1
|
Speers CW, Barlow WE, Symmans WF. Reply to Y. Wang et al and Q. Sui et al. J Clin Oncol 2023; 41:3763-3764. [PMID: 37262407 PMCID: PMC10351949 DOI: 10.1200/jco.23.00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Corey W. Speers
- Corey W. Speers, MD, PhD, University Hospitals Seidman Cancer Center and Case Western Reserve Medical School, Cleveland, OH; William E. Barlow, PhD, SWOG Statistics and Data Management Center, Seattle, WA; and W. Fraser Symmans, MD, University of Texas MD Anderson Cancer Center, Houston, TX
| | - William E. Barlow
- Corey W. Speers, MD, PhD, University Hospitals Seidman Cancer Center and Case Western Reserve Medical School, Cleveland, OH; William E. Barlow, PhD, SWOG Statistics and Data Management Center, Seattle, WA; and W. Fraser Symmans, MD, University of Texas MD Anderson Cancer Center, Houston, TX
| | - W. Fraser Symmans
- Corey W. Speers, MD, PhD, University Hospitals Seidman Cancer Center and Case Western Reserve Medical School, Cleveland, OH; William E. Barlow, PhD, SWOG Statistics and Data Management Center, Seattle, WA; and W. Fraser Symmans, MD, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Stenmark Tullberg A, Sjöström M, Niméus E, Killander F, Chang SL, Feng FY, Speers CW, Pierce LJ, Kovács A, Lundstedt D, Holmberg E, Karlsson P. Integrating Tumor-Intrinsic and Immunologic Factors to Identify Immunogenic Breast Cancers from a Low-Risk Cohort: Results from the Randomized SweBCG91RT Trial. Clin Cancer Res 2023; 29:1783-1793. [PMID: 37071498 PMCID: PMC10150244 DOI: 10.1158/1078-0432.ccr-22-2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE The local immune infiltrate's influence on tumor progression may be closely linked to tumor-intrinsic factors. The study aimed to investigate whether integrating immunologic and tumor-intrinsic factors can identify patients from a low-risk cohort who may be candidates for radiotherapy (RT) de-escalation. EXPERIMENTAL DESIGN The SweBCG91RT trial included 1,178 patients with stage I to IIA breast cancer, randomized to breast-conserving surgery with or without adjuvant RT, and followed for a median of 15.2 years. We trained two models designed to capture immunologic activity and immunomodulatory tumor-intrinsic qualities, respectively. We then analyzed if combining these two variables could further stratify tumors, allowing for identifying a subgroup where RT de-escalation is feasible, despite clinical indicators of a high risk of ipsilateral breast tumor recurrence (IBTR). RESULTS The prognostic effect of the immunologic model could be predicted by the tumor-intrinsic model (Pinteraction = 0.01). By integrating measurements of the immunologic- and tumor-intrinsic models, patients who benefited from an active immune infiltrate could be identified. These patients benefited from standard RT (HR, 0.28; 95% CI, 0.09-0.85; P = 0.025) and had a 5.4% 10-year incidence of IBTR after irradiation despite high-risk genomic indicators and a low frequency of systemic therapy. In contrast, high-risk tumors without an immune infiltrate had a high 10-year incidence of IBTR despite RT treatment (19.5%; 95% CI, 12.2-30.3). CONCLUSIONS Integrating tumor-intrinsic and immunologic factors may identify immunogenic tumors in early-stage breast cancer populations dominated by ER-positive tumors. Patients who benefit from an activated immune infiltrate may be candidates for RT de-escalation.
