a simple but effective polymer system to increase the shelf-life of PRP by developing a polyelectrolyte complex with dropwise addition of chitosan solution containing PRP by simple mixing at room temperature. Thus, prepared chitosan-fucoidan (CF) carrier complex encapsulated more than 95% of the loaded PRP. The resulting CF/PRP colloids were spherical in shape and ensured extended PRP release up to 72 h at 37 °C. Routine characterization (FT-IR, XRD, SEM) showed the material properties. The biological assays showed that CF complexes were biocompatible while CF/PRP enhanced the proliferation of fibroblasts and keratinocytes via higher Ki67 expression and fibroblast migration. Further investigations using a diabetic mouse model demonstrated significantly higher wound contraction and histopathological observations showed increased fibroblast migration, and collagen and cytokeratin deposition in treatment groups. The results are suggestive of the efficacy of CF/PRP as a cost-effective topical formulation for the sustained delivery of growth factors in treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Sneha Subramanya Rao
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Jayachandran Venkatesan
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Subramaniyan Yuvarajan
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Punchappady-Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
18
|
Cho KH, Kim JH, Nam HS, Kang DJ. Efficacy Comparison Study of Human Epidermal Growth Factor (EGF) between Heberprot-P® and Easyef® in Adult Zebrafish and Embryo under Presence or Absence Combination of Diabetic Condition and Hyperlipidemia to Mimic Elderly Patients. Geriatrics (Basel) 2022; 7:geriatrics7020045. [PMID: 35447848 PMCID: PMC9028627 DOI: 10.3390/geriatrics7020045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/02/2022] [Accepted: 04/02/2022] [Indexed: 12/30/2022] Open
Abstract
Recombinant human epidermal growth factor (EGF) has been used to treat adult diabetic foot ulcers and pediatric burns by facilitating wound healing and epithelization, especially for elderly patients. Several formulation types of EGF from different expression hosts are clinically available, such as intralesional injection and topical application. On the other hand, no study has compared the in vivo efficacy of EGF products directly in terms of tissue regeneration and wound healing activity. The present study compared two commercial products, Heberprot-P75® and Easyef®, in terms of their tissue regeneration activity in adult zebrafish and the developmental speed of zebrafish embryos. Fluorescence spectroscopy showed that the two EGF products had different Trp fluorescence emission spectra: Easyef® showed a wavelength of maximum fluorescence (WMF) of 337 nm with weak fluorescence intensity (FI), while Heberprot-P75® showed WMF of 349 nm with a 4.1 times stronger FI than that of Easyef®. The WMF of Heberprot-P75® was quenched by adding singlet oxygen in ozonated oil, while the WMF of Easyef® was not quenched. Treatment with Heberprot-P75® induced greater embryo development speed with a higher survival rate after exposure to EGF in water and microinjection into embryos. Under normal diet (ND) consumption, Heberprot-P75® showed a 1.4 times higher tail fin regeneration activity than Easyef® during seven days from the intraperitoneal injection (10 μL, 50 μg/mL) after amputating the tail fin. Under ND consumption and diabetic condition caused by streptozotocin (STZ) treatment, Heberprot-P75® showed 2.1 times higher tail fin regeneration activity than Easyef® from the same injection and amputation protocol. Under a high-cholesterol diet (HCD) alone, Heberprot-P75® showed 1.2 times higher tail fin regeneration activity than the Easyef® group and PBS group from the same injection and amputation. Under diabetic conditions (STZ-injected) and HCD consumption, the Heberprot-P75® group showed 1.7 and 1.5 times higher tail fin regeneration activity than the Easyef® group and PBS group, respectively, with a distinct and clean regeneration pattern. In contrast, the Easyef® group and PBS group showed ambiguous regeneration patterns with a severe fissure of the tail fin, which is a typical symptom of a diabetic foot. In conclusion, Heberprot-P75® and Easyef® have different Trp fluorescence properties in terms of the WMF and fluorescence quenching. Treatment of Heberprot-P75® induced a greater developmental speed of zebrafish embryos in both water exposure and microinjection. Heberprot-P75® induced significantly higher wound healing and tissue regeneration activity than Easyef® and PBS in the presence or absence of diabetic conditions and cholesterol supplementation.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (J.-H.K.); (H.-S.N.); (D.-J.K.)
- LipoLab, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-964-1990; Fax: +82-53-965-1992
| | - Ju-Hyun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (J.-H.K.); (H.-S.N.); (D.-J.K.)
| | - Hyo-Seon Nam
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (J.-H.K.); (H.-S.N.); (D.-J.K.)
| | - Dae-Jin Kang
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (J.-H.K.); (H.-S.N.); (D.-J.K.)
