1
|
Alves-Figueiredo H, Silva-Platas C, Estrada M, Oropeza-Almazán Y, Ramos-González M, Bernal-Ramírez J, Vázquez-Garza E, Tellez A, Salazar-Ramírez F, Méndez-Fernández A, Galaz JL, Lobos P, Youker K, Lozano O, Torre-Amione G, García-Rivas G. Mitochondrial Ca 2+ Uniporter-Dependent Energetic Dysfunction Drives Hypertrophy in Heart Failure. JACC Basic Transl Sci 2024; 9:496-518. [PMID: 38680963 PMCID: PMC11055214 DOI: 10.1016/j.jacbts.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 05/01/2024]
Abstract
The role of the mitochondrial calcium uniporter (MCU) in energy dysfunction and hypertrophy in heart failure (HF) remains unknown. In angiotensin II (ANGII)-induced hypertrophic cardiac cells we have shown that hypertrophic cells overexpress MCU and present bioenergetic dysfunction. However, by silencing MCU, cell hypertrophy and mitochondrial dysfunction are prevented by blocking mitochondrial calcium overload, increase mitochondrial reactive oxygen species, and activation of nuclear factor kappa B-dependent hypertrophic and proinflammatory signaling. Moreover, we identified a calcium/calmodulin-independent protein kinase II/cyclic adenosine monophosphate response element-binding protein signaling modulating MCU upregulation by ANGII. Additionally, we found upregulation of MCU in ANGII-induced left ventricular HF in mice, and in the LV of HF patients, which was correlated with pathological remodeling. Following left ventricular assist device implantation, MCU expression decreased, suggesting tissue plasticity to modulate MCU expression.
Collapse
Affiliation(s)
- Hugo Alves-Figueiredo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
| | - Christian Silva-Platas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Yuriana Oropeza-Almazán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Martin Ramos-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Judith Bernal-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
| | - Eduardo Vázquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
| | - Armando Tellez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Alizée Pathology, Thurmont, Maryland, USA
| | - Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Abraham Méndez-Fernández
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - José Luis Galaz
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Pedro Lobos
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Keith Youker
- Weill Cornell Medical College, Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, Texas, USA
| | - Omar Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
- Weill Cornell Medical College, Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, Texas, USA
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
| |
Collapse
|
2
|
Li N, Gu X, Liu F, Zhang Y, Sun Y, Gao S, Wang B, Zhang C. Network pharmacology-based analysis of potential mechanisms of myocardial ischemia-reperfusion injury by total salvianolic acid injection. Front Pharmacol 2023; 14:1202718. [PMID: 37680709 PMCID: PMC10482107 DOI: 10.3389/fphar.2023.1202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
In this review, we investigated the potential mechanism of Total Salvianolic Acid Injection (TSI) in protecting against myocardial ischemia reperfusion injury (MI/RI). To achieve this, we predicted the component targets of TSI using Pharmmapper and identified the disease targets of MI/RI through GeneCards, DisGenNET, and OMIM databases. We constructed protein-protein interaction networks by analyzing the overlapping targets and performed functional enrichment analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our analysis yielded 90 targets, which were implicated in the potential therapeutic effects of TSI on MI/RI. Seven critical signaling pathways significantly contributed to TSI's protective effects, namely, PI3K signaling, JAK-STAT signaling, Calcium signaling, HIF-1 signaling, Nuclear receptor signaling, Cell Cycle, and Apoptosis. Subsequently, we conducted a comprehensive literature review of these seven key signaling pathways to gain further insights into their role in the TSI-mediated treatment of MI/RI. By establishing these connections, our study lays a solid foundation for future research endeavours to elucidate the molecular mechanisms through which TSI exerts its beneficial effects on MI/RI.
