1
|
Shah K, Jalgaonkar M, Vyas A, Doshi G, Kulkarni YA, Singh AD, Oza MJ. A herbal approach to diabetic cardiomyopathy: moringa, ginger, and garlic unveiled. Arch Physiol Biochem 2025:1-10. [PMID: 39888842 DOI: 10.1080/13813455.2025.2459871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/18/2024] [Accepted: 01/23/2025] [Indexed: 02/02/2025]
Abstract
OBJECTIVE Chronic inflammation contributes to myocardial complications in diabetes, marked by tissue fibrosis, necrosis, and apoptosis. Zingiber officinale, Allium sativum, and Moringa oleifera have individually demonstrated efficacy in diabetes management. In this study, it is hypothesised that a combination of these herbs in a polyherbal formulation would protect against diabetic cardiomyopathy. MATERIALS AND METHODS Diabetes was induced in male Sprague Dawley rats using strepetozotocin at a single dose of (55 mg/kg of body weight, i.p) in citrate buffer. Polyherbal formulation was administred as a treatment for 8 weeks. Rats receiving treatment with polyherbal formulation showed decreased blood glucose, plasma creatinine, Blood Urea Nitrogen, Creatine kinase- myocardial band, lactate dehydrogenase, aspartate aminotransferase, Troponin-I, NADPH oxidase 4, and Ras-related C3 botulinum toxin substrate-1. In contrast, Superoxide dismutase, catalase, and glutathione enzyme activities were increased. CONCLUSION Thus, a polyherbal formulation containing herbs was able to attenuate the progression of diabetes mellitus and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Kaushal Shah
- Department of Pharmacognosy, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Manjiri Jalgaonkar
- Department of Pharmacognosy, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Aditi Vyas
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta road, Vile Parle (West), Mumbai, Maharashtra, India
| | - Alok D Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta road, Vile Parle (West), Mumbai, Maharashtra, India
| | - Manisha J Oza
- Department of Pharmacognosy, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, Maharashtra, India
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
2
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Liu WW, Liu ML. Vascular Calcification: Where is the Cure? CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2024; 39:198-210. [PMID: 39229794 DOI: 10.24920/004367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the progress of aging, the incidence of vascular calcification (VC) gradually increases, which is correlated with cardiovascular events and all-cause death, aggravating global clinical burden. Over the past several decades, accumulating approaches targeting the underlying pathogenesis of VC have provided some possibilities for the treatment of VC. Unfortunately, none of the current interventions have achieved clinical effectiveness on reversing or curing VC. The purpose of this review is to make a summary of novel perspectives on the interventions of VC and provide reference for clinical decision-making.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Mei-Lin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China. ,
| |
Collapse
|
4
|
Moldovan D, Rusu C, Potra A, Tirinescu D, Ticala M, Kacso I. Food to Prevent Vascular Calcification in Chronic Kidney Disease. Nutrients 2024; 16:617. [PMID: 38474744 DOI: 10.3390/nu16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Vascular calcification (VC) is a consequence of chronic kidney disease (CKD) which is of paramount importance regarding the survival of CKD patients. VC is far from being controlled with actual medication; as a result, in recent years, diet modulation has become more compelling. The concept of medical nutritional therapy points out the idea that food may prevent or treat diseases. The aim of this review was to evaluate the influence of food habits and nutritional intervention in the occurrence and progression of VC in CKD. Evidence reports the harmfulness of ultra-processed food, food additives, and animal-based proteins due to the increased intake of high absorbable phosphorus, the scarcity of fibers, and the increased production of uremic toxins. Available data are more supportive of a plant-dominant diet, especially for the impact on gut microbiota composition, which varies significantly depending on VC presence. Magnesium has been shown to prevent VC but only in experimental and small clinical studies. Vitamin K has drawn considerable attention due to its activation of VC inhibitors. There are positive studies; unfortunately, recent trials failed to prove its efficacy in preventing VC. Future research is needed and should aim to transform food into a medical intervention to eliminate VC danger in CKD.
