1
|
Limlawan P, Vacharaksa A. MicroRNA functions in osteogenic differentiation of periodontal ligament stem cells: a scoping review. FRONTIERS IN ORAL HEALTH 2025; 6:1423226. [PMID: 39959357 PMCID: PMC11825769 DOI: 10.3389/froh.2025.1423226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
This scoping review aimed to describe the differential microRNA (miRNA) functions in osteogenic differentiation of periodontal ligament stem cells (PDLSCs), and then analyze the potential of applying PDLSCs and miRNAs in bone regeneration. The databases of PubMed, Google Scholar and EBSCO search were performed by the 4 themes, including periodontal ligament stem cells, miRNA, osteogenic differentiation, and tissue regeneration. The original articles described miRNA functions in osteogenic differentiation of PDLSCs were identified and selected for content analyze. The articles suggested that PDLSCs have high potential in bone regeneration because of their multipotency and immunomodulation. PDLSCs are conveniently accessible and obtained from extracted teeth. However, recent evidence reported that PDLSCs of various origins demonstrate differential characteristics of osteogenic differentiation. Exosomal miRNAs of PDLSCs demonstrate a regulatory role in tissue regeneration. The properties of PDLSCs associated to miRNA functions are altered in differential microenvironmental conditions such as infection, inflammation, high-glucose environment, or mechanical force. Therefore, these factors must be considered when inflamed PDLSCs are used for tissue regeneration. The results suggested inflammation-free PDLSCs harvested from the middle third of root surface provide the best osteogenic potential. Alternatively, the addition of miRNA as a bioactive molecule also increases the success of PDLSCs therapy to enhance their osteogenic differentiation. In conclusion, Exosome-derived miRNAs play a key role in PDLSCs osteogenic differentiation during tissue regeneration. While the success of PDLSCs in tissue regeneration could be uncertain by many factors, the use of miRNAs as an adjunct is beneficial for new bone regeneration.
Collapse
Affiliation(s)
- Pirawish Limlawan
- Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence and Innovation for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anjalee Vacharaksa
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Master of Science Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Lan X, Yu R, Xu J. Identification of circRNA CDR1as/miR-214-3p regulatory axis in Legg-Calvé-Perthes disease. Orphanet J Rare Dis 2024; 19:380. [PMID: 39407304 PMCID: PMC11481470 DOI: 10.1186/s13023-024-03394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease (LCPD) commonly occurs among adolescents, threatening their health. However, the potential mechanism underlying LCPD remains unclear. miR-214-3p is shown as a critical role in LCPD development with unspecified upstream regulators. METHODS Levels of miR-214-3p and circCDR1as in healthy controls and LCPD patients were determined by qRT-PCR. The role of circCDR1as/miR-214-3p axis in LCPD was determined by testing the cell viability and apoptosis in TC28 cells and primary chondrocytes. Regulation between circCDR1as and miR-214-3p was examined by RIP and ChIP assays. The inflammatory response and angiogenesis were evaluated by M2 macrophage polarization and HUVECs tumor formation. RESULTS circCDR1as was overexpressed in LCPD patients with a negative correlation with miR-214-3p. Inhibition of circCDR1as alleviated the cell viability and apoptosis of DEX-treated chondrocytes, stimulated M2 macrophage polarization and angiogenesis. miR-214-3p was proved as a downstream effector to participate in circCDR1as mediated actions. circCDR1as recruited PRC2 complex to epigenetically suppress miR-214-3p. CONCLUSION Our study illustrated the role and mechanism of circCDR1as in LCPD development by targeting miR-214-3p, highlighting its potential in the therapy for LCPD.
Collapse
Affiliation(s)
- Xia Lan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China.
| | - Ronghui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Jianyun Xu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| |
Collapse
|
3
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
4
|
Taheri M, Khoshbakht T, Hussen BM, Abdullah ST, Ghafouri-Fard S, Sayad A. Emerging Role of miRNAs in the Pathogenesis of Periodontitis. Curr Stem Cell Res Ther 2024; 19:427-448. [PMID: 35718954 DOI: 10.2174/1574888x17666220617103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) have been found to participate in the pathogenesis of several immune-related conditions through the modulation of the expression of cytokine coding genes and other molecules that affect the activity of the immune system. Periodontitis is an example of these conditions associated with the dysregulation of several miRNAs. Several miRNAs such as let-7 family, miR-125, miR-378, miR-543, miR-302, miR-214, miR-200, miR-146, miR-142, miR-30 and miR-21 have been shown to be dysregulated in patients with periodontitis. miR-146 is the most assessed miRNA in these patients, which is up-regulated in most studies in patients with periodontitis. In the present review, we describe the impact of miRNAs dysregulation on the pathoetiology of periodontitis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Xia SL, Ma ZY, Wang B, Gao F, Guo SY, Chen XH. Icariin promotes the proliferation and osteogenic differentiation of bone-derived mesenchymal stem cells in patients with osteoporosis and T2DM by upregulating GLI-1. J Orthop Surg Res 2023; 18:500. [PMID: 37454090 DOI: 10.1186/s13018-023-03998-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The function of mesenchymal stem cells (MSCs) from patients with osteoporosis (OP) is impaired and worsens in patients with type 2 diabetes mellitus (T2DM). Icariin (ICA) is the major active flavonoid glucoside isolated from traditional Chinese herbal Epimedium pubescens, and confirmed able to improve bone mass of OP patients. OBJECTIVE To investigate the effect of ICA on the proliferation and osteogenic differentiation of bone-derived MSCs (BMSCs) from patients with OP and T2DM and uncover the potential mechanism. METHODS BMSCs were treated with ICA, and proliferation and osteogenic potency were evaluated using the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and detection of osteogenic markers (ALP, RUNX2, SPP1, COL1A1, and mineralized nodules) was performed. RNA sequencing and bioinformatic analysis were performed to identify differentially expressed genes (DEGs) after ICA treatment and screen proliferation- and osteogenic differentiation-related processes. Gene gain and loss were performed to confirm the role of the key candidate gene. RESULTS ICA significantly promoted the proliferation and osteogenic differentiation of BMSCs. A total of 173 DEGs were identified after ICA treatment. Six DEGs (GLI-1, IGF2, BMP6, WNT5A, PTHLH, and MAPK14) enriched in both proliferation- and osteogenic differentiation-related processes were screened; GLI-1 had the highest validated |log2FC| value. Overexpression of GLI-1 enhanced the proliferation and osteogenic differentiation of BMSCs, and knockdown of GLI-1 weakened the positive effect of ICA on BMSCs. CONCLUSION ICA promoted the proliferation and osteogenic differentiation of impaired BMSCs by upregulating GLI-1.
Collapse
Affiliation(s)
- Sheng-Li Xia
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Zi-Yuan Ma
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Bin Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Feng Gao
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Sheng-Yang Guo
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xu-Han Chen
- Zhoupu Community Health Service Center, 163 Shenmei East Road, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Circular RNAs (circRNAs) are RNA transcripts derived from fragments of pre-messenger RNAs through a back-splicing process. An advantage that rises from their circular covalently closed conformation is their high stability, when compared with their linear counterparts. The current review focuses on the emerging roles of circRNAs in osteoporosis, including in osteogenic differentiation and osteoclastogenesis. Their potential as osteoporosis biomarkers will also be discussed. RECENT FINDINGS Although firstly described as non-coding, some of these single-stranded RNAs were recently reported to possess protein-coding capacity. On the other hand, the circRNAs exhibit cell and tissue-specific patterns at the transcriptome level in eukaryotes and are regulated throughout the development or disease progression. Even though thousands of these circular transcripts are listed and annotated, only a limited number of studies describe their biological role in bone processes. Recent evidence indicates inhibitory activator roles in both osteoblasts and osteoclasts differentiation and function. Latest screenings in the blood, plasma, or serum of osteoporosis patients support the potential for circRNA signature to be used as biomarkers in osteoporosis, but further validation is required. While intense research into circRNAs has been detailing their biological roles, there remains a need for standardization and further research to fulfil the future potential of this emerging and highly promising class of regulatory molecules.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria João Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | - Maria Inês Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Assadiasl S, Rajabinejad M, Soleimanifar N, Makiyan F, Azizi E, Rezaiemanesh A, Nicknam MH. MicroRNAs-mediated regulation pathways in rheumatic diseases. Inflammopharmacology 2023; 31:129-144. [PMID: 36469219 DOI: 10.1007/s10787-022-01097-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/29/2022] [Indexed: 12/09/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are two common rheumatic disorders marked by persistent inflammatory joint disease. Patients with RA have osteodestructive symptoms, but those with AS have osteoproliferative manifestations. Ligaments, joints, tendons, bones, and muscles are all affected by rheumatic disorders. In recent years, many epigenetic factors contributing to the pathogenesis of rheumatoid disorders have been studied. MicroRNAs (miRNAs) are small, non-coding RNA molecules implicated as potential therapeutic targets or biomarkers in rheumatic diseases. MiRNAs play a critical role in the modulation of bone homeostasis and joint remodeling by controlling fibroblast-like synoviocytes (FLSs), chondrocytes, and osteocytes. Several miRNAs have been shown to be dysregulated in rheumatic diseases, including miR-10a, 16, 17, 18a, 19, 20a, 21, 27a, 29a, 34a, 103a, 125b, 132, 137, 143, 145, 146a, 155, 192, 203, 221, 222, 301a, 346, and 548a.The major molecular pathways governed by miRNAs in these cells are Wnt, bone-morphogenic protein (BMP), nuclear factor (NF)-κB, receptor activator of NF-κB (RANK)-RANK ligand (RANKL), and macrophage colony-stimulating factor (M-CSF) receptor pathway. This review aimed to provide an overview of the most important signaling pathways controlled by miRNAs in rheumatic diseases.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Makiyan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Esfandiar Azizi
- Department of Immunology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Bākhtarān, Iran.