Collapse
Affiliation(s)
- Nan Li
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Xufang Gu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanqi Liu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yao Zhang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Sun
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Shengwei Gao
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Baohe Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Zhang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Lozano O, Marcos P, Salazar-Ramirez FDJ, Lázaro-Alfaro AF, Sobrevia L, García-Rivas G. Targeting the mitochondrial Ca 2+ uniporter complex in cardiovascular disease. Acta Physiol (Oxf) 2023; 237:e13946. [PMID: 36751976 DOI: 10.1111/apha.13946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, share in common mitochondrial dysfunction, in specific a dysregulation of Ca2+ uptake dynamics through the mitochondrial Ca2+ uniporter (MCU) complex. In particular, Ca2+ uptake regulates the mitochondrial ATP production, mitochondrial dynamics, oxidative stress, and cell death. Therefore, modulating the activity of the MCU complex to regulate Ca2+ uptake, has been suggested as a potential therapeutic approach for the treatment of CVDs. Here, the role and implications of the MCU complex in CVDs are presented, followed by a review of the evidence for MCU complex modulation, genetically and pharmacologically. While most approaches have aimed within the MCU complex for the modulation of the Ca2+ pore channel, the MCU subunit, its intra- and extra- mitochondrial implications, including Ca2+ dynamics, oxidative stress, post-translational modifications, and its repercussions in the cardiac function, highlight that targeting the MCU complex has the translational potential for novel CVDs therapeutics.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Patricio Marcos
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Felipe de Jesús Salazar-Ramirez
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Anay F Lázaro-Alfaro
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis Sobrevia
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Center of Functional Medicine, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
| |
Collapse
|
4
|
Modesti L, Danese A, Angela Maria Vitto V, Ramaccini D, Aguiari G, Gafà R, Lanza G, Giorgi C, Pinton P. Mitochondrial Ca 2+ Signaling in Health, Disease and Therapy. Cells 2021; 10:cells10061317. [PMID: 34070562 PMCID: PMC8230075 DOI: 10.3390/cells10061317] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The divalent cation calcium (Ca2+) is considered one of the main second messengers inside cells and acts as the most prominent signal in a plethora of biological processes. Its homeostasis is guaranteed by an intricate and complex system of channels, pumps, and exchangers. In this context, by regulating cellular Ca2+ levels, mitochondria control both the uptake and release of Ca2+. Therefore, at the mitochondrial level, Ca2+ plays a dual role, participating in both vital physiological processes (ATP production and regulation of mitochondrial metabolism) and pathophysiological processes (cell death, cancer progression and metastasis). Hence, it is not surprising that alterations in mitochondrial Ca2+ (mCa2+) pathways or mutations in Ca2+ transporters affect the activities and functions of the entire cell. Indeed, it is widely recognized that dysregulation of mCa2+ signaling leads to various pathological scenarios, including cancer, neurological defects and cardiovascular diseases (CVDs). This review summarizes the current knowledge on the regulation of mCa2+ homeostasis, the related mechanisms and the significance of this regulation in physiology and human diseases. We also highlight strategies aimed at remedying mCa2+ dysregulation as promising therapeutical approaches.
Collapse
Affiliation(s)
- Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Daniela Ramaccini
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
- Correspondence: ; Tel.: +39-0532-455802
| |
Collapse
|
5
|
Attenuating ischemia/reperfusion injury in rat cardiac transplantation by intracoronary infusion with siRNA cocktail solution. Biosci Rep 2021; 40:225833. [PMID: 32686827 PMCID: PMC7403945 DOI: 10.1042/bsr20193937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α), caspase-8, and complement component 5a receptor (C5aR) are known to play a crucial role in the myocardial ischemia/reperfusion (I/R) injury in cardiac transplantation. We hypothesized that the intracoronary infusion of TNF-α, caspase-8, and C5aR small interfering RNAs (siRNA) would protect cardiac allograft function and improve graft survival from I/R injury-induced organ failure. I/R injury of cardiac allograft was induced by syngeneic rat cardiac transplantation, in which the transplanted hearts were infused with saline or different amounts of siRNA cocktail solution targeting TNF-α, caspase-8, and C5aR via coronary arteries, and subsequently subjected to 18 h of preservation at 4°C in histidine–tryptophan–ketoglutarate (HTK) solution. The effects of siRNA cocktail solution on prolonged cold I/R injury were determined by assessing graft survival, histopathological changes, myeloperoxidase (MPO) activity, and malondialdehyde (MDA) concentration. The perfused siRNA cocktail solution successfully knocked down the expression of TNF-α, caspase-8, and C5aR in vitro and in vivo. Approximately 91.7% of control hearts that underwent 18 h of cold ischemia ceased their function after transplantation; however, 87.5% of cardiac allografts from the highest dose siRNA cocktail solution-pretreated hearts survived >14 days and exhibited minimal histological changes, with minimal cellular infiltration, interstitial edema, and inflammation and maximal reduced MPO activity and MDA concentration in the cardiac allograft. We demonstrated the feasibility and efficiency of infusion of TNF-α, caspase-8, and C5aR siRNA via the intracoronary route as a promising strategy for gene silencing against I/R injury in cardiac transplantation.