Collapse
Affiliation(s)
- Diana Moldovan
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Crina Rusu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Atteia HH, Alamri ES, Sirag N, Zidan NS, Aljohani RH, Alzahrani S, Arafa MH, Mohammad NS, Asker ME, Zaitone SA, Sakr AT. Soluble guanylate cyclase agonist, isoliquiritigenin attenuates renal damage and aortic calcification in a rat model of chronic kidney failure. Life Sci 2023; 317:121460. [PMID: 36716925 DOI: 10.1016/j.lfs.2023.121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
AIMS Chronic kidney disease (CKD) is a growing fatal health problem worldwide associated with vascular calcification. Therapeutic approaches are limited with higher costs and poor outcomes. Adenine supplementation is one of the most relevant CKD models to human. Insufficient Nitric Oxide (NO)/ cyclic Guanosine Monophosphate (cGMP) signaling plays a key role in rapid development of renal fibrosis. Natural products display proven protection against CKD. Current study therefore explored isoliquiritigenin, a bioflavonoid extracted from licorice roots, potential as a natural activator for soluble Guanylate Cyclase (sGC) in a CKD rat model. MATERIALS AND METHODS 60 male Wistar rats were grouped into Control group (n = 10) and the remaining rats received adenine (200 mg/kg, p.o) for 2 wk to induce CKD. They were equally sub-grouped into: Adenine untreated group and 4 groups orally treated by isoliquiritigenin low or high dose (20 or 40 mg/kg) with/without a selective sGC inhibitor, ODQ (1-H(1,2,4)oxadiazolo(4,3-a)-quinoxalin-1-one, 2 mg/kg, i.p) for 8 wk. KEY FINDINGS Long-term treatment with isoliquiritigenin dose-dependently and effectively amended adenine-induced chronic renal and endothelial dysfunction. It not only alleviated renal fibrosis and apoptosis markers but also aortic calcification. Additionally, this chalcone neutralized renal inflammatory response and oxidative stress. Isoliquiritigenin beneficial effects were associated with up-regulation of serum NO, renal and aortic sGC, cGMP and its dependent protein kinase (PKG). However, co-treatment with ODQ antagonized isoliquiritigenin therapeutic impact. SIGNIFICANCE Isoliquiritigenin seems to exert protective effects against CKD and vascular calcification by activating sGC, increasing cGMP and its downstream PKG.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt.
| | - Eman Saad Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nahla Salah Zidan
- Department of Nutrition and Food Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Home Economics, Faculty of Specific Education, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | | | - Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Manar Hamed Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Nanies Sameeh Mohammad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Mervat Elsayed Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amr Tawfik Sakr
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
6
|
Parmenter BH, Bondonno CP, Murray K, Schousboe JT, Croft K, Prince RL, Hodgson JM, Bondonno NP, Lewis JR. Higher Habitual Dietary Flavonoid Intake Associates With Less Extensive Abdominal Aortic Calcification in a Cohort of Older Women. Arterioscler Thromb Vasc Biol 2022; 42:1482-1494. [PMID: 36325901 DOI: 10.1161/atvbaha.122.318408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The extent of abdominal aortic calcification (AAC) is a major predictor of vascular disease events. We have previously found regular apple intake, a major source of dietary flavonoids, associates with lower AAC. Whether total dietary flavonoid intake impacts AAC remains unknown. Here, we extend our observations to habitual intakes of total flavonoids, flavonoid subclasses, and specific flavonoid-containing foods, with the odds of extensive AAC. METHODS We conducted cross-sectional analyses on 881 females (median [interquartile range] age, 80 [78-82] years; body mass index, 27 [24-30] kg/m2) from the PLSAW (Perth Longitudinal Study of Ageing Women). Flavonoid intake was calculated from food-frequency questionnaires. Calcifications of the abdominal aorta were assessed on lateral lumbar spine images and categorized as less extensive or extensive. Logistic regression was used to investigate associations. RESULTS After adjusting for demographic, lifestyle and dietary confounders, participants with higher (Q4), compared with lower (Q1) intakes, of total flavonoids, flavan-3-ols, and flavonols had 36% (odds ratio [95% CI], 0.64 [0.43-0.95]), 39% (0.61 [0.40-0.93]) and 38% (0.62 [0.42-0.92]) lower odds of extensive AAC, respectively. In food-based analyses, higher black tea intake, the main source of total flavonoids (75.9%), associated with significantly lower odds of extensive AAC (2-6 cups/d had 16%-42% lower odds compared with 0 daily intake). In a subset of nonconsumers of black tea, the association of total flavonoid intake with AAC remained (Q4 versus Q1 odds ratio [95% CI], 0.11 [0.02-0.54]). CONCLUSIONS In older women, greater habitual dietary flavonoid intake associates with less extensive AAC.