Collapse
Affiliation(s)
- Axel Stenmark Tullberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Sjöström
- Department of Clinical Sciences Lund, Oncology/Pathology and Surgery, Lund University, Lund, Sweden
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Emma Niméus
- Department of Clinical Sciences Lund, Oncology/Pathology and Surgery, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Fredrika Killander
- Department of Clinical Sciences Lund, Oncology/Pathology and Surgery, Lund University, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | | | - Felix Y. Feng
- University of California San Francisco, San Francisco, California
| | | | - Lori J. Pierce
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dan Lundstedt
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Rodrigues-Ferreira S, Nahmias C. Predictive biomarkers for personalized medicine in breast cancer. Cancer Lett 2022; 545:215828. [PMID: 35853538 DOI: 10.1016/j.canlet.2022.215828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer is one of the most frequent malignancies among women worldwide. Based on clinical and molecular features of breast tumors, patients are treated with chemotherapy, hormonal therapy and/or radiotherapy and more recently with immunotherapy or targeted therapy. These different therapeutic options have markedly improved patient outcomes. However, further improvement is needed to fight against resistance to treatment. In the rapidly growing area of research for personalized medicine, predictive biomarkers - which predict patient response to therapy - are essential tools to select the patients who are most likely to benefit from the treatment, with the aim to give the right therapy to the right patient and avoid unnecessary overtreatment. The search for predictive biomarkers is an active field of research that includes genomic, proteomic and/or machine learning approaches. In this review, we describe current strategies and innovative tools to identify, evaluate and validate new biomarkers. We also summarize current predictive biomarkers in breast cancer and discuss companion biomarkers of targeted therapy in the context of precision medicine.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Inovarion, 75005, Paris, France
| | - Clara Nahmias
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
4
|
Polgár C, Kahán Z, Ivanov O, Chorváth M, Ligačová A, Csejtei A, Gábor G, Landherr L, Mangel L, Mayer Á, Fodor J. Radiotherapy of Breast Cancer-Professional Guideline 1st Central-Eastern European Professional Consensus Statement on Breast Cancer. Pathol Oncol Res 2022; 28:1610378. [PMID: 35832115 PMCID: PMC9272418 DOI: 10.3389/pore.2022.1610378] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
The international radiotherapy (RT) expert panel has revised and updated the RT guidelines that were accepted in 2020 at the 4th Hungarian Breast Cancer Consensus Conference, based on new scientific evidence. Radiotherapy after breast-conserving surgery (BCS) is indicated in ductal carcinoma in situ (stage 0), as RT decreases the risk of local recurrence (LR) by 50-60%. In early stage (stage I-II) invasive breast cancer RT remains a standard treatment following BCS. However, in elderly (≥70 years) patients with stage I, hormone receptor-positive tumour, hormonal therapy without RT can be considered. Hypofractionated whole breast irradiation (WBI) and for selected cases accelerated partial breast irradiation are validated treatment alternatives to conventional WBI administered for 5 weeks. Following mastectomy, RT significantly decreases the risk of LR and improves overall survival of patients who have 1 to 3 or ≥4 positive axillary lymph nodes. In selected cases of patients with 1 to 2 positive sentinel lymph nodes axillary dissection can be substituted with axillary RT. After neoadjuvant systemic treatment (NST) followed by BCS, WBI is mandatory, while after NST followed by mastectomy, locoregional RT should be given in cases of initial stage III-IV and ypN1 axillary status.