Collapse
|
6
|
Salazar-Ramírez F, Ramos-Mondragón R, García-Rivas G. Mitochondrial and Sarcoplasmic Reticulum Interconnection in Cardiac Arrhythmia. Front Cell Dev Biol 2021; 8:623381. [PMID: 33585462 PMCID: PMC7876262 DOI: 10.3389/fcell.2020.623381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Ca2+ plays a pivotal role in mitochondrial energy production, contraction, and apoptosis. Mitochondrial Ca2+-targeted fluorescent probes have demonstrated that mitochondria Ca2+ transients are synchronized with Ca2+ fluxes occurring in the sarcoplasmic reticulum (SR). The presence of specialized proteins tethering SR to mitochondria ensures the local Ca2+ flux between these organelles. Furthermore, communication between SR and mitochondria impacts their functionality in a bidirectional manner. Mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniplex is essential for ATP production and controlled reactive oxygen species levels for proper cellular signaling. Conversely, mitochondrial ATP ensures the proper functioning of SR Ca2+-handling proteins, which ensures that mitochondria receive an adequate supply of Ca2+. Recent evidence suggests that altered SR Ca2+ proteins, such as ryanodine receptors and the sarco/endoplasmic reticulum Ca2+ ATPase pump, play an important role in maintaining proper cardiac membrane excitability, which may be initiated and potentiated when mitochondria are dysfunctional. This recognized mitochondrial role offers the opportunity to develop new therapeutic approaches aimed at preventing cardiac arrhythmias in cardiac disease.
Collapse
Affiliation(s)
- Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico
| | - Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico.,TecSalud, Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico.,TecSalud, Centro de Medicina Funcional, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico
| |
Collapse
|
7
|
Chang X, Zhao Z, Zhang W, Liu D, Ma C, Zhang T, Meng Q, Yan P, Zou L, Zhang M. Natural Antioxidants Improve the Vulnerability of Cardiomyocytes and Vascular Endothelial Cells under Stress Conditions: A Focus on Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620677. [PMID: 33552385 PMCID: PMC7847351 DOI: 10.1155/2021/6620677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease has become one of the main causes of human death. In addition, many cardiovascular diseases are accompanied by a series of irreversible damages that lead to organ and vascular complications. In recent years, the potential therapeutic strategy of natural antioxidants in the treatment of cardiovascular diseases through mitochondrial quality control has received extensive attention. Mitochondria are the main site of energy metabolism in eukaryotic cells, including myocardial and vascular endothelial cells. Mitochondrial quality control processes ensure normal activities of mitochondria and cells by maintaining stable mitochondrial quantity and quality, thus protecting myocardial and endothelial cells against stress. Various stresses can affect mitochondrial morphology and function. Natural antioxidants extracted from plants and natural medicines are becoming increasingly common in the clinical treatment of diseases, especially in the treatment of cardiovascular diseases. Natural antioxidants can effectively protect myocardial and endothelial cells from stress-induced injury by regulating mitochondrial quality control, and their safety and effectiveness have been preliminarily verified. This review summarises the damage mechanisms of various stresses in cardiomyocytes and vascular endothelial cells and the mechanisms of natural antioxidants in improving the vulnerability of these cell types to stress by regulating mitochondrial quality control. This review is aimed at paving the way for novel treatments for cardiovascular diseases and the development of natural antioxidant drugs.