Collapse
Affiliation(s)
- Benjamin H Parmenter
- School of Biomedical Sciences (B.H.P., K.C.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.)
| | - Catherine P Bondonno
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.)
| | - Kevin Murray
- School of Population and Global Health (K.M.), University of Western Australia, Perth
| | - John T Schousboe
- Park Nicollet Osteoporosis Center, HealthPartners Institute, HealthPartners, Minneapolis, MN (J.T.S.).,Division of Health Policy and Management, University of Minnesota, Minneapolis (J.T.S.)
| | - Kevin Croft
- School of Biomedical Sciences (B.H.P., K.C.), University of Western Australia, Perth
| | - Richard L Prince
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth
| | - Jonathan M Hodgson
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.)
| | - Nicola P Bondonno
- Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.).,The Danish Cancer Society Research Center, Copenhagen, Denmark (N.P.B.)
| | - Joshua R Lewis
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.).,Centre for Kidney Research, School of Public Health, The University of Sydney, New South Wales' Australia (J.R.L.)
| |
Collapse
|
7
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
8
|
Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants (Basel) 2022; 11:antiox11061169. [PMID: 35740065 PMCID: PMC9219756 DOI: 10.3390/antiox11061169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is the most prevalent heart valvular disease worldwide and a slowly progressive disorder characterized by thickening of the aortic valve, calcification, and subsequent heart failure. Valvular calcification is an active cell regulation process in which valvular interstitial cells involve phenotypic conversion into osteoblasts/chondrocytes-like cells. The underlying pathophysiology is complicated, and there have been no pharmacological treatments for CAVS to date. Recent studies have suggested that an increase in oxidative stress is the major trigger of CAVS, and natural antioxidants could ameliorate the detrimental effects of reactive oxygen species in the pathogenesis of CAVS. It is imperative to review the current findings regarding the role of natural antioxidants in CAVS, as they can be a promising therapeutic approach for managing CAVS, a disorder currently without effective treatment. This review summarizes the current findings on molecular mechanisms associated with oxidative stress in the development of valvular calcification and discusses the protective roles of natural antioxidants in the prevention and treatment of CAVS.
Collapse
|
9
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X, Fan JM. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis 2022; 13:673-697. [PMID: 35656113 PMCID: PMC9116919 DOI: 10.14336/ad.2021.1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a devastating condition resulting from irreversible loss of nephron numbers and function and leading to end-stage renal disease and mineral disorders. Vascular calcification, an ectopic deposition of calcium-phosphate salts in blood vessel walls and heart valves, is an independent risk factor of cardiovascular morbidity and mortality in chronic kidney disease. Moreover, aging and related metabolic disorders are essential risk factors for chronic kidney disease and vascular calcification. Marked progress has been recently made in understanding and treating vascular calcification in chronic kidney disease. However, there is a paucity of systematic reviews summarizing this progress, and investigating unresolved issues is warranted. In this systematic review, we aimed to overview the underlying mechanisms of vascular calcification in chronic kidney diseases and discuss the impact of chronic kidney disease on the pathophysiology of vascular calcification. Additionally, we summarized potential clinical diagnostic biomarkers and therapeutic applications for vascular calcification with chronic kidney disease. This review may offer new insights into the pathogenesis, diagnosis, and therapeutic intervention of vascular calcification.
Collapse
Affiliation(s)
- Si-Chong Ren
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Mao
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Si Yi
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| | - Xin Ma
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Jia-Qiong Zou
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| |
Collapse
|
10
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
11
|
Amer AE, Shehatou GSG, El-Kashef HA, Nader MA, El-Sheakh AR. Flavocoxid Ameliorates Aortic Calcification Induced by Hypervitaminosis D 3 and Nicotine in Rats Via Targeting TNF-α, IL-1β, iNOS, and Osteogenic Runx2. Cardiovasc Drugs Ther 2021; 36:1047-1059. [PMID: 34309798 DOI: 10.1007/s10557-021-07227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This research was designed to investigate the effects and mechanisms of flavocoxid (FCX) on vascular calcification (VC) in rats. METHODS Vitamin D3 and nicotine were administered to Wistar rats, which then received FCX (VC-FCX group) or its vehicle (VC group) for 4 weeks. Control and FCX groups served as controls. Systolic (SBP) and diastolic (DBP) blood pressures, heart rate (HR), and left ventricular weight (LVW)/BW were measured. Serum concentrations of calcium, phosphate, creatinine, uric acid, and alkaline phosphatase were determined. Moreover, aortic calcium content and aortic expression of runt-related transcription factor (Runx2), osteopontin (OPN), Il-1β, α-smooth muscle actin (α-SMA), matrix metalloproteinase-9 (MMP-9), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) were assessed. Oxidative status in aortic homogenates was investigated. RESULTS Compared to untreated VC rats, FCX treatment prevented body weight loss, reduced aortic calcium deposition, restored normal values of SBP, DBP, and HR, and attenuated LV hypertrophy. FCX also improved renal function and ameliorated serum levels of phosphorus, calcium, and ALP in rats with VC. FCX abolished aortic lipid peroxidation in VC rats. Moreover, VC-FCX rats showed marked reductions in aortic levels of Il-1β and osteogenic marker (Runx2) and attenuated aortic expression of TNF-α, iNOS, and MMP-9 proteins compared to untreated VC rats. The expression of the smooth muscle lineage marker α-SMA was greatly enhanced in aortas from VC rats upon FCX treatment. CONCLUSION These findings demonstrate FCX ability to attenuate VDN-induced aortic calcinosis in rats, suggesting its potential for preventing arteiocalcinosis in diabetic patients and those with chronic kidney disease.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt.