| | | |
Collapse
|
8
|
Sun Y, Shi J, Luo X, Xu X. microRNA-142-3p regulates osteogenic differentiation of human periodontal ligament stem cells via mediating SGK1. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101369. [PMID: 36565809 DOI: 10.1016/j.jormas.2022.101369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Human periodontal ligament stem cells (hPDLSCs) refer to one kind of somatic stem cells that are capable of differentiating into multiple cell kinds and undergoing robust clonal self-renewal. This work was unearthed to elucidate the possible molecular mechanism of miR-142-3p in mediating osteogenic differentiation of hPDLSCs by targeting SGK1. METHODS The hPDLSCs were isolated, cultured, and identified. hPDLSCs were identified by immunofluorescence staining and multiple differentiation ability detection. Cell proliferation ability was assessed by CCK-8 assay. hPDLSCs were induced using osteogenic differentiation medium. ALP activity was detected by alkaline phosphatase (ALP) staining and ALP activity assay, and mineralized nodule formation was determined by alizarin red staining. The expression levels of osteogenic differentiation marker proteins ALP, RUNX2, and OCN were measured by RT-qPCR. miR-142-3p candidate targets were obtained through bioinformatics analysis. The relationship between miR-142-3p and SKG1 was verified. RESULTS miR-142-3p in hPDLSCs after osteogenic induction was down-regulated. Elevated miR-142-3p restricted hPDLSCs proliferation, and diminished ALP activity and mineralized nodule formation, as well as the expression of ALP, RUNX2, and OCN, while miR-142-3p inhibition led to inverse results. miR-142-3p inhibited SKG1 expression. SKG1 overexpression promoted hPDLSC proliferation and osteogenic differentiation, and reversed the inhibitory function of miR-142-3p on hPDLSCs. CONCLUSION This study highlights that miR-142-3p represses osteogenic differentiation of hPDLSCs by reducing SGK1 expression.
Collapse
Affiliation(s)
- Yi Sun
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361008 Fujian, China
| | - Jianlu Shi
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361008 Fujian, China
| | - Xiaoan Luo
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361008 Fujian, China
| | - Xuehong Xu
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361008 Fujian, China.
| |
Collapse
|
9
|
The role of noncoding RNAs in the osteogenic differentiation of human periodontal ligament-derived cells. Noncoding RNA Res 2022; 8:89-95. [DOI: 10.1016/j.ncrna.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
|
10
|
Zhang Z, Wang M, Zheng Y, Dai Y, Chou J, Bian X, Wang P, Li C, Shen J. MicroRNA-223 negatively regulates the osteogenic differentiation of periodontal ligament derived cells by directly targeting growth factor receptors. Lab Invest 2022; 20:465. [PMID: 36221121 PMCID: PMC9552407 DOI: 10.1186/s12967-022-03676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
Background MicroRNA (miRNA) is accepted as a critical regulator of cell differentiation. However, whether microRNA-223 (miR-223) could affect the osteogenic differentiation of periodontal ligament (PDL)-derived cells is still unknown. The aim of this study was to explore the mechanisms underlying the roles of miR-223 in the osteogenesis of PDL-derived cells in periodontitis. Methods Microarray analysis and real-time polymerase chain reaction (RT-PCR) were used to identify difference in miR-223 expression pattern between healthy and inflamed gingival tissue. The target genes of miR-223 were predicted based on Targetscan and selected for enrichment analyses based on Metascape database. The gain-and loss-of-function experiments were performed to discuss roles of miR-223 and growth factor receptor genes in osteogenic differentiation of PDL-derived cells. The target relationship between miR-223 and growth factor receptor genes was confirmed by a dual luciferase assay. Osteogenic differentiation of PDL-derived cells was assessed by Alizarin red staining, RT-PCR and western blot detection of osteogenic markers, including osteocalcin (OCN), osteopontin (OPN) and runt-related transcription factor 2 (Runx2). Results MiR-223 was significantly increased in inflamed gingival tissues and down-regulated in PDL-derived cells during osteogenesis. The expression of miR-223 in gingival tissues was positively correlated with the clinical parameters in periodontitis patients. Overexpression of miR-223 markedly inhibited PDL-derived cells osteogenesis, which was evidenced by reduced Alizarin red staining and osteogenic markers expressions. Furthermore, two growth factor receptor genes, including fibroblast growth factor receptor 2 (FGFR2) and transforming growth factor beta receptor 2 (TGFβR2), were revealed to be direct targets of miR-223 and shown to undergo up-regulation in PDL-derived cells during osteogenesis. Moreover, suppression of FGFR2 or TGFβR2 dramatically blocked PDL-derived cells osteogenic differentiation. Conclusions Our study provides novel evidence that miR-223 can be induced by periodontitis and acts as a negative regulator of PDL-derived cells osteogenesis by targeting two growth factor receptors (TGFβR2 and FGFR2). Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03676-1.
Collapse
Affiliation(s)
- Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Minghui Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanmei Dai
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jiashu Chou
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Xiaowei Bian
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Pengcheng Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Changyi Li
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Jing Shen
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
11
|
Jiang M, Li Z, Zhu G. The role of endoplasmic reticulum stress in the pathophysiology of periodontal disease. J Periodontal Res 2022; 57:915-932. [PMID: 35818935 DOI: 10.1111/jre.13031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) is a principal organelle for folding, post-translational modifications and transport of secretory, luminal, and membrane proteins. ER stress is a condition induced by the accumulation of unfolded or misfolded proteins owing to a variety of physiological and pathological phenomena. To overcome the deleterious effects of ER stress, unfolded protein response (UPR) is initiated to translocate and remove the misfolded and accumulated proteins. Plenty of evidence shows the correlation between ER stress/UPR and the pathology of inflammatory disease. Periodontal disease is a chronic inflammatory disease characterized by the irreversible destruction of periodontal tissues, which associates with the onset and progress of several systemic diseases. Periodontopathic bacterium and pro-inflammatory mediators play a pivotal role in the progress of periodontal disease. Besides, cigarette smoke has long been associated with periodontal disease. As an inflammatory disorder of the periodontium, periodontal disease is highly related to ER stress. In this review, we provide an overview of the pathophysiological effect of ER stress on periodontal disease through five aspects as follow: ER stress and periodontal tissue remodeling, including both soft tissue and hard tissue; ER stress and the inflammation; ER stress and systematic effect during the periodontal disease; last but not least, ER stress and the autophagic apoptosis in cells.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, Wuhan, Hubei, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Mirkhani SMH, Amini Sedeh S, Esfahanian V. Comparison of Osteoblastic Differentiation of Human Periodontal Ligament Stem Cells through Application of Two β-tricalcium Phosphate Products: An in vitro Study. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2022; 23:183-189. [PMID: 36380833 PMCID: PMC9652058 DOI: 10.30476/dentjods.2021.86700.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 01/25/2023]
Abstract
Statement of the Problem Osteoblastic differentiation of periodontal ligament stem cells (PLSCs) is essential for alveolar bone regeneration. Purpose The purpose of this study was to compare the potential of two β-tricalcium phosphate (βTCP) products to induce osteoblastic differentiation of human PLSCs. Materials and Method In this in vitro study, human PLSCs were cultured in mediums supplemented with Guidor Easy-Graft [βTCP+polylactide-co-glycolide (PLCG)+n-methyl-2-pyrrolidone (NMP)] [Sunstar Company, Swiss] or Sorbone [βTCP] [Meta Company, South Korea] as two alloplasts experimental groups, mesenchymal cells differentiated into osteoblasts without alloplast as positive control group, and mesenchymal cells without osteoblastic induction as negative control group. Osteoblastic differentiation was evaluated using Alizarine Red staining and spectrophotometry to assay calcium deposits and real-time polymerase chain reaction to examine expression of alkaline phosphatase (ALP) and osteopontin (OPN) antigens on day 21. Data were analyzed by using SPSS 22 software and one-way ANOVA and Bonferoni tests (p< 0.05). Results Spectrophotometry confirmed that calcium deposits were higher in Guidor Easy-Graft group compared to Sorbone group (p< 0.001) and higher in two experimental groups than controls (p< 0.05). According to real-time polymerase chain reaction, level of ALP expression was higher in Sorbone than Guidor and the levels of Guidor, positive control and negative control were equal; OPN levels of the positive control were more than the other groups. OPN levels of Sobone, Guidor and negative control were the same. Conclusion These findings indicated that Guidor Easy-Graft and Sorbone enhanced differentiation of human PLSCs to osteoblasts, and could be employed as appropriate bone-graft materials.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Mirkhani
- Postgraduate, Dept. of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shirin Amini Sedeh
- Dept. of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Vahid Esfahanian
- Dept. of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
13
|