Collapse
Affiliation(s)
- Xing Chang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhenyu Zhao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| | - Wenjin Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Dong Liu
- China Academy of Chinese Medical Sciences, Institute of the History of Chinese Medicine and Medical Literature, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Centre, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyan Meng
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Peizheng Yan
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Longqiong Zou
- Chongqing Sanxia Yunhai Pharmaceutical Co., Ltd., Chongqing, China
| | - Ming Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|
8
|
Therapeutic Applications of Cannabinoids in Cardiomyopathy and Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4587024. [PMID: 33194003 PMCID: PMC7641267 DOI: 10.1155/2020/4587024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
A large number of cannabinoids have been discovered that could play a role in mitigating cardiac affections. However, none of them has been as widely studied as cannabidiol (CBD), most likely because, individually, the others offer only partial effects or can activate potential harmful pathways. In this regard, CBD has proven to be of great value as a cardioprotective agent since it is a potent antioxidant and anti-inflammatory molecule. Thus, we conducted a review to condensate the currently available knowledge on CBD as a therapy for different experimental models of cardiomyopathies and heart failure to detect the molecular pathways involved in cardiac protection. CBD therapy can greatly limit the production of oxygen/nitrogen reactive species, thereby limiting cellular damage, protecting mitochondria, avoiding caspase activation, and regulating ionic homeostasis. Hence, it can affect myocardial contraction by restricting the activation of inflammatory pathways and cytokine secretion, lowering tissular infiltration by immune cells, and reducing the area of infarct and fibrosis formation. These effects are mediated by the activation or inhibition of different receptors and target molecules of the endocannabinoid system. In the final part of this review, we explore the current state of CBD in clinical trials as a treatment for cardiovascular diseases and provide evidence of its potential benefits in humans.
Collapse
|
9
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|
10
|
Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, Torre-Amione G. What Is the Role of the Inflammation in the Pathogenesis of Heart Failure? Curr Cardiol Rep 2020; 22:139. [PMID: 32910299 PMCID: PMC7481763 DOI: 10.1007/s11886-020-01382-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In heart failure, whether it is associated with reduced or preserved ejection fraction, the immune system is activated and contributes to heart remodeling and impaired function. RECENT FINDINGS Studies indicate that cells of the immune system not only play a role in the pathology but are also critical regulators of heart function. Knowledge about the role of the immune system driving heart failure will lead to the development of new targets to this system, particularly in those patients that, despite the apparent wellness, relapse and worsen. In this review, we will address the diverse mechanisms that trigger inflammation and their impact on heart failure progression.
Collapse
Affiliation(s)
- Elena C. Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Eduardo Vázquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - David Yee-Trejo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- Tecnologico de Monterrey, Centro de Medicina Funcional, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garzar García, NL Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- De Bakey CRC, The Methodist Hospital, Cornell University, Houston, TX USA
| |
Collapse
|
11
|
Boulghobra D, Coste F, Geny B, Reboul C. Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria? Free Radic Biol Med 2020; 152:395-410. [PMID: 32294509 DOI: 10.1016/j.freeradbiomed.2020.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Ischemic heart disease is one of the main causes of morbidity and mortality worldwide. Physical exercise is an effective lifestyle intervention to reduce the risk factors for cardiovascular disease and also to improve cardiac function and survival in patients with ischemic heart disease. Among the strategies that contribute to reduce heart damages during ischemia and reperfusion, regular physical exercise is efficient both in rodent experimental models and in humans. However, the cellular and molecular mechanisms of the cardioprotective effects of exercise remain unclear. During ischemia and reperfusion, mitochondria are crucial players in cell death, but also in cell survival. Although exercise training can influence mitochondrial function, the consequences on heart sensitivity to ischemic insults remain elusive. In this review, we describe the effects of physical activity on cardiac mitochondria and their potential key role in exercise-induced cardioprotection against ischemia-reperfusion damage. Based on recent scientific data, we discuss the role of different pathways that might help to explain why mitochondria are a key target of exercise-induced cardioprotection.