| |
Collapse
|
19
|
Kara M, Baykan H, Karabulut D. Investigation of the effect of sildenafil on flap survival in a diabetic rat model. ANN CHIR PLAST ESTH 2022; 67:232-238. [DOI: 10.1016/j.anplas.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/01/2022]
|
20
|
Paprocka M, Kraskiewicz H, Bielawska-Pohl A, Krawczenko A, Masłowski L, Czyżewska-Buczyńska A, Witkiewicz W, Dus D, Czarnecka A. From Primary MSC Culture of Adipose Tissue to Immortalized Cell Line Producing Cytokines for Potential Use in Regenerative Medicine Therapy or Immunotherapy. Int J Mol Sci 2021; 22:ijms222111439. [PMID: 34768869 PMCID: PMC8584013 DOI: 10.3390/ijms222111439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
For twenty-five years, attempts have been made to use MSCs in the treatment of various diseases due to their regenerative and immunomodulatory properties. However, the results are not satisfactory. Assuming that MSCs can be replaced in some therapies by the active factors they produce, the immortalized MSCs line was established from human adipose tissue (HATMSC1) to produce conditioned media and test its regenerative potential in vitro in terms of possible clinical application. The production of biologically active factors by primary MSCs was lower compared to the HATMSC1 cell line and several factors were produced only by the cell line. It has been shown that an HATMSC1-conditioned medium increases the proliferation of various cell types, augments the adhesion of cells and improves endothelial cell function. It was found that hypoxia during culture resulted in an augmentation in the pro-angiogenic factors production, such as VEGF, IL-8, Angiogenin and MCP-1. The immunomodulatory factors caused an increase in the production of GM-CSF, IL-5, IL-6, MCP-1, RANTES and IL-8. These data suggest that these factors, produced under different culture conditions, could be used for different medical conditions, such as in regenerative medicine, when an increased concentration of pro-angiogenic factors may be beneficial, or in inflammatory diseases with conditioned media with a high concentration of immunomodulatory factors.
Collapse
Affiliation(s)
- Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Honorata Kraskiewicz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Leszek Masłowski
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
| | | | - Wojciech Witkiewicz
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
| | - Danuta Dus
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Anna Czarnecka
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
- Faculty of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
21
|
Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1072. [PMID: 34684109 PMCID: PMC8539411 DOI: 10.3390/medicina57101072] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is an increasingly prevalent chronic metabolic disease characterized by prolonged hyperglycemia that leads to long-term health consequences. It is estimated that impaired healing of diabetic wounds affects approximately 25% of all patients with diabetes mellitus, often resulting in lower limb amputation, with subsequent high economic and psychosocial costs. The hyperglycemic environment promotes the formation of biofilms and makes diabetic wounds difficult to treat. In this review, we present updates regarding recent advances in our understanding of the pathophysiology of diabetic wounds focusing on impaired angiogenesis, neuropathy, sub-optimal chronic inflammatory response, barrier disruption, and subsequent polymicrobial infection, followed by current and future treatment strategies designed to tackle the various pathologies associated with diabetic wounds. Given the alarming increase in the prevalence of diabetes, and subsequently diabetic wounds, it is imperative that future treatment strategies target multiple causes of impaired healing in diabetic wounds.
Collapse
Affiliation(s)
| | | | | | - Robert S. Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.B.); (W.A.W.); (B.A.A.)
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.B.); (W.A.W.); (B.A.A.)
| |
Collapse
|
22
|
Umar AK, Sriwidodo S, Maksum IP, Wathoni N. Film-Forming Spray of Water-Soluble Chitosan Containing Liposome-Coated Human Epidermal Growth Factor for Wound Healing. Molecules 2021; 26:5326. [PMID: 34500760 PMCID: PMC8433946 DOI: 10.3390/molecules26175326] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Human epidermal growth factor (hEGF) has been known to have excellent wound-healing activity. However, direct application to the wound area can lead to low hEGF bioavailability due to protease enzymes or endocytosis. The use of liposomes as coatings and carriers can protect hEGF from degradation by enzymes, chemical reactions, and immune reactions. Sustained release using a matrix polymer can also keep the levels of hEGF in line with the treatment. Therefore, this study aimed to develop a film-forming spray of water-soluble chitosan (FFSWSC) containing hEGF-liposomes as a potential wound dressing. The hEGF-liposomes were prepared using the hydration film method, and the preparation of the FFSWSC was achieved by the ionic gelation method. The hydration film method produced hEGF-liposomes that were round and spread with a Z-average of 219.3 nm and encapsulation efficiency of 99.87%, whereas the film-forming solution, which provided good sprayability, had a formula containing 2% WSC and 3% propylene glycol with a viscosity, spray angle, droplet size, spray weight, and occlusion factor of 21.94 ± 0.05 mPa.s, 73.03 ± 1.28°, 54.25 ± 13.33 µm, 0.14 ± 0.00 g, and 14.57 ± 3.41%, respectively. The pH, viscosity, and particle size of the FFSWSC containing hEGF-liposomes were stable during storage for a month in a climatic chamber (40 ± 2 °C, RH 75 ± 5%). A wound healing activity test on mice revealed that hEGF-liposomes in FFSWSC accelerated wound closure significantly, with a complete wound closure on day 6. Based on the findings, we concluded that FFSWSC containing hEGF-liposomes has the potential to be used as a wound dressing.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Iman Permana Maksum
- Biochemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
23
|
Miricescu D, Badoiu SC, Stanescu-Spinu II, Totan AR, Stefani C, Greabu M. Growth Factors, Reactive Oxygen Species, and Metformin-Promoters of the Wound Healing Process in Burns? Int J Mol Sci 2021; 22:ijms22179512. [PMID: 34502429 PMCID: PMC8431501 DOI: 10.3390/ijms22179512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Burns can be caused by various factors and have an increased risk of infection that can seriously delay the wound healing process. Chronic wounds caused by burns represent a major health problem. Wound healing is a complex process, orchestrated by cytokines, growth factors, prostaglandins, free radicals, clotting factors, and nitric oxide. Growth factors released during this process are involved in cell growth, proliferation, migration, and differentiation. Reactive oxygen species are released in acute and chronic burn injuries and play key roles in healing and regeneration. The main aim of this review is to present the roles of growth factors, reactive oxygen species, and metformin in the healing process of burn injuries.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embriology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Department of Plastic and Reconstructive Surgery, Life Memorial Hospital, 365 Grivitei Street, 010719 Bucharest, Romania
- Correspondence: (S.C.B.); (I.-I.S.-S.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
- Correspondence: (S.C.B.); (I.-I.S.-S.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| |
Collapse
|
24
|
Lin MJ, Lu MC, Chang HY. Sustained Release of Insulin-Like Growth Factor-1 from Bombyx mori L. Silk Fibroin Delivery for Diabetic Wound Therapy. Int J Mol Sci 2021; 22:ijms22126267. [PMID: 34200896 PMCID: PMC8230471 DOI: 10.3390/ijms22126267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h-1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.