Huang J, Zhou Y. Emerging role of epigenetic regulations in periodontitis: a literature review. Am J Transl Res 2022; 14:2162-2183. [PMID: 35559409 PMCID: PMC9091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Periodontitis is mainly initiated by periodontal pathogens including Porphyromonas gingivalis, and bad living habits such as smoking aggravate its incidence and severity. The development of periodontitis is closely related to the host's immune responses and the secretion of various cytokine networks. Moreover, periodontitis has an important connection with the development of systemic diseases. Recently, epigenetics which is a fast-developing hot research area has provided new insights into the research of various diseases including periodontitis. Epigenetics is an important supplement to the regulation of gene expression. The study of epigenetics is about causing heritable gene expression or cell phenotype changes through certain mechanisms without changing the DNA sequence. It mainly includes histone modification, DNA methylation, non-coding RNA and the latest research hotspot m6A RNA methylation. In the review, we comprehensively summarize the latest literature on the potential epigenetic regulations in various aspects of periodontitis.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Prosthodontics, Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| |
Collapse
|
14
|
Wang Y, He R, Yang A, Guo R, Liu J, Liang G, Sheng D, Zhong L. Role of miR-214 in biomaterial transplantation therapy for osteonecrosis. Biomed Mater Eng 2022; 33:351-364. [PMID: 34744059 DOI: 10.3233/bme-211296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The effectiveness and availability of conservative therapies for osteonecrosis of the femoral head (ONFH) are limited. Transplantation of bone marrow mesenchymal stem cells (BMSCs) combined with Bio-Oss, which is a good bone scaffold biomaterial for cell proliferation and differentiation, is a new potential therapy. Of note, the expression of miRNAs was significantly modified in cells cultured with Bio-Oss, and MiR-214 was correlated positively with osteonecrosis. Furthermore, miR-214 was upregulated in cells exposed to Bio-Oss. OBJECTIVE To investigate whether targeting miR-214 further improves the transplantation effect. METHODS We treated BMSCs with agomiR-214 (a miR-214 agonist), antagomiR-214 (a miR-214 inhibitor), or vehicle, followed by their transplantation into ONFH model rats. RESULTS Histological and histomorphometric data showed that bone formation was significantly increased in the experimental groups (Bio-Oss and BMSCs treated with antagomiR-214) compared with other groups. CONCLUSIONS miR-214 participates in the inhibition of osteoblastic bone formation, and the inhibition of miR-214 to bone formation during transplantation therapy with Bio-Oss combined with BMSCs for ONFH.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Department of Stomatology, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Rui He
- Department of Stomatology, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anqi Yang
- Department of Physiology, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Rui Guo
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Jie Liu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Guoqing Liang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- Department of Stomatology, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
15
|
MicroRNA-214 in Health and Disease. Cells 2021; 10:cells10123274. [PMID: 34943783 PMCID: PMC8699121 DOI: 10.3390/cells10123274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.
Collapse
|
16
|
Guo J, Zheng M. The regulation mechanism of LINC00707 on the osteogenic differentiation of human periodontal ligament stem cells. J Mol Histol 2021; 53:13-26. [PMID: 34674104 DOI: 10.1007/s10735-021-10029-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
The osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is important for periodontal tissue repair and regeneration. Long non-coding RNAs (lncRNAs) are key regulators of diverse biological processes. However, their roles in PDLSC osteogenic differentiation are still largely unknown. This study explored the effect of LINC00707 and its mechanism on the osteogenic differentiation of human PDLSCs. Results showed an increase in LINC00707 and forkhead box O1 (FOXO1) but a decrease in miR-490-3p during PDLSC osteogenic differentiation. LINC00707 and FOXO1 promoted osteogenic differentiation as evidenced by the formation of calcium nodules and the increase in osteogenic markers such as alkaline phosphatase, osteocalcin (OCN), and runt-related transcription factor 2 (Runx2). LINC00707 and FOXO1 knockdown exhibited opposite effects. Dual-luciferase reporter assay and qRT-PCR showed that LINC00707 can specially bind to miR-490-3p, which reversed the effect of LINC00707 on PDLSCs. MiR-490-3p inhibitor relieved the inhibiting effect of sh-LINC00707 on osteogenic differentiation. Further investigation revealed that LINC00707 can promote osteogenic differentiation by regulating FOXO1 expression through miR-490-3p sponging. Thus, the LINC00707/miR-490-3p/FOXO1 axis modulated PDLSC osteogenic differentiation and might be a promising therapeutic target for periodontal diseases.
Collapse
Affiliation(s)
- Jianbin Guo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, Fujian, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, Fujian, China
| | - Minqian Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, Fujian, China. .,Department of Orthodontics, Hospital of Stomatology, Fujian Medical University, No. 246 Yangqiao Zhong Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
17
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
18
|
Zhao H, Du P, Peng R, Peng G, Yuan J, Liu D, Liu Y, Mo X, Liao Y. Long Noncoding RNA OR7E156P/miR-143/HIF1A Axis Modulates the Malignant Behaviors of Glioma Cell and Tumor Growth in Mice. Front Oncol 2021; 11:690213. [PMID: 34422645 PMCID: PMC8377393 DOI: 10.3389/fonc.2021.690213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Gliomas are characterized by high incidence, recurrence and mortality all of which are significant challenges to efficacious clinical treatment. The hypoxic microenvironment in the inner core and intermediate layer of the tumor mass of gliomas is a critical contributor to glioma pathogenesis. In this study, we identified an upregulated lncRNA, OR7E156P, in glioma was identified. The silencing of OR7E156P inhibited cell invasion and DNA synthesis in vitro and tumor growth in vivo. OR7E156P was intricately linked to the HIF1A pathway. Hypoxia could induce OR7E156P expression, whereas OR7E156P silencing decreased HIF1A protein levels under hypoxic conditions. Hypoxia promoted glioma cell invasion and DNA synthesis, and HUVEC tube formation, whereas OR7E156P silencing partially reversed the cellular effects of hypoxia. HIF1A overexpression promoted, whereas OR7E156P silencing inhibited tumor growth; the inhibitory effects of OR7E156P silencing on tumor growth were partially reversed by HIF1A overexpression. miR-143 directly targeted OR7E156P and HIF1A, respectively. miR-143 inhibition increased HIF1A protein levels, promoted glioma cell invasion and DNA synthesis. Moreover, they enhanced HUVEC tube formation, whereas OR7E156P silencing partially reversed the cellular effects of miR-143 inhibition. HIF1A targeted the promoter region of miR-143 and inhibited miR-143 expression. Altogether a regulatory axis consisting of OR7E156P, miR-143, and HIF1A, was identified which is deregulated in glioma, and the process of the OR7E156P/miR-143/HIF1A axis modulating glioma cell invasion through ZEB1 and HUVEC tube formation through VEGF was demonstrated.
Collapse
Affiliation(s)
- Haiting Zhao
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China.,Department of Neurology, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Yi Liu
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Xin Mo
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| |
Collapse
|
19
|
Gan Z, Song Y, Zhang H, Ye Y, Chu H. WITHDRAWN: MiR-363-3p attenuates simvastatin-induced osteogenic differentiation of periodontal ligament stem cells by targeting KLF2. Tissue Cell 2021. [DOI: 10.1016/j.tice.2021.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Wang L, Liu T, Chen G, Li Y, Zhang S, Mao L, Liang P, Fasihi Harandi M, Li T, Luo X. Exosomal microRNA let-7-5p from Taenia pisiformis Cysticercus Prompted Macrophage to M2 Polarization through Inhibiting the Expression of C/EBP δ. Microorganisms 2021; 9:microorganisms9071403. [PMID: 34209741 PMCID: PMC8307393 DOI: 10.3390/microorganisms9071403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022] Open
Abstract
Cysticercus pisiformis, the larval stage of Taenia pisiformis, causes serious illness in rabbits that severely impacts the rabbit breeding industry. An inhibitive Th2 immune response can be induced by let-7-enriched exosomes derived from T. pisiformis cysticercus. However, the underlying molecular mechanisms are not completely understood. Here, we report that exosomal miR-let-7-5p released by T. pisiformis cysticercus played a critical role in the activation of M2 macrophages. We found that overexpression of let-7-5p in M1 macrophages decreased M1 phenotype expression while promoting polarization to the M2 phenotype, which is consistent with experimental data in exosome-treated macrophages alone. In contrast, knockdown of let-7-5p in exosome-like vesicles promoted M1 polarization and decreased M2 phenotype expression. Furthermore, down-regulation of transcription factor CCAAT/enhancer-binding protein (C/EBP)-δ resulted in the decrease of M1 phenotype markers and increase of M2 phenotype markers. These results suggested that let-7 enriched in exosome-like vesicles from T. pisiformis metacestodes can induce M2 macrophage polarization via targeting C/EBP δ, which may be involved in macrophage polarization induced by T. pisiformis metacestodes. The finding helps to expand our knowledge of the molecular mechanism of immunosuppression and Th2 immune response induced by metacestodes.