Collapse
Affiliation(s)
| | - Florence Coste
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France
| | - Bernard Geny
- EA3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», Université de Strasbourg, 67000, Strasbourg, France
| | - Cyril Reboul
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France.
| |
Collapse
|
12
|
Lozano O, Silva-Platas C, Chapoy-Villanueva H, Pérez BE, Lees JG, Ramachandra CJA, Contreras-Torres FF, Lázaro-Alfaro A, Luna-Figueroa E, Bernal-Ramírez J, Gordillo-Galeano A, Benitez A, Oropeza-Almazán Y, Castillo EC, Koh PL, Hausenloy DJ, Lim SY, García-Rivas G. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Part Fibre Toxicol 2020; 17:15. [PMID: 32381100 PMCID: PMC7206702 DOI: 10.1186/s12989-020-00346-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Silica nanoparticles (nanoSiO2) are promising systems that can deliver biologically active compounds to tissues such as the heart in a controllable manner. However, cardiac toxicity induced by nanoSiO2 has been recently related to abnormal calcium handling and energetic failure in cardiomyocytes. Moreover, the precise mechanisms underlying this energetic debacle remain unclear. In order to elucidate these mechanisms, this article explores the ex vivo heart function and mitochondria after exposure to nanoSiO2. Results The cumulative administration of nanoSiO2 reduced the mechanical performance index of the rat heart with a half-maximal inhibitory concentration (IC50) of 93 μg/mL, affecting the relaxation rate. In isolated mitochondria nanoSiO2 was found to be internalized, inhibiting oxidative phosphorylation and significantly reducing the mitochondrial membrane potential (ΔΨm). The mitochondrial permeability transition pore (mPTP) was also induced with an increasing dose of nanoSiO2 and partially recovered with, a potent blocker of the mPTP, Cyclosporine A (CsA). The activity of aconitase and thiol oxidation, in the adenine nucleotide translocase, were found to be reduced due to nanoSiO2 exposure, suggesting that nanoSiO2 induces the mPTP via thiol modification and ROS generation. In cardiac cells exposed to nanoSiO2, enhanced viability and reduction of H2O2 were observed after application of a specific mitochondrial antioxidant, MitoTEMPO. Concomitantly, CsA treatment in adult rat cardiac cells reduced the nanoSiO2-triggered cell death and recovered ATP production (from 32.4 to 65.4%). Additionally, we performed evaluation of the mitochondrial effect of nanoSiO2 in human cardiomyocytes. We observed a 40% inhibition of maximal oxygen consumption rate in mitochondria at 500 μg/mL. Under this condition we identified a remarkable diminution in the spare respiratory capacity. This data indicates that a reduction in the amount of extra ATP that can be produced by mitochondria during a sudden increase in energy demand. In human cardiomyocytes, increased LDH release and necrosis were found at increased doses of nanoSiO2, reaching 85 and 48%, respectively. Such deleterious effects were partially prevented by the application of CsA. Therefore, exposure to nanoSiO2 affects cardiac function via mitochondrial dysfunction through the opening of the mPTP. Conclusion The aforementioned effects can be partially avoided reducing ROS or retarding the opening of the mPTP. These novel strategies which resulted in cardioprotection could be considered as potential therapies to decrease the side effects of nanoSiO2 exposure.
Collapse
Affiliation(s)
- Omar Lozano
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico.,Tecnologico de Monterrey. Centro de Investigación Biomédica, Hospital Zambrano-Helión, San Pedro Garza-García, Mexico
| | - Christian Silva-Platas
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Héctor Chapoy-Villanueva
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Baruc E Pérez
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Jarmon G Lees
- Departments of Medicine and Surgery, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | | | - Anay Lázaro-Alfaro
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Estefanía Luna-Figueroa
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Judith Bernal-Ramírez
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | | | - Alfredo Benitez
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, USA
| | - Yuriana Oropeza-Almazán
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Elena C Castillo
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Poh Ling Koh
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Shiang Y Lim
- Departments of Medicine and Surgery, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gerardo García-Rivas
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico. .,Tecnologico de Monterrey. Centro de Investigación Biomédica, Hospital Zambrano-Helión, San Pedro Garza-García, Mexico.