Collapse
Affiliation(s)
- Meng-Jin Lin
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli 363201, Taiwan; (M.-J.L.); (M.-C.L.)
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Mei-Chun Lu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli 363201, Taiwan; (M.-J.L.); (M.-C.L.)
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: ; Tel.: +886-3-574-2909
| |
Collapse
|
25
|
Hamed S, Ullmann Y, Belokopytov M, Shoufani A, Kabha H, Masri S, Feldbrin Z, Kogan L, Kruchevsky D, Najjar R, Liu PY, Kerihuel JC, Akita S, Teot L. Topical Erythropoietin Accelerates Wound Closure in Patients with Diabetic Foot Ulcers: A Prospective, Multicenter, Single-Blind, Randomized, Controlled Trial. Rejuvenation Res 2021; 24:251-261. [PMID: 33504262 DOI: 10.1089/rej.2020.2397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The diabetic foot ulcer (DFU) is a major disabling complication of diabetes mellitus. Growing evidence suggests that topical erythropoietin (EPO) can promote wound healing. The aim of this study is to clinically assess the efficacy of a proprietary topical EPO-containing hydrogel for treating DFUs. We conducted a randomized, controlled trial in 20 patients with DFUs. After a 14-day screening period, the DFUs of 20 eligible participants who fulfilled the inclusion criteria were randomly assigned (1:1) to either a 12-week of daily treatment with topical EPO and standard-of-care (SOC) or SOC treatment alone. The DFUs were assessed weekly until week 12. The primary outcome was 75% ulcer closure or higher. After 12 weeks of treatment, 75% ulcer closure was achieved in 6 of the 10 patients whose DFUs were treated with topical EPO and in one of the 8 patients whose DFUs were treated with SOC alone. The mean area of the DFUs that were treated with topical EPO and SOC was significantly smaller than those treated with SOC alone (1.2 ± 1.4 cm2 vs. 4.2 ± 3.4 cm2; p = 0.023). Re-epithelialization was faster in the topically EPO-treated DFUs than in the SOC-treated DFUs. There were no treatment-related adverse events. We conclude that topical EPO is a promising treatment for promoting the healing of DFUs. Clinical Trial Registration number: NCT02361931.
Collapse
Affiliation(s)
- Saher Hamed
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Yehuda Ullmann
- Department of Plastic and Reconstructive Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Mark Belokopytov
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Aziz Shoufani
- Department of Plastic Surgery and General Surgery, Emek Medical Center, Afula, Israel
| | - Hoda Kabha
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Suher Masri
- Department of Research and Development, Remedor Biomed Ltd., Nazareth Illit, Israel
| | - Zeev Feldbrin
- Diabetes Foot Care Unit, Wolfson Medical Center, Holon, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Kogan
- Department of Plastic Surgery, Western Galilee Medical Center, Nahariya, Israel
| | - Danny Kruchevsky
- Department of Plastic and Reconstructive Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Roger Najjar
- Department of Plastic Surgery, Western Galilee Medical Center, Nahariya, Israel
| | - Paul Y Liu
- Department of Plastic Surgery, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Sadanori Akita
- Department Wound Care and Plastic and Reconstructive Surgery, Fukuoka University, Fukuoka, Japan
| | - Luc Teot
- Department of Plastic and Reconstructive Surgery and Wound Healing, Montpellier University Hospital, Lapeyronie, Montpellier, France
| |
Collapse
|
26
|
Catanzano O, Quaglia F, Boateng JS. Wound dressings as growth factor delivery platforms for chronic wound healing. Expert Opin Drug Deliv 2021; 18:737-759. [PMID: 33338386 DOI: 10.1080/17425247.2021.1867096] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Years of tissue engineering research have clearly demonstrated the potential of integrating growth factors (GFs) into scaffolds for tissue regeneration, a concept that has recently been applied to wound dressings. The old concept of wound dressings that only take a passive role in wound healing has now been overtaken, and advanced dressings which can take an active part in wound healing, are of current research interest.Areas covered: In this review we will focus on the recent strategies for the delivery of GFs to wound sites with an emphasis on the different approaches used to achieve fine tuning of spatial and temporal concentrations to achieve therapeutic efficacy.Expert opinion: The use of GFs to accelerate wound healing and reduce scar formation is now considered a feasible therapeutic approach in patients with a high risk of infections and complications. The integration of micro - and nanotechnologies into wound dressings could be the key to overcome the inherent instability of GFs and offer adequate control over the release rate. Many investigations have led to encouraging outcomes in various in vitro and in vivo wound models, and it is expected that some of these technologies will satisfy clinical needs and will enter commercialization.