Collapse
Affiliation(s)
- Liqun Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Tingli Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Guoliang Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Yanping Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Li Mao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Panhong Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman 7616914115, Iran;
| | - Taoshan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
21
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
22
|
Ma L, Wu D. MicroRNA-383-5p regulates osteogenic differentiation of human periodontal ligament stem cells by targeting histone deacetylase 9. Arch Oral Biol 2021; 129:105166. [PMID: 34118749 DOI: 10.1016/j.archoralbio.2021.105166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Human periodontal ligament stem cells (hPDLSCs) play an important role in regenerative engineering technology for periodontal therapy. The mechanism of microRNA (miR)-383-5p in osteogenic differentiation needs further exploration. This study aimed at investigating the potential role of miR-383-5p in the osteogenic differentiation of hPDLSCs. METHODS Osteogenic differentiation of hPDLSCs was induced by osteoblastinducing media and evaluated by Alizarin Red staining and Alkaline phosphatase staining. To examine the role of miR-383-5p in osteogenic differentiation, miR-383-5p mimic or inhibitor and histone deacetylase (HDAC) 9 overexpression plasmid or siRNA-HDAC9 were co-transfected into hPDLSCs. qRT-PCR and Western blot were applied for detection of mRNA and protein levels. RESULTS During the osteogenic differentiation of hPDLSCs, miR-383-5p expression was gradually up-regulated, while HDAC9 mRNA level was down-regulated. HDAC9 overexpression suppressed Alkaline phosphatase activity, mineral node formation and the expressions of osteogenic markers including Runx family transcription factor 2 (RUNX2), osteocalcin and Smad family member 4 (Smad4) in the differentiated hPDLSCs, while siHDAC9 exerted opposite effects on osteogenic differentiation. The Alkaline phosphatase activity, mineral node formation and the expressions of RUNX2, osteocalcin and Smad4 of the differentiated hPDLSCs were regulated by miR-383-5p/HDAC9 axis. The miR-383-5p/HDAC9 axis effectively regulated the expressions of osteogenic markers during the differentiation of hPDLSCs. CONCLUSION MiR-383-5p overexpression facilitated the osteogenic differentiation of hPDLSCs via inhibiting HDAC9 expression.
Collapse
Affiliation(s)
- Lan Ma
- Department of Stomatology, Jingmen No.1 People's Hospital, China
| | - Di Wu
- Department of Stomatology, Jingmen No.1 People's Hospital, China.
| |
Collapse
|
23
|
Yao S, Jiang C, Zhang H, Gao X, Guo Y, Cao Z. Visfatin regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119042. [PMID: 33901513 DOI: 10.1016/j.bbamcr.2021.119042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Periodontitis is a widespread chronic infectious-inflammatory disease associated with multiple systemic diseases. Visfatin is an adipokine-enzyme that can be locally produced by human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). It can upregulate proinflammatory cytokines and matrix metalloproteinases (MMPs) in various types of cells. However, the effects of visfatin on healthy and inflammatory human periodontal cells as well as the underlying molecular mechanisms remain unclear. This study firstly demonstrated visfatin expression was highly elevated in inflamed human gingiva and Pg LPS-treated hPDLCs. Moreover, recombinant visfatin significantly upregulated the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and prodegradative factors (EMPPRIN, MMP1, MMP3 and MMP13) in hPDLCs. Next, we found the levels of proinflammatory and prodegradative cytokines were significantly increased in visfatin-overexpressing hPDLCs, and decreased in visfatin-silencing inflammatory hGFs (iGFs) when treated with Pg LPS. In the absence of Pg LPS, visfatin silencing failed to affect the expression of these factors in iGFs, and overexpression of visfatin upregulated MMPs but no other factors in hPDLCs. Furthermore, marked NF-κB pathway activation with increased phosphorylation of p65 was observed in visfatin-overexpressing hPDLCs. BAY11-7082, a specific inhibitor of NF-κB, partially reversed the upregulation proinflammatory and prodegradative factors induced by visfatin overexpression. Taken together, this study showed that visfatin critically regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. The findings suggest that visfatin is closely involved in the development of periodontitis, and may serve as a promising novel biomarker and therapeutic target for periodontitis management.
Collapse
Affiliation(s)
- Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huihui Zhang
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis 2021; 12:340. [PMID: 33795657 PMCID: PMC8016856 DOI: 10.1038/s41419-021-03586-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis is the most prevailing primary bone disease and a growing health care burden. The aim of this study was to clarify the functional roles and mechanisms of the circ-ITCH regulating osteogenic differentiation of osteoporosis. Circ-ITCH and yes-associated protein 1 (YAP1) levels were downregulated, but the miR‐214 level was upregulated in osteoporotic mice and patients. Knockdown of circ-ITCH inhibited the alkaline phosphatase (ALP) activity, mineralized nodule formation, and expression of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) during osteogenic induction. Furthermore, miR-214 was a target of circ-ITCH, knockdown of miR-214 could impede the regulatory effects of sh-circ-ITCH on osteogenic differentiation. Moreover, miR-214 suppressed hBMSCs osteogenic differentiation by downregulating YAP1. Finally, in vivo experiments indicated that overexpression of circ-ITCH could improve osteogenesis in ovariectomized mice. In conclusion, circ-ITCH upregulated YAP1 expression to promote osteogenic differentiation in osteoporosis via sponging miR-214. Circ-ITCH could act as a novel therapeutic target for osteoporosis.
Collapse
|
25
|
Li N, Li Z, Wang Y, Chen Y, Ge X, Lu J, Bian M, Wu J, Yu J. CTP-CM enhances osteogenic differentiation of hPDLSCs via NF-κB pathway. Oral Dis 2021; 27:577-588. [PMID: 32691476 DOI: 10.1111/odi.13567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The conditioned medium of calcined tooth powder (CTP-CM) is a type of biomimetic mineralized material and well contributing to bone healing and bone formation in vivo. However, little is known about the effect of CTP-CM on human periodontal ligament stem cells (hPDLSCs) as well as the underlying mechanisms. METHODS ALP activity assay was conducted to select the concentration with the highest ALP level, which was used for the following experiments. Cell proliferation was measured by cell counting kit-8 assay and flow cytometry analysis. Expression levels of osteogenic markers in CTP-CM-induced hPDLSCs were evaluated with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence staining, and Western blot. Mineralization of CTP-CM-induced hPDLSCs was evaluated by alizarin red staining. Furthermore, the involvement of NF-κB pathway was examined by immunofluorescence staining and Western blot. RESULTS 20 μg/ml was selected for the further experiments. Functional studies demonstrated that CTP-CM exerted almost no influence on the proliferation of hPDLSCs and CTP-CM increased the osteogenic differentiation of hPDLSCs. Mechanistically, CTP-CM leads to activation of NF-κB signaling pathway. When treated with BMS345541, the osteogenic differentiation of CTP-CM-treated hPDLSCs was significantly attenuated. CONCLUSION CTP-CM can promote the osteogenic differentiation of hPDLSCs via activating NF-κB pathway.