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| |
Collapse
|
12
|
Gu Y, Xiao ZH, Wu J, Guo M, Lv P, Dou N. Anti-Atherosclerotic Effect of Afrocyclamin A against Vascular Smooth Muscle Cells Is Mediated via p38 MAPK Signaling Pathway. CELL JOURNAL 2021; 23:191-198. [PMID: 34096220 PMCID: PMC8181314 DOI: 10.22074/cellj.2021.7148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/19/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Research suggests that fine particulate matter (PM2.5) contributes to the expansion and development of atherosclerosis. Infiltration and proliferation of vascular smooth muscle cells (VSMCs) from the blood vessel media into the intima, is an important step in the atherosclerosis pathophysiology. Afrocyclamin A, is an oleanane-type triterpene saponin, isolated from Androsace umbellate, which is commonly used in Chinese herbal medicine. In the study, we examined the effect of Afrocyclamin A on PM2.5-induced VSMCs proliferation and scrutinized possible mechanisms of action. MATERIALS AND METHODS In the experimental study, counting Kit-8 (CCK-8) assay was used for estimation of VSMCs viability. BrdU immunofluorescence was used for estimation of VSMCs proliferation. The levels of antioxidant parameters such as malonaldehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH); proinflammatory cytokines such as interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), nitric oxide (NO), endothelin-1 (ET-1), and vascular cell adhesion molecule-1 (VCAM-1), were estimated. The expression of proliferating cell nuclear antigen (PCNA) and phospho-p38 MAPK (p-p38 MAPK) was assessed. RESULTS Compared to PM2.5-treated cells, in addition to reducing PM2.5-induced VSMCs proliferation, Afrocyclamin A reduced the expression of PCNA and p-p38 MAPK, down-regulated the level of TNF-α, IL-1β, IL-6, VCAM-1, MDA and ET-1, and up-regulated SOD, GSH and NO level. Furthermore, the anti-proliferative effect of Afrocyclamin A was considerably increased following co-incubation of Afrocyclamin A with SB203580 (p38 MAPK inhibitor) in comparison with Afrocyclamin A-treated cells. CONCLUSION Based on the results, we can conclude that Afrocyclamin A might reduce PM2.5-induced VSMCs proliferation via reduction of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Gu
- Department of Vascular Surgery, Tianjin First Center Hospital, Tianjin, China.
| | - Z Hanzhan Xiao
- Department of Emergency Services, The Fourth People's Hospital of Jinan City, Jinan, Shandong Province, China
| | - Jianlie Wu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Ping Lv
- Department of Hematology, The Fourth People's Hospital of Jinan City, Jinan, Shandong Province, China
| | - Ning Dou
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Peng J, Qin C, Tian SY, Peng JQ. MiR-93 inhibits the vascular calcification of chronic renal failure by suppression of Wnt/β-catenin pathway. Int Urol Nephrol 2021; 54:225-235. [PMID: 34138419 DOI: 10.1007/s11255-021-02907-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore the effect of miR-93-mediated Wnt/β-catenin pathway on the vascular calcification (VC) of chronic renal failure (CRF). METHODS SD rats were utilized to construct CRF models and divided into Control, CRF, CRF + LV (lentiviral vector)-miR-93 and CRF + LV-Con groups. Renal tissues collected from rats were performed hematoxylin and eosin (HE) staining and Masson staining, while the abdominal aorta was dissected for alizarin red staining and Von Kossa staining. VC-related genes were determined by qRT-PCR while Wnt/β-catenin pathway-related proteins were examined by Western blotting. RESULTS As compared to Control group, the serum levels of blood urea nitrogen (BUN), serum creatinine (Scr), phosphorus (P), cystatin C (Cys-C) and 24-h urea protein (24 h Upro), and the scores of renal interstitial lesion and fibrotic area in rats from CRF group were elevated, with the increased calcified area of aorta as well as the enhanced calcium content and ALP. Meanwhile, rats in the CRF group had up-regulated expression of OPN, OCN, RUNX2 and BMP-2 and down-regulated expression of miR-93. As for the expression of Wnt/β-catenin pathway, rats in the CRF group had sharp increases in the protein expression of TCF4 and β-catenin, while α-SMA was down-regulated. However, changes of the above were reversed in rats from CRF + LV-miR-93 group, and TCF4 was confirmed to be a target gene of miR-93. CONCLUSION MiR-93, via inhibiting the activity of Wnt/β-catenin pathway by targeting TCF4, can improve the renal function of CRF rats, thereby mitigating the vascular calcification of CRF.