Collapse
Affiliation(s)
- Ovidio Catanzano
- Institute for Polymers Composites and Biomaterials (IPCB) - CNR, Pozzuoli, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Joshua S Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Central Avenue, Chatham Maritime, Kent, UK
| |
Collapse
|
27
|
Augustine R, Hasan A, Dalvi YB, Rehman SRU, Varghese R, Unni RN, Yalcin HC, Alfkey R, Thomas S, Al Moustafa AE. Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111519. [DOI: 10.1016/j.msec.2020.111519] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
|
28
|
Sriwidodo S, Maksum IP, Subroto T, Wathoni N, Subarnas A, Umar AK. Activity and Effectiveness of Recombinant hEGF Excreted by Escherichia coli BL21 on Wound Healing in Induced Diabetic Mice. J Exp Pharmacol 2020; 12:339-348. [PMID: 33061675 PMCID: PMC7532914 DOI: 10.2147/jep.s265727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023] Open
Abstract
Context Human epidermal growth factor (hEGF) has biological activities and can be used in medicines and cosmetics. A high level of effectiveness of hEGF can be obtained when three disulfide bonds fold perfectly. Extracellular secretion from E. coli BL21 using the PelB signal peptide is a new way to obtain hEGF with a structure that folds appropriately. Object This study aimed to determine the activity and effectiveness of recombinant hEGF excreted by E. coli BL21 on wound healing in induced diabetic mice. Methods Cell proliferation and migration tests were performed on NIH3T3 cells, followed by wound healing tests in induced diabetic mice, along with histological and endotoxin test at various hEGF concentrations (25, 50, and 75 µg/mL). Results Based on the results, hEGF at a level of 50 μg/mL showed optimal proliferation and migration activities. Wound healing in induced diabetic mice showed faster-wound closure within 12 days at hEGF 50 and 75 µg/mL with a percentage wound closure of 95% and 98.5%, respectively, which was significant versus control. In the histology test, the number of fibroblasts showed an increase and was significant at hEGF 75 µg/mL compared to the control group. The single test vial (STV) showed that hEGF solution was free of endotoxin. Conclusion Recombinant hEGF produced by extracellular secretion using E. coli BL21 has optimal diabetic wound healing activity through increased fibroblast proliferation.
Collapse
Affiliation(s)
- Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Anas Subarnas
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
29
|
Berlanga-Acosta JA, Guillén-Nieto GE, Rodríguez-Rodríguez N, Mendoza-Mari Y, Bringas-Vega ML, Berlanga-Saez JO, García del Barco Herrera D, Martinez-Jimenez I, Hernandez-Gutierrez S, Valdés-Sosa PA. Cellular Senescence as the Pathogenic Hub of Diabetes-Related Wound Chronicity. Front Endocrinol (Lausanne) 2020; 11:573032. [PMID: 33042026 PMCID: PMC7525211 DOI: 10.3389/fendo.2020.573032] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
Diabetes is constantly increasing at a rate that outpaces genetic variation and approaches to pandemic magnitude. Skin cells physiology and the cutaneous healing response are progressively undermined in diabetes which predisposes to lower limb ulceration, recidivism, and subsequent lower extremities amputation as a frightened complication. The molecular operators whereby diabetes reduces tissues resilience and hampers the repair mechanisms remain elusive. We have accrued the notion that diabetic environment embraces preconditioning factors that definitively propel premature cellular senescence, and that ulcer cells senescence impair the healing response. Hyperglycemia/oxidative stress/mitochondrial and DNA damage may act as major drivers sculpturing the senescent phenotype. We review here historical and recent evidences that substantiate the hypothesis that diabetic foot ulcers healing trajectory, is definitively impinged by a self-expanding and self-perpetuative senescent cells society that drives wound chronicity. This society may be fostered by a diabetic archetypal secretome that induces replicative senescence in dermal fibroblasts, endothelial cells, and keratinocytes. Mesenchymal stem cells are also susceptible to major diabetic senescence drivers, which accounts for the inability of these cells to appropriately assist in diabetics wound healing. Thus, the use of autologous stem cells has not translated in significant clinical outcomes. Novel and multifaceted therapeutic approaches are required to pharmacologically mitigate the diabetic cellular senescence operators and reduce the secondary multi-organs complications. The senescent cells society and its adjunctive secretome could be an ideal local target to manipulate diabetic ulcers and prevent wound chronification and acute recidivism. This futuristic goal demands harnessing the diabetic wound chronicity epigenomic signature.