Collapse
Affiliation(s)
- Na Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zehan Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Yanqiu Wang
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingyun Ge
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jiamin Lu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Minxia Bian
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Liu J, Wang X, Song M, Du J, Yu J, Zheng W, Zhang C, Wang Y. MiR-497-5p Regulates Osteo/Odontogenic Differentiation of Stem Cells From Apical Papilla via the Smad Signaling Pathway by Targeting Smurf2. Front Genet 2020; 11:582366. [PMID: 33193708 PMCID: PMC7662069 DOI: 10.3389/fgene.2020.582366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Osteo/odontogenic differentiation is a key process of human stem cells from apical papilla (SCAP) in tooth root development. Emerging evidence indicates microRNAs (miRNAs) play diverse roles in osteogenesis. However, their functions in osteo/odontogenic differentiation of SCAP require further elucidation. To investigate the role of miRNA in SCAP osteo/odontogenic differentiation and underlying mechanisms, miRNA microarray analysis was performed to screen differentially expressed miRNAs between control and osteo/odontogenic-induced group. Quantitative real-time PCR (qRT-PCR) and western blot were used to detected osteo/odontogenic differentiation-related markers and possible signaling pathway SCAP-associated genes. Alizarin Red Staining (ARS) were applied to evaluated osteogenic capacity. The results showed that miR-497-5p increased during SCAP osteo/odontogenic differentiation. Overexpression of miR-497-5p enhanced the osteo/odontogenic differentiation of SCAP, whereas downregulation of miR-497-5p elicited the opposite effect, thus suggesting that miR-497-5p is a positive regulator of the osteo/odontogenic differentiation of SCAP. Bioinformatic analysis and dual luciferase reporter assay identified that SMAD specific E3 ubiquitin protein ligase 2 (Smurf2) is a direct target of miR-497-5p. Further study demonstrated that Smurf2 negatively regulates SCAP osteo/odontogenic differentiation, and silencing Smurf2 could block the inhibitory effect of the miR-497-5p inhibitor. Meanwhile, pathway detection manifested that miR-497-5p promotes osteo/odontogenic differentiation via Smad signaling pathway. Collectively, our findings demostrate that miR-497-5p promotes osteo/odontogenic differentiation of SCAP via Smad signaling pathway by targeting Smurf2.
Collapse
Affiliation(s)
- Junqing Liu
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Mengxiao Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oral Pathology, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Jing Du
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiali Yu
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenzhou Zheng
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chengfei Zhang
- Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yan Wang
- Department of Vip center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
27
|
Bao L, Zhang X, Xu Y, Wang M, Song Y, Gu Y, Zheng Y, Xiao J, Wang Y, Zhou Q, Qian J, Liang Y, Ji L, Feng X. Dysfunction of MiR-148a-NRP1 Functional Axis Suppresses Osteogenic Differentiation of Periodontal Ligament Stem Cells Under Inflammatory Microenvironment. Cell Reprogram 2020; 21:314-322. [PMID: 31809209 DOI: 10.1089/cell.2019.0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that can lead to the loss of periodontal bone tissue. The osteogenic potential of periodontal ligament stem cells (PDLSCs) is significantly decreased in periodontitis microenvironment. However, the mechanism is still unclear. We used Porphyromonas gingivalis lipopolysaccharide (LPS) as a stimulator of PDLSCs to mimic the periodontal inflammatory environment. The mineralization capability was restrained in LPS-stimulated PDLSCs, and the level of miR-148a increased, while the level of Neuropilin 1 (NRP1) decreased. Downregulation of miR-148a could reverse the osteogenesis deficiency of PDLSCs under LPS treatment. In addition, the expression of miR-148a in PDLSCs was negatively correlated with the expression of NRP1. Furthermore, overexpression of NRP1 upregulated the osteogenesis ability of LPS-stimulated PDLSCs, while inhibition of NRP1 eliminated the stimulative effect of miR-148a inhibitor on osteogenic differentiation. These data illustrated that the inflammatory environment mimicked by LPS inhibits osteogenesis by upregulation of miR-148a and subsequent downregulation of NRP1. We also found, compared to healthy periodontal tissues, miR-148a level increased, while NRP1 level decreased in periodontitis tissues. These two phenomena also exist in PDLSCs that come from the upper two types of tissues. To summarize, the decline of osteogenic potential of PDLSCs under inflammatory condition of periodontitis is related to miR-148a/NRP1 functional axis. This study may provide a novel strategy in the molecular aspect for the therapy of periodontitis.
Collapse
Affiliation(s)
- Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiang Zhang
- Department of Stomatology, Haian People's Hospital of Jiangsu Province, Nantong, China
| | - Yang Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Miao Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongchun Gu
- Department of Stomatology, The First People's Hospital of Wujiang, Affliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Ya Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingwen Xiao
- Department of Stomatology, Hai Men People's Hospital, Nantong, China
| | - Yuzhe Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Qian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lujun Ji
- Department of Stomatology, Nantong Tongzhou People's Hospital, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Nowwarote N, Manokawinchoke J, Kanjana K, Fournier BPJ, Sukarawan W, Osathanon T. Transcriptome analysis of basic fibroblast growth factor treated stem cells isolated from human exfoliated deciduous teeth. Heliyon 2020; 6:e04246. [PMID: 32617420 PMCID: PMC7322690 DOI: 10.1016/j.heliyon.2020.e04246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF) regulates cell proliferation, migration, and differentiation in various cell types. The aim of the present study was to determine the bFGF target genes in stem cells isolated from human exfoliated deciduous teeth (SHEDs). Methods Cells were isolated from pulp tissue obtained from exfoliated deciduous teeth. Mesenchymal stem cell surface markers and the differentiation potential toward adipogenic and neurogenic lineages were characterized. The bFGF-treated SHED transcriptome was examined using a high throughput RNA sequencing technique. The mRNA and protein expression of selected genes were evaluated using real-time polymerase chain reaction and immunofluorescence staining, respectively. Cell cycle analysis was performed by flow cytometry. The colony forming unit number was also examined. Results The isolated cells expressed CD44, CD90, CD105, but not CD45. The upregulation of adipogenic and neurogenic marker genes was observed after culturing cells in the appropriate induction medium. Transcriptome analysis of the bFGF treated cells revealed that the upregulated genes were in the cell cycle related pathways, while the downregulated genes were in the extracellular matrix related pathways. Correspondingly, bFGF induced MKI67 mRNA expression and Ki67 protein expression. Furthermore, bFGF treatment significantly decreased the G0/G1, but increased the G2/M, population in SHEDs. Colony formation was markedly increased in the bFGF treated group and was attenuated by pretreating the cells with FGFR or PI3K inhibitors. Conclusion bFGF controls cell cycle progression in SHEDs. Thus, it can be used to amplify cell number to obtain the amount of cells required for regenerative treatments.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Kiattipan Kanjana
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, Molecular Oral Physiopathology, Paris, France.,Faculty of Dentistry Garanciere, Universite de Paris, France
| | - Waleerat Sukarawan
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Genomics and Precision Dentistry Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| |
Collapse
|
29
|
Wen JH, Wu YM, Chen LL. [Functions of non-coding RNAs in the osteogenic differentiation of human periodontal ligament-derived cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:330-337. [PMID: 32573144 DOI: 10.7518/hxkq.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human periodontal ligament-derived cells serve as an important source of seeding cells in periodontal regenerative medicine, and their osteogenic potential is closely related to alveolar bone repair and periodontal regeneration. Non-coding RNA (ncRNA), such as microRNA, long non-coding RNA, and circular RNA, play important roles in the regu-lation of osteogenic genes in human periodontal ligament-derived cells. In this review, we summarize the target genes, path-ways, and functions of the ncRNA network during osteogenic differentiation of periodontal ligament-derived cells.