Collapse
Affiliation(s)
- Csaba Polgár
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary
- Department of Oncology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Olivera Ivanov
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Department for Radiation Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Martin Chorváth
- Department of Radiation Oncology, St. Elisabeth Cancer Institute, Slovak Medical University, Bratislava, Slovakia
| | - Andrea Ligačová
- Department of Radiation Oncology, St. Elisabeth Cancer Institute, Slovak Medical University, Bratislava, Slovakia
| | - András Csejtei
- Department of Oncoradiology, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Gabriella Gábor
- Oncoradiology Centre, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - László Landherr
- Municipal Oncoradiology Centre, Uzsoki Street Hospital, Budapest, Hungary
| | - László Mangel
- Oncotherapy Institute, University of Pécs, Pécs, Hungary
| | - Árpád Mayer
- Municipal Oncoradiology Centre, Uzsoki Street Hospital, Budapest, Hungary
| | - János Fodor
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
5
|
Estrogen receptor inhibition mediates radiosensitization of ER-positive breast cancer models. NPJ Breast Cancer 2022; 8:31. [PMID: 35273179 PMCID: PMC8913671 DOI: 10.1038/s41523-022-00397-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Endocrine therapy (ET) is an effective first-line therapy for women with estrogen receptor-positive (ER + ) breast cancers. While both ionizing radiation (RT) and ET are used for the treatment of women with ER+ breast cancer, the most effective sequencing of therapy and the effect of ET on tumor radiosensitization remains unclear. Here we sought to understand the effects of inhibiting estrogen receptor (ER) signaling in combination with RT in multiple preclinical ER+ breast cancer models. Clonogenic survival assays were performed using variable pre- and post-treatment conditions to assess radiosensitization with estradiol, estrogen deprivation, tamoxifen, fulvestrant, or AZD9496 in ER+ breast cancer cell lines. Estrogen stimulation was radioprotective (radiation enhancement ratios [rER]: 0.51–0.82). Conversely, when given one hour prior to RT, ER inhibition or estrogen depletion radiosensitized ER+ MCF-7 and T47D cells (tamoxifen rER: 1.50–1.60, fulvestrant rER: 1.76–2.81, AZD9496 rER: 1.33–1.48, estrogen depletion rER: 1.47–1.51). Combination treatment resulted in an increase in double-strand DNA (dsDNA) breaks as a result of inhibition of non-homologous end joining-mediated dsDNA break repair with no effect on homologous recombination. Treatment with tamoxifen or fulvestrant in combination with RT also increased the number of senescent cells but did not affect apoptosis or cell cycle distribution. Using an MCF-7 xenograft model, concurrent treatment with tamoxifen and RT was synergistic and resulted in a significant decrease in tumor volume and a delay in time to tumor doubling without significant toxicity. These findings provide preclinical evidence that concurrent treatment with ET and RT may be an effective radiosensitization strategy.
Collapse
|
6
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
7
|
Speers CW, Mutter RW. When Old Becomes New-Repurposing Cytotoxic Chemotherapy With Radiation to Improve Outcomes in Women With Aggressive Forms of Breast Cancer. Int J Radiat Oncol Biol Phys 2021; 111:53-55. [PMID: 34348110 DOI: 10.1016/j.ijrobp.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
8
|
Grass GD, Scott JG, Sedor G, Kattan MW, Torres-Roca JF. Response to: Noncancer Cells in Tumor Samples May Bias the Predictive Genomically Adjusted Radiation Dose. J Thorac Oncol 2021; 16:e48-e49. [PMID: 34034894 DOI: 10.1016/j.jtho.2021.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Affiliation(s)
- G Daniel Grass
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jacob G Scott
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Geoffrey Sedor
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Kattan
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
9
|
A six-gene-based signature for breast cancer radiotherapy sensitivity estimation. Biosci Rep 2021; 40:226938. [PMID: 33179733 PMCID: PMC7711058 DOI: 10.1042/bsr20202376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancer (BRCA) represents the most common malignancy among women worldwide with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Here, we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity estimation. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA samples compared with their paracancerous samples in the training set were identified by using the edgeR Bioconductor package. Univariate Cox regression analysis and LASSO Cox regression method were applied to screen optimal genes for constructing a radiotherapy sensitivity estimation signature. Nomogram combining independent prognostic factors was used to predict 1-, 3-, and 5-year OS of radiation-treated BRCA patients. Relative proportions of tumor infiltrating immune cells (TIICs) calculated by CIBERSORT and mRNA levels of key immune checkpoint receptors was adopted to explore the relation between the signature and tumor immune response. As a result, 603 DEGs were obtained in BRCA tumor samples, six of which were retained and used to construct the radiotherapy sensitivity prediction model. The signature was proved to be robust in both training and testing sets. In addition, the signature was closely related to the immune microenvironment of BRCA in the context of TIICs and immune checkpoint receptors’ mRNA levels. In conclusion, the present study obtained a radiotherapy sensitivity estimation signature for BRCA, which should shed new light in clinical and experimental research.