Collapse
Affiliation(s)
- Jorge A. Berlanga-Acosta
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Gerardo E. Guillén-Nieto
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Yssel Mendoza-Mari
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Playa, Cuba
| | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana García del Barco Herrera
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Indira Martinez-Jimenez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | | | - Pedro A. Valdés-Sosa
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Playa, Cuba
- *Correspondence: Pedro A. Valdés-Sosa
| |
Collapse
|
30
|
Augustine R, Zahid AA, Hasan A, Wang M, Webster TJ. CTGF Loaded Electrospun Dual Porous Core-Shell Membrane For Diabetic Wound Healing. Int J Nanomedicine 2019; 14:8573-8588. [PMID: 31802870 PMCID: PMC6827515 DOI: 10.2147/ijn.s224047] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Impairment of wound healing is a major issue in type-2 diabetes that often causes chronic infections, eventually leading to limb and/or organ amputation. Connective tissue growth factor (CTGF) is a signaling molecule with several roles in tissue repair and regeneration including promoting cell adhesion, cell migration, cell proliferation and angiogenesis. Incorporation of CTGF in a biodegradable core-shell fiber to facilitate its sustained release is a novel approach to promote angiogenesis, cell migration and facilitate wound healing. In this paper, we report the development of CTGF encapsulated electrospun dual porous PLA-PVA core-shell fiber based membranes for diabetic wound healing applications. METHODS The membranes were fabricated by a core-shell electrospinning technique. CTGF was entrapped within the PVA core which was coated by a thin layer of PLA. The developed membranes were characterized by techniques such as Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analysis. In vitro cell culture studies using fibroblasts, keratinocytes and endothelial cells were performed to understand the effect of CTGF loaded membranes on cell proliferation, cell viability and cell migration. A chicken chorioallantoic membrane (CAM) assay was performed to determine the angiogenic potential of the membranes. RESULTS Results showed that the developed membranes were highly porous in morphology with secondary pore formation on the surface of individual fibers. In vitro cell culture studies demonstrated that CTGF loaded core-shell membranes improved cell viability, cell proliferation and cell migration. A sustained release of CTGF from the core-shell fibers was observed for an extended time period. Moreover, the CAM assay showed that core-shell membranes incorporated with CTGF can enhance angiogenesis. CONCLUSION Owing to the excellent cell proliferation, migration and angiogenic potential of CTGF loaded core-shell PLA-PVA fibrous membranes, they can be used as an excellent wound dressing membrane for treating diabetic wounds and other chronic ulcers.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mian Wang
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA02115, USA
| |
Collapse
|
31
|
Chen L, Zheng Q, Chen X, Wang J, Wang L. Low-frequency ultrasound enhances vascular endothelial growth factor expression, thereby promoting the wound healing in diabetic rats. Exp Ther Med 2019; 18:4040-4048. [PMID: 31656542 PMCID: PMC6812475 DOI: 10.3892/etm.2019.8051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a chronic metabolic disease with a high prevalence worldwide, which typically delays or impairs wound healing, potentially causing death. Low-frequency ultrasound treatment promotes the repair of various injuries and may promote wound healing. The aim of the present study was to determine whether low-frequency ultrasound can accelerate wound healing, as well as investigate its effects on the expression of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1, interleukin (IL)-6 and tumor necrosis factor (TNF)-α in diabetic rats. A total of 45 Wistar rats were intraperitoneally injected with 1% streptozocin following intraperitoneal injection of pentobarbital sodium anesthesia. Subsequently an incision wound was created in the skin of back. The area of the wound was recorded to calculate the rate of wound healing. The expression of VEGF and TGF-β1 was determined via immunohistochemical analysis and their mRNA and protein levels were measured via reverse transcription-quantitative PCR analysis. The results revealed that when compared with the control group, low-frequency ultrasound treatment significantly increased wound healing rate in diabetic rats and markedly increased the mRNA and protein levels of VEGF and TGF-β1. US treatment also reduced the mRNA and protein levels of TNF-α and IL-6. In conclusion, the results of the present study indicated that low-frequency ultrasound promotes the expression of VEGF and TGF-β1, and inhibits the expression of IL-6 and TNF-α, thereby promoting wound healing in diabetic rats.
Collapse
Affiliation(s)
- Lang Chen
- Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qian Zheng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xianzhuo Chen
- Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jun Wang
- Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Lan Wang
- Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
32
|
García-Ojalvo A, Berlanga Acosta J, Figueroa-Martínez A, Béquet-Romero M, Mendoza-Marí Y, Fernández-Mayola M, Fabelo-Martínez A, Guillén-Nieto G. Systemic translation of locally infiltrated epidermal growth factor in diabetic lower extremity wounds. Int Wound J 2019; 16:1294-1303. [PMID: 31429187 DOI: 10.1111/iwj.13189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcer is one of the most frightened diabetic complications leading to amputation disability and early mortality. Diabetic wounds exhibit a complex networking of inflammatory cytokines, local proteases, and reactive oxygen and nitrogen species as a pathogenic polymicrobial biofilm, overall contributing to wound chronification and host homeostasis imbalance. Intralesional infiltration of epidermal growth factor (EGF) has emerged as a therapeutic alternative to diabetic wound healing, reaching responsive cells while avoiding the deleterious effect of proteases and the biofilm on the wound's surface. The present study shows that intralesional therapy with EGF is associated with the systemic attenuation of pro-inflammatory markers along with redox balance recovery. A total of 11 diabetic patients with neuropathic foot ulcers were studied before and 3 weeks after starting EGF treatment. Evaluations comprised plasma levels of pro-inflammatory, redox balance, and glycation markers. Pro-inflammatory markers such as erythrosedimentation rate, C-reactive protein, interleukin-6, soluble FAS, and macrophage inflammatory protein 1-alpha were significantly reduced by EGF therapy. Oxidative capacity, nitrite/nitrate ratio, and pentosidine were also reduced, while soluble receptor for advanced glycation end-products significantly increased. Overall, our results indicate that the local intralesional infiltration of EGF translates in systemic anti-inflammatory and antioxidant effects, as in attenuation of the glycation products' negative effects.