Collapse
Affiliation(s)
- Jia-Hui Wen
- Dept. of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan-Min Wu
- Dept. of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Li-Li Chen
- Dept. of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
30
|
Zhang Y, Tian Y, Yang X, Zhao Z, Feng C, Zhang Y. MicroRNA‑21 serves an important role during PAOO‑facilitated orthodontic tooth movement. Mol Med Rep 2020; 22:474-482. [PMID: 32377742 PMCID: PMC7248476 DOI: 10.3892/mmr.2020.11107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontal accelerate osteogenesis orthodontics (PAOO) is an extension of described techniques that surgically alter the alveolar bone; however, the specific mechanism underlying the technique is not completely understood. The aim of the present study was to evaluate the roles of microRNA (miR)-21 during PAOO. Sprague-Dawley rats were divided into the following four groups: i) Group tooth movement (TM), underwent TM and were administered normal saline (NS); ii) Group PAOO, underwent PAOO + TM and were administered NS; iii) Group agomiR-21, underwent PAOO + TM and were administered agomiR-21; and iv) Group antagomiR-21, underwent PAOO + TM and were administered antagomiR-21. To validate the rat model of PAOO, morphological analyses were performed and measurements were collected. Reverse transcription-quantitative PCR, western blotting and immunohistochemical staining were performed to examine the expression levels of programmed cell death 4 (PDCD4), activin A receptor type 2B (ACVR2b), receptor activator of NF-κΒ ligand (RANKL) and C-Fos. Dual-luciferase reporter assays were performed to validate PDCD4 as a target of miR-21 in vitro. Following 7 days of treatment, the TM distance of group PAOO was longer compared with groups TM and antagomiR-21 (P<0.05), but shorter compared with group agomiR-21 (P<0.05). Tartrate-resistant acid phosphatase staining indicated that following treatment with agomiR-21, osteoclast activity was notably increased, whereas the mRNA and protein expression levels of PDCD4 were notably decreased compared with group PAOO. The mRNA and protein expression levels of RANKL and C-Fos in group agomiR-21 were notably increased compared with group PAOO, whereas group antagomiR-21 displayed the opposite pattern (P<0.05). With regard to ACVR2b, no significant differences were observed among the group agomiR-21 and antagomiR-21 compared with group PAOO. Bioinformatics analysis predicted that PDCD4 was a potential target gene of miR-21, and dual-luciferase reporter assays demonstrated that miR-21 directly targeted PDCD4. In conclusion, the present study demonstrated that miR-21 serves an important role during PAOO-mediated orthodontic TM.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Xiaofeng Yang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Zhenjin Zhao
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Cuijuan Feng
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yang Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
31
|
Qiu W, Wu BL, Fang FC. Overview of noncoding RNAs involved in the osteogenic differentiation of periodontal ligament stem cells. World J Stem Cells 2020; 12:251-265. [PMID: 32399134 PMCID: PMC7202925 DOI: 10.4252/wjsc.v12.i4.251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal diseases are infectious diseases that are characterized by progressive damage to dental support tissue. The major goal of periodontal therapy is to regenerate the periodontium destroyed by periodontal diseases. Human periodontal ligament (PDL) tissue possesses periodontal regenerative properties, and periodontal ligament stem cells (PDLSCs) with the capacity for osteogenic differentiation show strong potential in clinical application for periodontium repair and regeneration. Noncoding RNAs (ncRNAs), which include a substantial portion of poly-A tail mature RNAs, are considered "transcriptional noise." Recent studies show that ncRNAs play a major role in PDLSC differentiation; therefore, exploring how ncRNAs participate in the osteogenic differentiation of PDLSCs may help to elucidate the underlying mechanism of the osteogenic differentiation of PDLSCs and further shed light on the potential of stem cell transplantation for periodontium regeneration. In this review paper, we discuss the history of PDLSC research and highlight the regulatory mechanism of ncRNAs in the osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bu-Ling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fu-Chun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
32
|
Feng Y, Wan P, Yin L. Long Noncoding RNA X-Inactive Specific Transcript (XIST) Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells by Sponging MicroRNA-214-3p. Med Sci Monit 2020; 26:e918932. [PMID: 32057034 PMCID: PMC7034520 DOI: 10.12659/msm.918932] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is associated with periodontitis. It has been reported that long noncoding RNA X-inactive specific transcript (lncRNA XIST) is upregulated and microRNA-214-3p (miR-214-3p) is downregulated in PDLSCs after osteogenic induction. However, whether XIST is involved in osteogenic differentiation of PDLSCs via miR-214-3p has not been reported. MATERIAL AND METHODS The protein expressions of osteogenic markers alkaline phosphatase (ALP), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) were examined by Western blot. The levels of miR-214-3p and XIST were determined by qRT-PCR. The relationship between miR-214-3p and XIST was evaluated by luciferase reporter, RNA immunoprecipitation, and RNA pulldown assays. RESULTS We found that XIST was increased and miR-214-3p was decreased in PDLSCs after osteogenic stimulation. Silencing of XIST decreased the protein expressions of ALP, OCN, and RUNX2, and also decreased ALP activity. Higher miR-214-3p levels also inhibited osteogenic differentiation of PDLSCs. XIST interacted with miR-214-3p and depletion of miR-214-3p mitigated XIST absence-mediated suppression of osteogenic differentiation. CONCLUSIONS XIST participates in osteogenic differentiation of PDLSCs by sponging miR-214-3p.
Collapse
Affiliation(s)
- Yimiao Feng
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Pengbo Wan
- Department of Stomatology, Shangqiu Medical College, Shanghai, China (mainland)
| | - Linling Yin
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
33
|
Huang XZ, Huang J, Li WZ, Wang JJ, Song DY, Ni JD. LncRNA-MALAT1 promotes osteogenic differentiation through regulating ATF4 by sponging miR-214: Implication of steroid-induced avascular necrosis of the femoral head. Steroids 2020; 154:108533. [PMID: 31678133 DOI: 10.1016/j.steroids.2019.108533] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To study roles oflncRNA-MALAT1 and miR-214 in steroid-induced avascular necrosis of the femoral head (SANFH). METHODS MALAT1, miR-214 andosteogenic-relatedgenes(Runx2, ALP, andOCN)expressions were determined in SANFH tissue samples and human bone marrow stromal cells (BMSC) by RT-qPCR. BMSCs were verifiedbyflowcytometry. The ATF4 level was determined by western blotting and RT-qPCR. Osteogenesis inducedbyosteogenic medium (OM) in BMSCs and dexamethasone (DEX) was used to inhibit osteogenesis. The alkaline phosphatase (ALP) activity was measured and ALP staining and alizarin red staining were conducted for evaluation of osteogenic differentiation. MTT assay was used for cell proliferation. The dual luciferase reporter assay was used to confirm binding between MALAT1 and miR-214, as well as miR-214 and ATF4. RESULTS MALAT1 was down-regulated and miR-214 was up-regulated in SANFH tissues. DEX inhibited osteogenic differentiation of BMSC in a dose-dependent manner, leading to decreased MALAT1, increased miR-214, as well as reduced ALP activity and decreased expression of RUNX2, ALP and OCN. Either overexpression of MALAT1 or inhibition of miR-214 improved DEX-induced inhibition of BMSC osteogenic differentiation. The overexpression of miR-214 reversed the effects by MALAT1. MALAT1 directly sponged miR-214 and miR-214 directly targeted ATF4. CONCLUSION MALAT1 was down-regulated, while miR-214 was elevated in SANFH tissues. MALAT1 promoted osteogenesis differentiation by sponging miR-214 to upregulate ATF4.
Collapse
Affiliation(s)
- Xian-Zhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Wen-Zhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - De-Ye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Jiang-Dong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
34
|
Li Y, Yu F, Liu Y, Liang Q, Huang Y, Xiang Q, Zhang Q, Su Z, Yang Y, Zhao Y. Sulfonated chitosan oligosaccharide alleviates the inhibitory effect of basic fibroblast growth factor on osteogenic differentiation of human periodontal ligament stem cells. J Periodontol 2020; 91:975-985. [PMID: 31573683 DOI: 10.1002/jper.19-0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) play an essential role in periodontal tissue repair. Basic fibroblast growth factor (bFGF) has been used in the clinical treatment of periodontal disease. However, studies have shown that bFGF inhibits the osteogenic differentiation of PDLSCs, which is not conducive to alveolar bone repair. Sulfonated chitosan oligosaccharide (SCOS), a heparan-like compound, can maintain the conformation of bFGF and promote its proliferation activity. This study investigated the effects of bFGF in combination with SCOS on the osteogenic differentiation of hPDLSCs. METHODS hPDLSCs were isolated from healthy human periodontal ligament and identified by flow cytometry and immunofluorescence. The affinity between SCOS and bFGF was analyzed by surface plasmon resonance. Changes in osteogenic differentiation by combination of bFGF with SCOS were analyzed by alkaline phosphatase activity assay, Sirius Red staining, and Alizarin Red staining. Expression of genes and proteins was investigated by western blotting and reverse transcription-quantitative PCR. RESULTS Extracted hPDLSCs were mesenchymal stem cells with pluripotent differentiation potential. SCOS exhibited an affinity for bFGF. bFGF (20 ng/mL) promoted the proliferation of hPDLSCs, but inhibited their osteogenic differentiation. SCOS alleviated the inhibitory effect of bFGF on the osteogenic differentiation of hPDLSCs. CONCLUSIONS SCOS can reduce the inhibitory effect of bFGF on the osteogenic differentiation of hPDLSCs. This study provides evidence for the clinical use of bFGF to repair periodontal tissue.