Collapse
Affiliation(s)
- Jun Peng
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China
| | - Chao Qin
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou, Hubei, China
| | - Shu-Yan Tian
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China
| | - Jia-Qing Peng
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
14
|
Allahyari M, Samadi-Noshahr Z, Hosseinian S, Salmani H, Noras M, Khajavi-Rad A. Camel Milk and Allopurinol Attenuated Adenine-induced Acute Renal Failure in Rats. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01155-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Hu CT, Shao YD, Liu YZ, Xiao X, Cheng ZB, Qu SL, Huang L, Zhang C. Oxidative stress in vascular calcification. Clin Chim Acta 2021; 519:101-110. [PMID: 33887264 DOI: 10.1016/j.cca.2021.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Vascular calcification (VC), which is closely associated with significant mortality in cardiovascular disease, chronic kidney disease (CKD), and/or diabetes mellitus, is characterized by abnormal deposits of hydroxyapatite minerals in the arterial wall. The impact of oxidative stress (OS) on the onset and progression of VC has not been well described. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, myeloperoxidase (MPO), nitric oxide synthases (NOSs), superoxide dismutase (SOD) and paraoxonases (PONs) are relevant factors that influence the production of reactive oxygen species (ROS). Furthermore, excess ROS-induced OS has emerged as a critical mediator promoting VC through several mechanisms, including phosphate balance, differentiation of vascular smooth muscle cells (VSMCs), inflammation, DNA damage, and extracellular matrix remodeling. Because OS is a significant regulator of VC, antioxidants may be considered as novel treatment options.
Collapse
Affiliation(s)
- Chu-Ting Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Medical Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Duo Shao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
16
|
Phadwal K, Vrahnas C, Ganley IG, MacRae VE. Mitochondrial Dysfunction: Cause or Consequence of Vascular Calcification? Front Cell Dev Biol 2021; 9:611922. [PMID: 33816463 PMCID: PMC8010668 DOI: 10.3389/fcell.2021.611922] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are crucial bioenergetics powerhouses and biosynthetic hubs within cells, which can generate and sequester toxic reactive oxygen species (ROS) in response to oxidative stress. Oxidative stress-stimulated ROS production results in ATP depletion and the opening of mitochondrial permeability transition pores, leading to mitochondria dysfunction and cellular apoptosis. Mitochondrial loss of function is also a key driver in the acquisition of a senescence-associated secretory phenotype that drives senescent cells into a pro-inflammatory state. Maintaining mitochondrial homeostasis is crucial for retaining the contractile phenotype of the vascular smooth muscle cells (VSMCs), the most prominent cells of the vasculature. Loss of this contractile phenotype is associated with the loss of mitochondrial function and a metabolic shift to glycolysis. Emerging evidence suggests that mitochondrial dysfunction may play a direct role in vascular calcification and the underlying pathologies including (1) impairment of mitochondrial function by mineral dysregulation i.e., calcium and phosphate overload in patients with end-stage renal disease and (2) presence of increased ROS in patients with calcific aortic valve disease, atherosclerosis, type-II diabetes and chronic kidney disease. In this review, we discuss the cause and consequence of mitochondrial dysfunction in vascular calcification and underlying pathologies; the role of autophagy and mitophagy pathways in preventing mitochondrial dysfunction during vascular calcification and finally we discuss mitochondrial ROS, DRP1, and HIF-1 as potential novel markers and therapeutic targets for maintaining mitochondrial homeostasis in vascular calcification.