| |
Collapse
|
13
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
14
|
Chapoy-Villanueva H, Silva-Platas C, Gutiérrez-Rodríguez AK, García N, Acuña-Morin E, Elizondo-Montemayor L, Oropeza-Almazán Y, Aguilar-Saenz A, García-Rivas G. Changes in the Stoichiometry of Uniplex Decrease Mitochondrial Calcium Overload and Contribute to Tolerance of Cardiac Ischemia/Reperfusion Injury in Hypothyroidism. Thyroid 2019; 29:1755-1764. [PMID: 31456501 PMCID: PMC6918869 DOI: 10.1089/thy.2018.0668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Thyroid hormone status in hypothyroidism (HT) downregulates key elements in Ca2+ handling within the heart, reducing contractility, impairing the basal energetic balance, and increasing the risk of cardiovascular disease. Mitochondrial Ca2+ transport is reduced in HT, and tolerance to reperfusion damage has been documented, but the precise mechanism is not well understood. Therefore, we aimed to determine the stoichiometry and activity of the mitochondrial Ca2+ uniporter or uniplex in an HT model and the relevance to the opening of the mitochondrial permeability transition pores (mPTP) during ischemia/reperfusion (I/R) injury. Methods: An HT model was established in Wistar rats by treatment with 6-propylthiouracil for 28 days. Uniplex composition and activity were determined in cardiac mitochondria. Hearts were perfused ex vivo to induce I/R injury, and functional parameters related to contractility and tissue viability were evaluated. Results: The cardiac stoichiometry between two subunits of the uniplex (MICU1/MCU) increased by 25% in animals with HT. The intramitochondrial Ca2+ content was reduced by 40% and was less prone to the mPTP opening. After I/R injury, ischemic contracture and the onset of ventricular fibrillation were delayed in animals with HT, concomitant with a reduction in oxidative damage and mitochondrial dysfunction. Conclusions: Our results suggest that HT is associated with an increase in the cardiac MICU1/MCU ratio, thereby changing the stoichiometry between these subunits to increase the threshold to cytosolic Ca2+ and reduce mitochondrial Ca2+ overload. Our results also demonstrate that this HT model can be used to explore the role of mitochondrial Ca2+ transport in cardiac diseases due to its induced tolerance to cardiac damage.
Collapse
Affiliation(s)
- Héctor Chapoy-Villanueva
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Christian Silva-Platas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Ana K. Gutiérrez-Rodríguez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Noemí García
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Mexico
| | - Edgar Acuña-Morin
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Mexico
| | - Yuriana Oropeza-Almazán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Alejandro Aguilar-Saenz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Mexico
- Address correspondence to: Gerardo García-Rivas, PhD, Centro de Investigacion Biomedica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, Edificio Escuela de Medicina. 2do. Nivel., Avenida Batallón de San Patricio 112, CP 66278 San Pedro Garza García, México
| |
Collapse
|
15
|
Pathophysiology of Calcium Mediated Ventricular Arrhythmias and Novel Therapeutic Options with Focus on Gene Therapy. Int J Mol Sci 2019; 20:ijms20215304. [PMID: 31653119 PMCID: PMC6862059 DOI: 10.3390/ijms20215304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias constitute a major health problem with a huge impact on mortality rates and health care costs. Despite ongoing research efforts, the understanding of the molecular mechanisms and processes responsible for arrhythmogenesis remains incomplete. Given the crucial role of Ca2+-handling in action potential generation and cardiac contraction, Ca2+ channels and Ca2+ handling proteins represent promising targets for suppression of ventricular arrhythmias. Accordingly, we report the different roles of Ca2+-handling in the development of congenital as well as acquired ventricular arrhythmia syndromes. We highlight the therapeutic potential of gene therapy as a novel and innovative approach for future arrhythmia therapy. Furthermore, we discuss various promising cellular and mitochondrial targets for therapeutic gene transfer currently under investigation.
Collapse
|
16
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:4823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
17
|
Guan L, Che Z, Meng X, Yu Y, Li M, Yu Z, Shi H, Yang D, Yu M. MCU Up-regulation contributes to myocardial ischemia-reperfusion Injury through calpain/OPA-1-mediated mitochondrial fusion/mitophagy Inhibition. J Cell Mol Med 2019; 23:7830-7843. [PMID: 31502361 PMCID: PMC6815825 DOI: 10.1111/jcmm.14662] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/29/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above-mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up-regulation of MCU promoted the expression and activation of calpain-1/2 and down-regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock-down cultured cell. In I/R models of transgenic mice over-expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up-regulation induces calpain activation, which down-regulates OPA1, consequently leading to mitochondrial dynamic imbalance.