Collapse
Affiliation(s)
- Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yang Liu
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| | - Qian Liang
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Qihao Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Zhijian Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| |
Collapse
|
35
|
Huang Y, Han Y, Guo R, Liu H, Li X, Jia L, Zheng Y, Li W. Long non-coding RNA FER1L4 promotes osteogenic differentiation of human periodontal ligament stromal cells via miR-874-3p and vascular endothelial growth factor A. Stem Cell Res Ther 2020; 11:5. [PMID: 31900200 PMCID: PMC6942378 DOI: 10.1186/s13287-019-1519-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Periodontal ligament stromal cells (PDLSCs) are ideal cell sources for periodontal tissue repair and regeneration, but little is known about what determines their osteogenic capacity. Long non-coding RNAs (lncRNAs) are important regulatory molecules at both transcriptional and post-transcriptional levels. However, their roles in the osteogenic differentiation of PDLSCs are still largely unknown. Methods The expression of lncRNA Fer-1-like family member 4 (FER1L4) during the osteogenic differentiation of PDLSCs was detected by quantitative reverse transcription polymerase chain reaction. Overexpression or knockdown of FER1L4 was used to confirm its regulation of osteogenesis in PDLSCs. Alkaline phosphatase and Alizarin red S staining were used to detect mineral deposition. Dual luciferase reporter assays were used to analyze the binding of miR-874-3p to FER1L4 and vascular endothelial growth factor A (VEGFA). Bone regeneration in critical-sized calvarial defects was assessed in nude mice. New bone formation was analyzed by micro-CT, hematoxylin and eosin staining, Masson’s trichrome staining, and immunohistochemical analyses. Results FER1L4 levels increased gradually during consecutive osteogenic induction of PDLSCs. Overexpression of FER1L4 promoted the osteogenic differentiation of PDLSCs, as revealed by alkaline phosphatase activity, Alizarin red S staining, and the expression of osteogenic markers, whereas FER1L4 knockdown inhibited these processes. Subsequently, we identified a predicted binding site for miR-874-3p on FER1L4 and confirmed a direct interaction between them. Wild-type FER1L4 reporter activity was significantly inhibited by miR-874-3p, whereas mutant FER1L4 reporter was not affected. MiR-874-3p inhibited osteogenic differentiation and reversed the promotion of osteogenesis in PDLSCs by FER1L4. Moreover, miR-874-3p targeted VEGFA, a crucial gene in osteogenic differentiation, whereas FER1L4 upregulated the expression of VEGFA. In vivo, overexpression of FER1L4 led to more bone formation compared to the control group, as demonstrated by micro-CT and the histologic analyses. Conclusion FER1L4 positively regulates the osteogenic differentiation of PDLSCs via miR-874-3p and VEGFA. Our study provides a promising target for enhancing the osteogenic potential of PDLSCs and periodontal regeneration.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| |
Collapse
|
36
|
Activating transcription factor 4 is required for high glucose inhibits proliferation and differentiation of MC3T3-E1 cells. J Recept Signal Transduct Res 2019; 39:407-414. [PMID: 31847659 DOI: 10.1080/10799893.2019.1690510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Activating transcription factor 4 (ATF4) promotes bone formation in human bone marrow mesenchymal stem cells. However, the underlying mechanisms of ATF4 in high glucose-induced injury of osteoblast still remain unclear. Small interfering RNA and plasmid targeting ATF4 were used to transfect MC3T3-E1 cells to knock down and overexpress ATF4 using Lipofectamin 3000. Cell viability, alkaline phosphatase (ALP) activity and levels were determined by MTT, ALP kit assay, quantitative real-time (qRT)-PCR and Western blot. Osteocalcin (OCN) expression was determined by ELISA, PCR and Western blot. The mRNA and protein levels of ATF4, glucose regulated protein 78 kDa (GRP78) and C/EBP homologous protein (CHOP) were detected by PCR and Western blot. In the current study, viabilities of MC3T3-E1 cells were inhibited by high glucose. Meanwhile, the mRNA and protein levels of ATF4 were effectively up-regulated in high glucose-incubated MC3T3-E1 cells. By conducting functional experiments, silencing ATF4 induced by small interfering RNA partially reversed the inhibitory effects of high glucose on viabilities of MC3T3-E1 cells. We also found that the expressions of ER stress-related proteins (ATF4, GRP78 and CHOP) were higher in high glucose-treated MC3T3-E1 cells but were inhibited by siATF4. However, overexpression of AFT4 had opposite results, and high glucose attenuated the protein levels of osteogenic marker genes ALP and OCN, which were further inhibited by ATF4 knockout gene. Thus, ATF4 was a necessary gene for high glucose to inhibit the proliferation and differentiation of MC3T3-E1 cells.
Collapse
|
37
|
Zhu H, Qi X, Liu Y, Liao W, Sun X, Tang Y. The role and underlying mechanisms of microRNA‑214 in Legg‑Calvé‑Perthes disease. Mol Med Rep 2019; 20:685-692. [PMID: 31180556 DOI: 10.3892/mmr.2019.10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/03/2019] [Indexed: 11/06/2022] Open
Abstract
Legg‑Calvé‑Perthes disease (LCPD) is a pediatric form of femoral head osteonecrosis with unknown etiology. MicroRNAs (miRs) have been revealed to serve an important role in LCPD. MiR‑214 serves an important role in chondrogenesis. The aim of the present study was to investigate the potential role of miR‑214 in LCPD and the underlying mechanisms. The expression levels of miR‑214 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) in dexamethasone (DEX)‑treated TC28 cells, and the femoral head cartilage tissues, serum and primary chondrocytes of patients with LCPD, and healthy individuals were determined via reverse transcription quantitative polymerase chain reaction and western blot analysis. A luciferase reporter assay was conducted to investigate the association between miR‑214 and Bax, while cell viability was determined via an MTT assay, and flow cytometry was performed to investigate cell apoptosis. The results revealed that miR‑214 was downregulated and Bax was upregulated in DEX‑treated TC28 cells and tissues obtained from patients with LCPD. MiR‑214 was demonstrated to directly target Bax and negatively regulate its expression. DEX administration significantly suppressed cell proliferation, promoted apoptosis and decreased the Bcl‑2/Bax ratio in TC28 cells; overexpression of miR‑214 induced opposing effects, which were reversed by Bax overexpression. In conclusion, the results indicated that miR‑214 and Bax may be potential therapeutic targets for the future clinical treatment of LCPD.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Orthopedics, Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xinyue Qi
- Department of Orthopedics, Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuehe Liu
- Department of Orthopedics, Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Wei Liao
- Department of Orthopedics, Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiangshui Sun
- Department of Orthopedics, Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuping Tang
- Department of Orthopedics, Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
38
|
Ou L, Lan Y, Feng Z, Feng L, Yang J, Liu Y, Bian L, Tan J, Lai R, Guo R. Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4. Am J Cancer Res 2019; 9:4525-4541. [PMID: 31285777 PMCID: PMC6599658 DOI: 10.7150/thno.34676] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Evidence indicates that microRNAs (miRNAs) play vital roles in regulating osteogenic differentiation and bone formation. Methods: Here, we show that a polyethyleneimine (PEI)-functionalized graphene oxide (GO) complex efficiently loaded with the miR-214 inhibitor is assembled into silk fibroin/hydroxyapatite (SF/HAP) scaffolds that spatially control the release of the miR-214 inhibitor. Results: SF/HAP/GO scaffolds with nanosized GO show high mechanical strength, and their hierarchical microporous structures promote cell adhesion and growth. The SF/HAP/GO-PEI scaffolds loaded with mir-214 inhibitor (SF/HAP/GPM) were tested for their ability to enhance osteogenic differentiation by inhibiting the expression of miR-214 while inversely increasing the expression of activating transcription factor 4 (ATF4) and activating the Akt and ERK1/2 signaling pathways in mouse osteoblastic cells (MC3T3-E1) in vitro. Similarly, the scaffolds activated the osteoblastic activity of endogenous osteoblast cells to repair critical-sized bone defects in rats without the need for loading osteoblast cells. Conclusion: This technology is used to increase osteogenic differentiation and mineralized bone formation in bone defects, which helps to achieve cell-free scaffold-based miRNA-inhibitor therapy for bone tissue engineering.