Collapse
Affiliation(s)
- Kanchan Phadwal
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| | - Christina Vrahnas
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Ian G. Ganley
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Vicky E. MacRae
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
17
|
Cui L, Zhou Q, Zheng X, Sun B, Zhao S. Mitoquinone attenuates vascular calcification by suppressing oxidative stress and reducing apoptosis of vascular smooth muscle cells via the Keap1/Nrf2 pathway. Free Radic Biol Med 2020; 161:23-31. [PMID: 33011276 DOI: 10.1016/j.freeradbiomed.2020.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
Oxidative stress and apoptosis of vascular smooth muscle cells (VSMCs) are key to vascular calcification in patients with chronic kidney disease (CKD). The mitochondria-targeted antioxidant, mitoquinone (MitoQ), which reduces oxidative stress and apoptosis, has a protective effect in acute models of renal injury but whether MitoQ can attenuate vascular calcification in CKD patients is unknown. This study was conducted to investigate whether MitoQ can prevent calcification, both in vitro and in vivo. Adenine was used to induce calcification in rats, and inorganic phosphate was used to induce calcification in VSMCs. To elucidate the underlying molecular mechanism, a specific inhibitor of Nrf2, ML385, was used 1 h before MitoQ administration. Histological staining, ELISA, flow cytometry, alizarin red staining and western blotting were used to test this hypothesis. Administration of MitoQ alleviated calcification and oxidative stress. The anti-apoptotic effect of MitoQ was associated with upregulation of Bcl-2, downregulation of Bax, and increased Nrf2 expression. The effects of MitoQ were reversed by treatment with ML385. This study offers evidence that MitoQ attenuates vascular calcification by suppressing oxidative stress and apoptosis of VSMCs through the Keap1/Nrf2 pathway. MitoQ should be further investigated as a potential therapy to prevent vascular calcification in CKD patients.
Collapse
Affiliation(s)
- Lei Cui
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, China.
| | - Qi Zhou
- Scientific Research Management Office, The First Affiliated Hospital of Harbin Medical University, China
| | - Xiufeng Zheng
- Department of Cardiology, Heilongjiang Provincial Hospital, China
| | - Bowen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
| | - Shilei Zhao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
18
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
19
|
Amer AE, El-Sheakh AR, Hamed MF, El-Kashef HA, Nader MA, Shehatou GSG. Febuxostat attenuates vascular calcification induced by vitamin D3 plus nicotine in rats. Eur J Pharm Sci 2020; 156:105580. [PMID: 33010420 DOI: 10.1016/j.ejps.2020.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 11/30/2022]
Abstract
This study was undertaken to investigate the possible ameliorative influences of febuxostat (FEB) on vitamin D3 plus nicotine (VDN)-induced vascular calcification (VC) in Wistar rats. VDN rats received a single dose of vitamin D3 (300.000 IU/kg, I.M) and two oral doses of nicotine (25 mg/kg) on day 1. They were then administrated FEB, in two doses (10 and 15 mg/kg/day, orally), or the drug vehicle, for 4 weeks. Age-matched normal rats served as control. At the end of the experiment, body weight, kidney function parameters, serum ionic composition, cardiovascular measures, aortic calcium deposition and aortic levels of oxidative stress markers, interleukin 1β (IL-1β), runt-related transcription factor 2 (Runx2) and osteopontin (OPN) were determined. Aortic immunoexpressions of tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP-9) and α-smooth muscle actin (α-SMA) were evaluated. FEB significantly restored body weight loss, ameliorated kidney function and diminished serum disturbances of calcium and phosphorus in VDN rats. Moreover, FEB reduced VDN-induced elevations in aortic calcium deposition, SBP and DBP. FEB (15 mg/kg) markedly decreased left ventricular hypertrophy and bradycardia in VDN group. Mechanistically, FEB dose-dependently improved oxidative damage, decreased levels of IL-1β and Runx2, lessened expression of TNF-α, iNOS and MMP-9 and enhanced expression of OPN and α-SMA in VDN aortas relative to controls. These findings indicate that FEB, mainly at the higher administered dose (15 mg/kg), successfully attenuated VDN-induced VC. FEB may be useful in reducing VC in patients at high risk, including those with chronic kidney disease and diabetes mellitus.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt.
| |
Collapse
|
20
|
X-ray Micro-Computed Tomography: An Emerging Technology to Analyze Vascular Calcification in Animal Models. Int J Mol Sci 2020; 21:ijms21124538. [PMID: 32630604 PMCID: PMC7352990 DOI: 10.3390/ijms21124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the o-cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models. We demonstrate that this non-destructive technique allows us to simultaneously quantify and localize calcification in an intact vessel in 3-D, and we consider recent advances in µCT sample preparation techniques. This review also discusses the potential to combine 3-D µCT analyses with subsequent 2-D histological, immunohistochemical, and proteomic approaches in correlative microscopy workflows to obtain rich, multifaceted information on calcification volume, calcification load, and signaling mechanisms from within the same arterial segment. In conclusion we briefly discuss the potential use of µCT to visualize and measure vascular calcification in vivo in real-time.