Collapse
Affiliation(s)
- Ariana García-Ojalvo
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Jorge Berlanga Acosta
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Alain Figueroa-Martínez
- Diabetic Foot Ulcer Service, National Institute of Angiology and Vascular Surgery, Salvador Allende Hospital, Havana, Cuba
| | - Mónica Béquet-Romero
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yssel Mendoza-Marí
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maday Fernández-Mayola
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Amirelia Fabelo-Martínez
- Diabetic Foot Ulcer Service, National Institute of Angiology and Vascular Surgery, Salvador Allende Hospital, Havana, Cuba
| | - Gerardo Guillén-Nieto
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
33
|
Morey M, O'Gaora P, Pandit A, Hélary C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. PLoS One 2019; 14:e0220577. [PMID: 31415598 PMCID: PMC6695165 DOI: 10.1371/journal.pone.0220577] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are characterized by a chronic inflammation state which prevents cutaneous wound healing, and DFUs eventually lead to infection and leg amputation. Macrophages located in DFUs are locked in an pro-inflammatory phenotype. In this study, the effect of hyperglycemia and hypoxia on the macrophage phenotype was analyzed. For this purpose, a microarray was performed to study the gene expression profile of macrophages cultivated in a high glucose concentration. Hyperglycemia upregulated the expression of pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, chemokines and downregulated the expression of two receptors involved in phagocytosis (CD 36 and Class B scavenger type I receptors). In addition, eleven anti-apoptotic factors were upregulated whereas three pro-apoptotic genes were downregulated. Subsequently, the contribution of hypoxia and hyperglycemia to chronic inflammation and their potential synergistic effect was evaluated on activated THP-1 derived macrophages. A long term post activation effect (17 hours) was only observed on the upregulation of pro-inflammatory cytokines when hypoxia was combined with a high glucose concentration. In contrast, hyperglycemia and hypoxia did not have any effect on wound healing molecules such as TGF-β1. Taken together, the results show that hyperglycemia acts in synergy with hypoxia to maintain a chronic inflammation state in macrophages.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Peadar O'Gaora
- UCD School of Biomedical and Biomolecular Science, University College Dublin, Belfield, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- * E-mail: (AP); (CH)
| | - Christophe Hélary
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris,place Jussieu, Paris, France
- * E-mail: (AP); (CH)
| |
Collapse
|
34
|
Bui TQ, Bui QVP, Németh D, Hegyi P, Szakács Z, Rumbus Z, Tóth B, Emri G, Párniczky A, Sarlós P, Varga O. Epidermal Growth Factor is Effective in the Treatment of Diabetic Foot Ulcers: Meta-Analysis and Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:2584. [PMID: 31331038 PMCID: PMC6678975 DOI: 10.3390/ijerph16142584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Abstract
Diabetic foot ulcers (DFUs) are one the common complications of diabetes mellitus. Many trials were performed to evaluate the effect of recombinant human epidermal growth factor (rhEGF) in healing DFUs. This meta-analysis was performed to synthesize the evidence of rhEGF treatment in DFUs in comparison to placebo. Databases included for the search were PubMed, EMBASE, the Cochrane Library, Web of Science, EBSCOhost, ScienceDirect, and Scopus (up to January 2019). The outcome of interest was the complete healing rate of DFUs. We performed random effects meta-analysis stratified by the types of administration route (intralesional injection and topical apply) by calculating the odds ratios (OR) and 95% confidence interval (95% CI). A total of six studies involving 530 patients were eligible for analysis. The combined OR (intralesional injection and topical apply) was 4.005 (95% CI: (2.248; 7.135), p < 0.001). The ORs for intralesional injection and topical application were 3.599 (95% CI: (1.213; 10.677), p = 0.021) and 4.176 (95% CI: (2.112; 8.256), p < 0.001), respectively. Statistical heterogeneity might not be important in overall treatment (I2 = 15.17, p = 0.317) and both of the subgroups (I2: 24.56, p = 0.25 and I2: 33.26, p = 0.213, respectively). Our results support the use of rhEGF in the treatment of DFUs.
Collapse
Affiliation(s)
- Thien Quoc Bui
- Department of Preventive Medicine, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary.