Collapse
Affiliation(s)
- Lichun Guan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhimei Che
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiangdong Meng
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai Shi, China
| | - Minghui Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai Shi, China
| | - Ziqin Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai Shi, China
| | - Hui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai Shi, China
| | - Dicheng Yang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wu L, Tan JL, Chen ZY, Huang G. Cardioprotection of post-ischemic moderate ROS against ischemia/reperfusion via STAT3-induced the inhibition of MCU opening. Basic Res Cardiol 2019; 114:39. [DOI: 10.1007/s00395-019-0747-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
|
19
|
Jaña F, Bustos G, Rivas J, Cruz P, Urra F, Basualto-Alarcón C, Sagredo E, Ríos M, Lovy A, Dong Z, Cerda O, Madesh M, Cárdenas C. Complex I and II are required for normal mitochondrial Ca 2+ homeostasis. Mitochondrion 2019; 49:73-82. [PMID: 31310854 DOI: 10.1016/j.mito.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 01/03/2023]
Abstract
Cytosolic calcium (cCa2+) entry into mitochondria is facilitated by the mitochondrial membrane potential (ΔΨm), an electrochemical gradient generated by the electron transport chain (ETC). Is has been assumed that as long as mutations that affect the ETC do not affect the ΔΨm, the mitochondrial Ca2+ (mCa2+) homeostasis remains normal. We show that knockdown of NDUFAF3 and SDHB reduce ETC activity altering mCa2+ efflux and influx rates while ΔΨm remains intact. Shifting the equilibrium toward lower [Ca2+]m accumulation renders cells resistant to death. Our findings reveal an unexpected relationship between complex I and II with the mCa2+ homeostasis independent of ΔΨm.
Collapse
Affiliation(s)
- Fabian Jaña
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - José Rivas
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pablo Cruz
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felix Urra
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carla Basualto-Alarcón
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Anatomy and Legal Medicine Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Eduardo Sagredo
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Chile
| | - Melany Ríos
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, USA
| | - Zhiwei Dong
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, TX, USA
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.; The Wound Repair, Treatment and Health (WoRTH), Chile
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, TX, USA.
| | - César Cárdenas
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
20
|
Nanoencapsulated Quercetin Improves Cardioprotection during Hypoxia-Reoxygenation Injury through Preservation of Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7683051. [PMID: 31341535 PMCID: PMC6612997 DOI: 10.1155/2019/7683051] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 01/15/2023]
Abstract
The effective delivery of antioxidants to the cells is hindered by their high metabolization rate. In this work, quercetin was encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. They were characterized in terms of its physicochemical properties (particle size distribution, ζ-potential, encapsulation efficiency, quercetin release and biological interactions with cardiac cells regarding nanoparticle association, and internalization and protective capability against relevant challenges). A better delivery of quercetin was achieved when encapsulated versus free. When the cells were challenged with antimycin A, it resulted in lower mitochondrial O2− (4.65- vs. 5.69- fold) and H2O2 rate production (1.15- vs. 1.73- fold). Similarly, under hypoxia-reoxygenation injury, a better maintenance of cell viability was found (77 vs. 65%), as well as a reduction of thiol groups (~70 vs. 40%). Therefore, the delivery of encapsulated quercetin resulted in the preservation of mitochondrial function and ATP synthesis due to its improved oxidative stress suppression. The results point to the potential of this strategy for the treatment of oxidative stress-based cardiac diseases.
Collapse
|
21
|
Marchi S, Vitto VAM, Danese A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle 2019; 18:1068-1083. [PMID: 31032692 DOI: 10.1080/15384101.2019.1612698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrations in mitochondrial Ca2+ homeostasis have been associated with different pathological conditions, including neurological defects, cardiovascular diseases, and, in the last years, cancer. With the recent molecular identification of the mitochondrial calcium uniporter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial matrix, alterations in the expression levels or functioning in one or more MCU complex members have been linked to different cancers and cancer-related phenotypes. In this review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as cancer progression in vivo. We will also discuss some critical points and contradictory results to highlight the consequence of MCU complex modulation in tumor development.