Collapse
|
21
|
El-Far AH, Lebda MA, Noreldin AE, Atta MS, Elewa YHA, Elfeky M, Mousa SA. Quercetin Attenuates Pancreatic and Renal D-Galactose-Induced Aging-Related Oxidative Alterations in Rats. Int J Mol Sci 2020; 21:E4348. [PMID: 32570962 PMCID: PMC7352460 DOI: 10.3390/ijms21124348] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is an oxidative stress-associated process that progresses with age. Our aim is to delay or attenuate these oxidative alterations and to keep individuals healthy as they age using natural compounds supplementation. Therefore, we conducted the present study to investigate the protective potentials of quercetin against D-galactose (D-gal)-associated oxidative alterations that were induced experimentally in male Wistar rats. Forty-five rats were randomly allocated into five groups of nine rats each. The groups were a control group that was reared on a basal diet and injected subcutaneously with 120 mg D-gal dissolved in physiological saline solution (0.9% NaCl) per kg body weight daily and quercetin-treated groups that received the same basal diet and subcutaneous daily D-gal injections were supplemented orally with 25, 50, and 100 mg of quercetin per kg body weight for 42 days. Pancreatic and renal samples were subjected to histopathological, immunohistochemical, and relative mRNA expression assessments. Aging (p53, p21, IL-6, and IL-8), apoptotic (Bax, CASP-3, and caspase-3 protein), proliferative (Ki67 protein), antiapoptotic (Bcl2 and Bcl2 protein), inflammatory (NF-κB, IL-1β, and TNF-α), antioxidant (SOD1), and functional markers (GCLC and GCLM genes and insulin, glucagon, and podocin proteins) were determined to evaluate the oxidative alterations induced by D-gal and the protective role of quercetin. D-gal caused oxidative alterations of the pancreas and kidneys observed via upregulations of aging, apoptotic, and inflammatory markers and downregulated the antiapoptotic, proliferative, antioxidant, and functional markers. Quercetin potentially attenuated these aging-related oxidative alterations in a dose-dependent manner. Finally, we can conclude that quercetin supplementation is considered as a promising natural protective compound that could be used to delay the aging process and to maintain human health.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed A. Lebda
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt; (M.A.L.); (M.E.)
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Yaser H. A. Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | - Mohamed Elfeky
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt; (M.A.L.); (M.E.)
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
22
|
Zhu Z, Li H, Chen W, Cui Y, Huang A, Qi X. Perindopril Improves Cardiac Function by Enhancing the Expression of SIRT3 and PGC-1α in a Rat Model of Isoproterenol-Induced Cardiomyopathy. Front Pharmacol 2020; 11:94. [PMID: 32153406 PMCID: PMC7046591 DOI: 10.3389/fphar.2020.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial biosynthesis regulated by the PGC-1α-NRF1-TFAM pathway is considered a novel potential therapeutic target to treat heart failure (HF). Perindopril (PER) is an angiotensin-converting enzyme inhibitor that has proven efficacy in the prevention of HF; however, its mechanism is not well established. In this study, to investigate the mechanisms of PER in cardiac protection, a rat model of cardiomyopathy was established by continuous isoproterenol (ISO) stimulation. Changes in the body weight, heart weight index, echocardiography, histological staining, mitochondrial microstructure, and biochemical indicators were examined. Our results demonstrate that PER reduced myocardial remodeling, inhibited deterioration of cardiac function, and delayed HF onset in rats with ISO-induced cardiomyopathy. PER markedly reduced reactive oxygen species (ROS) production, increased the levels of antioxidant enzymes, inhibited mitochondrial structural destruction and increases the number of mitochondria, improved the function of the mitochondrial respiratory chain, and promoted ATP production in myocardial tissues. In addition, PER inhibited cytochrome C release in mitochondria and caspase-3 activation in the cytosol, thereby reducing the apoptosis of myocardial cells. Notably, PER remarkably up-regulated the mRNA and protein expression levels of Sirtuin 3 (SIRT3), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) in myocardial cells. Collectively, our results suggest that PER induces mitochondrial biosynthesis-mediated enhancement of SIRT3 and PGC-1α expression, thereby improving the cardiac function in rats with ISO-induced cardiomyopathy.