Collapse
|
39
|
Zhang LN, Wang XX, Wang Z, Li KY, Xu BH, Zhang J. Berberine improves advanced glycation end products‑induced osteogenic differentiation responses in human periodontal ligament stem cells through the canonical Wnt/β‑catenin pathway. Mol Med Rep 2019; 19:5440-5452. [PMID: 31059099 PMCID: PMC6522873 DOI: 10.3892/mmr.2019.10193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the effects of advanced glycation end products (AGEs) and berberine hydrochloride (BBR) on the osteogenic differentiation ability of human periodontal ligament stem cells (hPDLSCs) in vitro, and their underlying mechanisms. hPDLSCs were subjected to osteogenic induction and were treated with AGEs or AGEs + BBR. Following varying numbers of days in culture, alkaline phosphatase (ALP) activity assays, ALP staining, alizarin red staining, ELISAs, and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses were performed to determine the osteogenic differentiation ability of hPDLSCs; RT‑qPCR, western blot analysis, and immunofluorescence staining were conducted to investigate the underlying mechanisms. The canonical Wnt/β‑catenin pathway inhibitor XAV‑939 and agonist CHIR‑99021 were used to determine the contribution of the canonical Wnt/β‑catenin pathway to differentiation. Treatment with AGEs resulted in reduced ALP activity and Collagen I protein levels, decreased ALP staining, fewer mineralized nodules, and downregulated expression of osteogenic‑specific genes [Runt‑related transcription factor 2 (Runx2), Osterix, ALP, osteopontin (OPN), Collagen I and osteocalcin (OCN)] and proteins (Runx2, OPN, BSP and OCN); however, BBR partially rescued the AGE‑induced decrease in the osteogenic potential of hPDLSCs. Furthermore, AGEs activated the canonical Wnt/β‑catenin signaling pathway and promoted the nuclear translocation of β‑catenin; BBR partially attenuated this effect. In addition, XAV‑939 partially rescued the AGE‑induced reduction in the osteogenic potential of hPDLSCs, whereas CHIR‑99021 suppressed the BBR‑induced increase in the osteogenic potential of hPDLSCs. The present study indicated that AGEs attenuated the osteogenic differentiation ability of hPDLSCs, in part by activating the canonical Wnt/β‑catenin pathway; however, BBR attenuated these effects by inhibiting the canonical Wnt/β‑catenin pathway. These findings suggest a role for BBR in periodontal regeneration induced by hPDLSCs in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Li-Na Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Orthodontics, Faculty of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xu-Xia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhi Wang
- Department of Orthodontics, Faculty of Stomatology, Linyi People's Hospital of Shandong, Linyi, Shandong 276000, P.R. China
| | - Ke-Yi Li
- Department of Oral and Maxillofacial Surgery, Faculty of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Bao-Hua Xu
- Dental Medical Center, China-Japan Friendship Hospital, Ministry of Health, Chaoyang, Beijing 100029, P.R. China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
40
|
miR-214 is Stretch-Sensitive in Aortic Valve and Inhibits Aortic Valve Calcification. Ann Biomed Eng 2019; 47:1106-1115. [PMID: 30671754 DOI: 10.1007/s10439-019-02206-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
miR-214 has been recently found to be significantly downregulated in calcified human aortic valves (AVs). ER stress, especially the ATF4-mediated pathway, has also been shown to be significantly upregulated in calcific AV disease. Since elevated cyclic stretch is one of the major mechanical stimuli for AV calcification and ATF4 is a validated target of miR-214, we investigated the effect of cyclic stretch on miR-214 expression as well as those of ATF4 and two downstream genes (CHOP and BCL2L1). Porcine aortic valve (PAV) leaflets were cyclically stretched at 15% for 48 h in regular medium and for 1 week in osteogenic medium to simulate the early remodeling and late calcification stages of stretch-induced AV disease, respectively. For both stages, 10% cyclic stretch served as the physiological counterpart. RT-qPCR revealed that miR-214 expression was significantly downregulated during the late calcification stage, whereas the mRNA expression of ATF4 and BCL2L1 was upregulated and downregulated, respectively, during both early remodeling and late calcification stages. When PAV leaflets were statically transfected with miR-214 mimic in osteogenic medium for 2 weeks, calcification was significantly reduced compared to the control mimic case. This implies that miR-214 may have a protective role in stretch-induced calcific AV disease.
Collapse
|
41
|
Liu X, Niu Y, Xie W, Wei D, Du Q. Tanshinone IIA promotes osteogenic differentiation of human periodontal ligament stem cells via ERK1/2-dependent Runx2 induction. Am J Transl Res 2019; 11:340-350. [PMID: 30787991 PMCID: PMC6357334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cells (MSCs) of the dental or craniofacial origin include Human periodontal ligament stem cells (hPDLSCs), which are able to readily differentiate into osteoblasts. Tanshinone IIA (TSA) is a diterpene quinone compound that is derived from Danshen (also known as Salvia miltiorrhiza) used frequently in the context of traditional Chinese medicine (TCM). This study sought to assess how TSA affects the osteogenic differentiation of hPDLSCs. We found that TSA promotes both this differentiation and hPDLSC maturation. This was dependent on TSA-mediated activation of the ERK1/2 signaling pathway, and ERK1/2 inhibition disrupted TSA-induced Runx2 expression. From these results, we conclude that TSA can induce hPDLSC osteogenesis through the ERK1/2-Runx2 axis, suggesting that TSA is a viable therapeutic option for regenerative medical approaches aimed at the treatment of periodontitis.
Collapse
Affiliation(s)
- Xin Liu
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Yumei Niu
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Weili Xie
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Daqing Wei
- Harbin Institute of Technology School of Materials Science and EngineeringHarbin, Heilongjiang Province, China
| | - Qing Du
- Harbin Institute of Technology School of Materials Science and EngineeringHarbin, Heilongjiang Province, China
| |
Collapse
|
42
|
Li Z, Sun Y, Cao S, Zhang J, Wei J. Downregulation of miR-24-3p promotes osteogenic differentiation of human periodontal ligament stem cells by targeting SMAD family member 5. J Cell Physiol 2018; 234:7411-7419. [PMID: 30378100 DOI: 10.1002/jcp.27499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
Osteogenic differentiation is a complicated process that depends on various regulatory factors and signal pathways. In our research, the osteogenic differentiation capacity was analyzed by alizarin red staining, alkaline phosphatase activity, and protein levels of osteogenic differentiation markers including runt-related transcription factor 2, bone morphogenetic protein 2, and osteocalcin (OCN). We observed a notable decrease of miR-24-3p level in osteogenic-differentiated human periodontal ligament stem cells (hPDLSCs) by microarray analysis. In our gain- and loss-of-function experiments, we discovered that miR-24-3p has a suppression effect on hPDLSCs osteogenic differentiation. Moreover, SMAD family member 5 (Smad5), the critical osteogenic differentiation transcription factors, was predicted to be targets of miR-24-3p. In addition, luciferase reporter assay further proved that miR-24-3p directly targeted the 3'-untranslated region of Smad5. Similarly, we found that the overexpression of miR-24-3p significantly decreased the Smad5 messenger RNA level in hPDLSCs, which was detected by real-time quantitative polymerase chain reaction. Then hPDLSCs were transfected with miR-24-3p mimics to inhibit Smad5 expression; meanwhile, Smad5 RNA interference could significantly reverse the osteogenic differentiation inhibition effect of miR-24-3p. In brief, a series of data showed that miR-24-3p is a regulator of Smad5, playing an important role in osteogenic differentiation.
Collapse
Affiliation(s)
- Zhaobao Li
- Department of Stomatology Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yaru Sun
- Department of Stomatology Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sumin Cao
- Department of Stomatology Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jing Zhang
- Department of Stomatology Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jianming Wei
- Department of Stomatology Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
43
|
Bjørge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair. Biomater Sci 2018; 6:60-78. [PMID: 29184934 DOI: 10.1039/c7bm00479f] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue regeneration by stem cells is driven by the paracrine activity of shedding vesicles and exosomes, which deliver specific cargoes to the recipient cells. Proteins, RNA, cytokines and subsequent gene expression, orchestrate the regeneration process by improving the microenvironment to promote cell survival, controlling inflammation, repairing injury and enhancing the healing process. The action of microRNA is widely accepted as an essential driver of the regenerative process through its impact on multiple downstream biological pathways, and its ability to regulate the host immune response. Here, we present an overview of the recent potential uses of exosomes for regenerative medicine and tissue engineering. We also highlight the differences in composition between shedding vesicles and exosomes that depend on the various types of stem cells from which they are derived. The conditions that affect the production of exosomes in different cell types are deliberated. This review also presents the current status of candidate exosomal microRNAs for potential therapeutic use in regenerative medicine, and in applications involving widely studied organs and tissues such as heart, lung, cartilage and bone.
Collapse
Affiliation(s)
- I M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | | | | | | | | |
Collapse
|
44
|
Liu L, Liu K, Yan Y, Chu Z, Tang Y, Tang C. Two Transcripts of FBXO5 Promote Migration and Osteogenic Differentiation of Human Periodontal Ligament Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7849294. [PMID: 29850565 PMCID: PMC5933072 DOI: 10.1155/2018/7849294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Enhanced migration and osteogenic differentiation of mesenchymal stem cells (MSCs) are beneficial for MSC-mediated periodontal tissue regeneration, a promising method for periodontitis treatment. FBXO5, a member of the F-box protein family, is involved in the osteogenic differentiation of MSCs. Here, we investigated the effect of FBXO5 on human periodontal ligament stem cells (hPDLSCs). MATERIALS AND METHODS hPDLSCs were isolated from periodontal ligament tissue. Lentivirus FBXO5 shRNA was used to silence FBXO5 expression. Two transcripts of FBXO5 were overexpressed and transduced into hPDLSCs via retroviral infection. Migration and osteogenic differentiation of hPDLSCs were evaluated using the scratch migration assay, alkaline phosphatase (ALP) activity, ALP staining, alizarin red staining, western blotting, and real-time polymerase chain reaction. RESULTS The expression of FBXO5 was upregulated after osteogenic induction in hPDLSCs. FBXO5 knockdown attenuated migration, inhibited ALP activity and mineralization, and decreased RUNX2, OSX, and OCN expression, while the overexpression of two transcript isoforms significantly accelerated migration, enhanced ALP activity and mineralization, and increased RUNX2, OSX, and OCN expression in hPDLSCs. CONCLUSIONS Both isoforms of FBXO5 promoted the migration and osteogenic differentiation potential of hPDLSCs, which identified a potential target for improving periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanzhe Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuangzhuang Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunbo Tang
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|