Collapse
|
10
|
Aristei C, Perrucci E, Alì E, Marazzi F, Masiello V, Saldi S, Ingrosso G. Personalization in Modern Radiation Oncology: Methods, Results and Pitfalls. Personalized Interventions and Breast Cancer. Front Oncol 2021; 11:616042. [PMID: 33816246 PMCID: PMC8012886 DOI: 10.3389/fonc.2021.616042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer, the most frequent malignancy in women worldwide, is a heterogeneous group of diseases, characterized by distinct molecular aberrations. In precision medicine, radiation oncology for breast cancer aims at tailoring treatment according to tumor biology and each patient’s clinical features and genetics. Although systemic therapies are personalized according to molecular sub-type [i.e. endocrine therapy for receptor-positive disease and anti-human epidermal growth factor receptor 2 (HER2) therapy for HER2-positive disease] and multi-gene assays, personalized radiation therapy has yet to be adopted in the clinical setting. Currently, attempts are being made to identify prognostic and/or predictive factors, biomarkers, signatures that could lead to personalized treatment in order to select appropriate patients who might, or might not, benefit from radiation therapy or whose radiation therapy might be escalated or de-escalated in dosages and volumes. This overview focuses on what has been achieved to date in personalized post-operative radiation therapy and individual patient radiosensitivity assessments by means of tumor sub-types and genetics.
Collapse
Affiliation(s)
- Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| | | | - Emanuele Alì
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Fabio Marazzi
- Radiation Oncology Department, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Valeria Masiello
- Radiation Oncology Department, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Simonetta Saldi
- Radiation Oncology Section, Perugia General Hospital, Perugia, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| |
Collapse
|
11
|
Meehan J, Gray M, Martínez-Pérez C, Kay C, Pang LY, Fraser JA, Poole AV, Kunkler IH, Langdon SP, Argyle D, Turnbull AK. Precision Medicine and the Role of Biomarkers of Radiotherapy Response in Breast Cancer. Front Oncol 2020; 10:628. [PMID: 32391281 PMCID: PMC7193869 DOI: 10.3389/fonc.2020.00628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy remains an important treatment modality in nearly two thirds of all cancers, including the primary curative or palliative treatment of breast cancer. Unfortunately, largely due to tumor heterogeneity, tumor radiotherapy response rates can vary significantly, even between patients diagnosed with the same tumor type. Although in recent years significant technological advances have been made in the way radiation can be precisely delivered to tumors, it is proving more difficult to personalize radiotherapy regimens based on cancer biology. Biomarkers that provide prognostic or predictive information regarding a tumor's intrinsic radiosensitivity or its response to treatment could prove valuable in helping to personalize radiation dosing, enabling clinicians to make decisions between different treatment options whilst avoiding radiation-induced toxicity in patients unlikely to gain therapeutic benefit. Studies have investigated numerous ways in which both patient and tumor radiosensitivities can be assessed. Tumor molecular profiling has been used to develop radiosensitivity gene signatures, while the assessment of specific intracellular or secreted proteins, including circulating tumor cells, exosomes and DNA, has been performed to identify prognostic or predictive biomarkers of radiation response. Finally, the investigation of biomarkers related to radiation-induced toxicity could provide another means by which radiotherapy could become personalized. In this review, we discuss studies that have used these methods to identify or develop prognostic/predictive signatures of radiosensitivity, and how such assays could be used in the future as a means of providing personalized radiotherapy.