| | - Quoc Van Phu Bui
- Department of Internal Medicine, Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh city 70000, Vietnam
| | - Dávid Németh
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Rumbus
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Barbara Tóth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Párniczky
- Heim Pál National Institute of Pediatrics, 1089 Budapest, Hungary
| | - Patricia Sarlós
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, 7624 Pécs, Hungary
| | - Orsolya Varga
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, 4028 Debrecen, Hungary
| |
Collapse
|
35
|
Kahraman M, Misir A, Kizkapan TB, Ozcamdalli M, Uzun E, Mutlu M. The Long-Term Outcomes Following the Application of Intralesional Epidermal Growth Factor in Patients With Diabetic Foot Ulcers. J Foot Ankle Surg 2019; 58:282-287. [PMID: 30612874 DOI: 10.1053/j.jfas.2018.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 02/03/2023]
Abstract
Epidermal growth factor is used as an adjuvant to close the wound in addition to standard care in diabetic foot ulcers. This study aimed to investigate the long-term outcomes after intralesional epidermal growth factor injections in the treatment of diabetic foot ulcers. Thirty-six feet of 34 patients (n = 34) with diabetic foot ulcers were included. Patient demographics, Wagner classifications, recurrence and amputation rates, Foot Function Index, Short Form 36, and American Academy of Orthopedic Surgeons Foot and Ankle Module scores were evaluated at the final follow-up examination. The mean age was 61.000 ± 13.743 years. The mean duration of wounds was 240.200 ± 146.385 days. A mean of 18.125 ± 4.494 (range 9 to 24) doses were applied. Wound closure was achieved in 33 of the 36 (91.7%) lesions. A complete response (granulation tissue >75% or wound closure) was observed in 29 (87.9%) lesions. The mean time to wound closure was 52.08 ± 10.65 (range 25 to 72) days. At the 5-year follow-up, 4 patients were lost to follow-up because of exitus owing to diabetic complications. Of the remaining 29 patients, 27 were ulcer free. In 2 patients (2 lesions, 6.9%) toe amputation was performed due to ischemic necrosis. The mean Foot Function Index, American Academy of Orthopedic Surgeons Foot and Ankle Core Scale, and AAOS Shoe Comfort Scale scores were 55.40 ± 12.15, 65.92 ± 17.56, and 56.42 ± 11.98, respectively. Complete wound healing and a low recurrence and amputation rates could be obtained with intralesional epidermal growth factor added to the standard treatment protocol.
Collapse
Affiliation(s)
- Murat Kahraman
- Surgeon, Department of Orthopaedics and Traumatology, Necip Fazil City Hospital, Kahramanmaras, Turkey.
| | - Abdulhamit Misir
- Surgeon, Department of Orthopaedics and Traumatology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Turan Bilge Kizkapan
- Surgeon, Department of Orthopaedics and Traumatology, Bursa Cekirge State Hospital, Bursa, Turkey
| | - Mustafa Ozcamdalli
- Surgeon, Department of Orthopaedics and Traumatology, Ahi Evran University Faculty of Medicine, Kirsehir, Turkey
| | - Erdal Uzun
- Surgeon, Department of Orthopaedics and Traumatology, Ordu University Faculty of Medicine, Ordu, Turkey
| | - Mahmut Mutlu
- Professor, Department of Orthopaedics and Traumatology, Medicana Bahcelievler Hospital, Istanbul, Turkey
| |
Collapse
|
36
|
Uchiyama A, Nayak S, Graf R, Cross M, Hasneen K, Gutkind JS, Brooks SR, Morasso MI. SOX2 Epidermal Overexpression Promotes Cutaneous Wound Healing via Activation of EGFR/MEK/ERK Signaling Mediated by EGFR Ligands. J Invest Dermatol 2019; 139:1809-1820.e8. [PMID: 30772301 DOI: 10.1016/j.jid.2019.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
Abstract
Oral mucosa contains a unique transcriptional network that primes oral wounds for rapid resolution in humans. Our previous work identified genes that were consistently upregulated in the oral mucosa and demonstrated that induction of one of the identified genes, transcription factor SOX2, promoted cutaneous wound healing in mice. In this study, we investigated the molecular and cellular mechanisms by which SOX2 accelerates wound healing in skin. RNA-sequencing analysis showed that SOX2 induced a proliferative and wound-activated phenotype in skin keratinocytes prior to wounding. During wound healing, SOX2 induced proliferation of epithelial and connective tissue cells and promoted angiogenesis. Chromatin immunoprecipitation assay revealed that SOX2 directly regulates expression of EGFR ligands, resulting in activation of EGFR. In vitro, skin keratinocytes overexpressing SOX2 promoted cell migration via the EGFR/MEK/ERK pathway. We conclude that induction of SOX2 in skin keratinocytes accelerates cutaneous wound healing by promoting keratinocyte migration and proliferation, and enhancement of angiogenesis via upregulation of EGFR ligands and activation of EGFR/MEK/ERK pathway. Through the identification of putative cutaneous SOX2 targets, such as HBEGF, this study opens venues to determine clinical targets for treatment of skin wounds.
Collapse
Affiliation(s)
- Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Rose Graf
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Michael Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
37
|
The Antimicrobial Peptide Nal-P-113 Exerts a Reparative Effect by Promoting Cell Proliferation, Migration, and Cell Cycle Progression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7349351. [PMID: 30298136 PMCID: PMC6157167 DOI: 10.1155/2018/7349351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Objective The primary purpose of this study was to evaluate the reparative efficacy of a novel antimicrobial peptide, Nal-P-113, in shortening the healing time of oral mucosal ulcers by promoting cell proliferation and migration and accelerating the cell cycle. Methods Cell counting kit-8 (CCK-8) and wound-healing assays were used to evaluate the proliferation and migration of human immortalized oral epithelial cells (HIOECs). The cell cycle distribution of HIOECs was analyzed by flow cytometry. Additionally, the RNA levels of EGF, FGF-2, and TGF-β1 of HIOECs were assessed by real-time PCR. Rats were divided into three groups randomly: (a) blank control group; (b) 20 μg/mL Nal-P-113; and (c) 10 ng/mL rhEGF. An oral mucosal ulcer was induced in every rat by the application of 30% acetic acid. An immunohistochemical assay was used to assess the expression of EGF, FGF-2, and TGF-β1 in the rat oral mucosa. Results In the CCK-8 assay, the optical density values in the Nal-P-113 and rhEGF groups were found to be significantly higher than that in the blank control group. In addition, the scratch areas in the Nal-P-113 and rhEGF groups were found to be significantly smaller (P<0.05). Cell cycle analysis showed that Nal-P-113 accelerated the entry of HIOECs into the S phase and expedited their cell cycles. The RT-PCR results suggested that Nal-P-113 upregulated the RNA levels of EGF and FGF-2 but downregulated that of TGF-β1 at 24 h and 48 h. Lastly, the immunohistochemical assay verified that Nal-P-113 changed the expression of the above cytokines in rat mucosal ulcers. Conclusion Nal-P-113 promoted the repair of oral mucosal ulcers by increasing the EGF and FGF-2 expression and decreasing that of TGF-β1 in HIOECs, accelerating their proliferation and cell cycle progression. The application of Nal-P-113 might serve as an effective therapeutic approach for recurrent aphthous stomatitis.