Collapse
Affiliation(s)
- Zhenyu Zhu
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Huihui Li
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanli Chen
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yameng Cui
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anan Huang
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
23
|
Chao CT, Yeh HY, Tsai YT, Chuang PH, Yuan TH, Huang JW, Chen HW. Natural and non-natural antioxidative compounds: potential candidates for treatment of vascular calcification. Cell Death Discov 2019; 5:145. [PMID: 31754473 PMCID: PMC6853969 DOI: 10.1038/s41420-019-0225-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients with advanced age, or those with chronic kidney disease and diabetes, accounting for substantial global cardiovascular burden. The pathophysiology of VC involves active mineral deposition by transdifferentiated vascular smooth muscle cells exhibiting osteoblast-like behavior, building upon cores with or without apoptotic bodies. Oxidative stress drives the progression of the cellular phenotypic switch and calcium deposition in the vascular wall. In this review, we discuss potential compounds that shield these cells from the detrimental influences of reactive oxygen species as promising treatment options for VC. A comprehensive summary of the current literature regarding antioxidants for VC is important, as no effective therapy is currently available for this disease. We systematically searched through the existing literature to identify original articles investigating traditional antioxidants and novel compounds with antioxidant properties with regard to their effectiveness against VC in experimental or clinical settings. We uncovered 36 compounds with antioxidant properties against VC pathology, involving mechanisms such as suppression of NADPH oxidase, BMP-2, and Wnt/β-catenin; anti-inflammation; and activation of Nrf2 pathways. Only two compounds have been tested clinically. These findings suggest that a considerable opportunity exists to harness these antioxidants for therapeutic use for VC. In order to achieve this goal, more translational studies are needed.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital BeiHu Branch, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - You-Tien Tsai
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Huan Chuang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hang Yuan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Zhang H, Qin P, Wang J. Hydrogen sulfide inhibits inflammation and improves chronic renal failure through NF-κB signaling pathway. Panminerva Med 2019; 63:244-245. [PMID: 31355600 DOI: 10.23736/s0031-0808.19.03690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Zhang
- Department of Hemodialysis, Rizhao People's Hospital, Rizhao, China
| | - Peng Qin
- Department of Physical and Chemical Inspection, Rizhao Center for Disease Control and Prevention, Rizhao, China
| | - Jia Wang
- Department of Nephrology, Rizhao People's Hospital, Rizhao, China -
| |
Collapse
|
25
|
Kukida M, Mogi M, Kan-no H, Tsukuda K, Bai HY, Shan BS, Yamauchi T, Higaki A, Min LJ, Iwanami J, Okura T, Higaki J, Horiuchi M. AT2 receptor stimulation inhibits phosphate-induced vascular calcification. Kidney Int 2019; 95:138-148. [DOI: 10.1016/j.kint.2018.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
|
26
|
Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI JOURNAL 2018; 17:856-863. [PMID: 30233284 PMCID: PMC6141818 DOI: 10.17179/excli2018-1538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
27
|
Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat Rev Nephrol 2018; 14:265-284. [PMID: 29332935 DOI: 10.1038/nrneph.2017.169] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many of the >2 million animal species that inhabit Earth have developed survival mechanisms that aid in the prevention of obesity, kidney disease, starvation, dehydration and vascular ageing; however, some animals remain susceptible to these complications. Domestic and captive wild felids, for example, show susceptibility to chronic kidney disease (CKD), potentially linked to the high protein intake of these animals. By contrast, naked mole rats are a model of longevity and are protected from extreme environmental conditions through mechanisms that provide resistance to oxidative stress. Biomimetic studies suggest that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) offers protection in extreme environmental conditions and promotes longevity in the animal kingdom. Similarly, during months of fasting, immobilization and anuria, hibernating bears are protected from muscle wasting, azotaemia, thrombotic complications, organ damage and osteoporosis - features that are often associated with CKD. Improved understanding of the susceptibility and protective mechanisms of these animals and others could provide insights into novel strategies to prevent and treat several human diseases, such as CKD and ageing-associated complications. An integrated collaboration between nephrologists and experts from other fields, such as veterinarians, zoologists, biologists, anthropologists and ecologists, could introduce a novel approach for improving human health and help nephrologists to find novel treatment strategies for CKD.
Collapse
|