Collapse
Affiliation(s)
- James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Gray
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer A Fraser
- School of Applied Science, Sighthill Campus, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Amy V Poole
- School of Applied Science, Sighthill Campus, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Bosma SC, Hoogstraat M, van der Leij F, de Maaker M, Wesseling J, Lips E, Loo CE, Rutgers EJ, Elkhuizen PH, Bartelink H, van de Vijver MJ. Response to Preoperative Radiation Therapy in Relation to Gene Expression Patterns in Breast Cancer Patients. Int J Radiat Oncol Biol Phys 2020; 106:174-181. [DOI: 10.1016/j.ijrobp.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 02/03/2023]
|
13
|
Grassberger C, Huber K, Jacob NK, Green MD, Mahler P, Prisciandaro J, Dominello M, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: The single most important factor in determining the future of SBRT is immune response. J Appl Clin Med Phys 2019; 20:6-12. [PMID: 31573143 PMCID: PMC6807212 DOI: 10.1002/acm2.12728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
| | - Kathryn Huber
- Department of Radiation OncologyTufts Medical CenterBostonMAUSA
| | | | - Michael D. Green
- Department of Radiation OncologyUniversity of MichiganAnn ArborMIUSA
| | - Peter Mahler
- Department of Human OncologyUniversity of WisconsinMadisonWIUSA
| | | | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
14
|
Cammarata FP, Torrisi F, Forte GI, Minafra L, Bravatà V, Pisciotta P, Savoca G, Calvaruso M, Petringa G, Cirrone GAP, Fallacara AL, Maccari L, Botta M, Schenone S, Parenti R, Cuttone G, Russo G. Proton Therapy and Src Family Kinase Inhibitor Combined Treatments on U87 Human Glioblastoma Multiforme Cell Line. Int J Mol Sci 2019; 20:E4745. [PMID: 31554327 PMCID: PMC6801826 DOI: 10.3390/ijms20194745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, dose modifying factor calculation and linear-quadratic model were performed to evaluate radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by microarray was also conducted after PT treatments alone or combined, to identify gene signatures as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in combination with PT, overcoming resistance to conventional treatments.
Collapse
Affiliation(s)
- Francesco P Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Filippo Torrisi
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giusi I Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Pietro Pisciotta
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Departments of Physics and Astronomy, University of Catania, 95123 Catania, Italy.
| | - Gaetano Savoca
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giuseppe A P Cirrone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Anna L Fallacara
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Laura Maccari
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
| | - Maurizio Botta
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Silvia Schenone
- Department of Pharmacy, Università degli Studi di Genova, 16126 Genova, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| |
Collapse
|
15
|
Bravatà V, Cammarata FP, Minafra L, Pisciotta P, Scazzone C, Manti L, Savoca G, Petringa G, Cirrone GAP, Cuttone G, Gilardi MC, Forte GI, Russo G. Proton-irradiated breast cells: molecular points of view. JOURNAL OF RADIATION RESEARCH 2019; 60:451-465. [PMID: 31135901 PMCID: PMC6640903 DOI: 10.1093/jrr/rrz032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/15/2019] [Indexed: 05/05/2023]
Abstract
Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome.
Collapse
Affiliation(s)
- Valentina Bravatà
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
| | - Francesco P Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
| | - Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
| | - Pietro Pisciotta
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Concetta Scazzone
- Department of Biopathology and Medical Biotechnology, Palermo University, Palermo, Italy
| | - Lorenzo Manti
- Department of Physics, University of Naples Federico II, via Cintia, Naples, Italy
| | - Gaetano Savoca
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
| | - Giada Petringa
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giuseppe A P Cirrone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Maria C Gilardi
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
- Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Giusi I Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù (PA), Italy
| |
Collapse
|
16
|
Affiliation(s)
- Corey Speers
- Department of Radiation Oncology, University of Michigan Cancer Center, Ann Arbor
| | - Hope S Rugo
- University of California, San Francisco, Comprehensive Cancer Center, San Francisco
| |
Collapse
|