Collapse
|
38
|
Iyer K, Chen Z, Ganapa T, Wu BM, Tawil B, Linsley CS. Keratinocyte Migration in a Three-Dimensional In Vitro Wound Healing Model Co-Cultured with Fibroblasts. Tissue Eng Regen Med 2018; 15:721-733. [PMID: 30603591 DOI: 10.1007/s13770-018-0145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
Background Because three-dimensional (3D) models more closely mimic native tissues, one of the goals of 3D in vitro tissue models is to aid in the development and toxicity screening of new drug therapies. In this study, a 3D skin wound healing model comprising of a collagen type I construct with fibrin-filled defects was developed. Methods Optical imaging was used to measure keratinocyte migration in the presence of fibroblasts over 7 days onto the fibrin-filled defects. Additionally, cell viability and growth of fibroblasts and keratinocytes was measured using the alamarBlue® assay and changes in the mechanical stiffness of the 3D construct was monitored using compressive indentation testing. Results Keratinocyte migration rate was significantly increased in the presence of fibroblasts with the cells reaching the center of the defect as early as day 3 in the co-culture constructs compared to day 7 for the control keratinocyte monoculture constructs. Additionally, constructs with the greatest rate of keratinocyte migration had reduced cell growth. When fibroblasts were cultured alone in the wound healing construct, there was a 1.3 to 3.4-fold increase in cell growth and a 1.2 to 1.4-fold increase in cell growth for keratinocyte monocultures. However, co-culture constructs exhibited no significant growth over 7 days. Finally, mechanical testing showed that fibroblasts and keratinocytes had varying effects on matrix stiffness with fibroblasts degrading the constructs while keratinocytes increased the construct's stiffness. Conclusion This 3D in vitro wound healing model is a step towards developing a mimetic construct that recapitulates the complex microenvironment of healing wounds and could aid in the early studies of novel therapeutics that promote migration and proliferation of epithelial cells.
Collapse
Affiliation(s)
- Kritika Iyer
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Zhuo Chen
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Teja Ganapa
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Benjamin M Wu
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA.,2Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| | - Bill Tawil
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Chase S Linsley
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| |
Collapse
|
39
|
Chang JW, Heo W, Choi MSS, Lee JH. The appropriate management algorithm for diabetic foot: A single-center retrospective study over 12 years. Medicine (Baltimore) 2018; 97:e11454. [PMID: 29979449 PMCID: PMC6076129 DOI: 10.1097/md.0000000000011454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diabetic foot management is a challenge for reconstructive surgeons because it combines dramatically decreased circulation and chronic infection. The goal of managing this condition is to maximize viable tissue; however, unsatisfactory results, such as extremity amputation, are unavoidable in some cases. For appropriate management, thorough understanding of diabetic foot and the phased approach to its management is needed. The purpose of this study is to introduce an optimal algorithm for diabetic foot management by analyzing cases >12 years. METHODS A total of 274 patients with diabetic foot at Hanyang University Guri Hospital from 2005 to 2017 were reviewed. The management process was divided into 5 steps: patient evaluation, wound preparation, improving vascularity, surgery and dressing, and rehabilitation. Patient evaluation included a microbial culture, evaluation of vascularity, and an osteomyelitis assessment. During wound preparation, debridement and negative-pressure wound therapy were performed. Vascularity was improved by radiological intervention or surgical method. Surgery and dressing were performed depending on the indications. Rehabilitation was started after complete wound healing. RESULTS An infection was confirmed in 213 of 263 patients (81.0%). Of 74 cases in which a vascular study was performed, 83.8% showed arterial occlusion. When surgery was performed with complete eradication of the infection in 155 patients, the rate of revision surgery was 20.6%. The revision rate after surgery with a remnant infection of 66 patients was 40.9% (P = .0003). When surgery was performed after successful revascularization for improving blood flow of 47 patients, the rate of revision surgery was 21.3%. In contrast, the revision rate after surgery with unsuccessful or no revascularization of 174 patients was 28.2% (P = .359). CONCLUSION Diabetic foot is a debilitating disease arising from multifactorial process. As its management is complex, a comprehensive but accessible treatment algorithm is needed for successful results. For this reason, the appropriate algorithm for diabetic foot management introduced in this study is significant.
Collapse
|
40
|
Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:245-269. [PMID: 30357627 DOI: 10.1007/978-981-13-0950-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.
Collapse
|