Collapse
Affiliation(s)
- Saverio Marchi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,b Department of Clinical and Molecular Sciences, Polytechnical University of Marche , Ancona , Italy
| | - Veronica Angela Maria Vitto
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Alberto Danese
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | | | - Carlotta Giorgi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,d Maria Cecilia Hospital, GVM Care & Research, 48033 , Cotignola , Ravenna , Italy
| |
Collapse
|
22
|
Vishnyakova PA, Tarasova NV, Volodina MA, Tsvirkun DV, Sukhanova IA, Kurchakova TA, Kan NE, Medzidova MK, Sukhikh GT, Vysokikh MY. Gestation age-associated dynamics of mitochondrial calcium uniporter subunits expression in feto-maternal complex at term and preterm delivery. Sci Rep 2019; 9:5501. [PMID: 30940880 PMCID: PMC6445111 DOI: 10.1038/s41598-019-41996-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/21/2019] [Indexed: 02/01/2023] Open
Abstract
Calcium plays a role of universal cellular regulator in the living cell and one of the crucial regulators of proper fetal development during gestation. Mitochondria are important for intracellular calcium handling and signaling. Mitochondrial calcium uniporter (mtCU) is a multiprotein complex of the mitochondrial inner membrane responsible for the transport of calcium to the mitochondrial matrix. In the present study, we analyzed the expression level of mtCU components in two parts of the feto-maternal system – placenta and myometrium at full-term delivery and at preterm birth (PTB) on different stages: 22–27, 28–32, 33–36 weeks of gestation (n = 50). A gradual increase of mRNA expression and changes in protein content of MCU and MICU1 subunits were revealed in the placenta during gestation. We also observed slower depolarization rate of isolated placental mitochondria induced by Ca2+ titration at PTB. In myometrium at PTB relative gene expression level of MCU, MCUb and SMDT1 increased as compared to full-term pregnancy, but the tendency to gradual increase of MCU protein simultaneous with MCUb increase and MICU1 decline was shown in gestational dynamics. Changes observed in the present study might be considered both natural dynamics as well as possible pathological mechanisms underlying preterm birth.
Collapse
Affiliation(s)
- Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.
| | - Nadezhda V Tarasova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,Molecular Medicine Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation, 8, Trubetskaya st., Moscow, 119991, Russia
| | - Maria A Volodina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,National Research University Higher School of Economics, 20, Myasnitskaya st, Moscow, 101000, Russia
| | - Daria V Tsvirkun
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Iuliia A Sukhanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,Lomonosov Moscow State University, Biology Faculty, 1/12, Leninskye gory, Moscow, 119234, Russia
| | - Tatiana A Kurchakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Nataliya E Kan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Marzanat K Medzidova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Gennadiy T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Mikhail Yu Vysokikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,Belozerskii Institute of Physico-chemical Biology, Lomonosov Moscow State University, 1/40, Leninskye gory, Moscow, 119234, Russia
| |
Collapse
|
23
|
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid Redox Signal 2018; 29:1092-1107. [PMID: 28969427 DOI: 10.1089/ars.2017.7328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress caused by overproduction of reactive oxygen species (ROS) in cells is one of the most important contributors to the pathogenesis of cardiovascular and metabolic diseases such as hypertension and atherosclerosis. Excessive accumulation of ROS impairs, while limiting oxidative stress protects cardiovascular and metabolic function through various cellular mechanisms. Recent Advances: MicroRNAs (miRNAs) are novel regulators of oxidative stress in cardiovascular cells that modulate the expression of redox-related genes. This article summarizes recent advances in our understanding of how miRNAs target major ROS generators, antioxidant signaling pathways, and effectors in cells of the cardiovascular system. CRITICAL ISSUES The role of miRNAs in regulating ROS in cardiovascular cells is complicated because miRNAs can target multiple redox-related genes, act on redox regulatory pathways indirectly, and display context-dependent pro- or antioxidant effects. The complex regulatory network of ROS and the plethora of targets make it difficult to pin point the role of miRNAs and develop them as therapeutics. Therefore, these properties should be considered when designing strategies for therapeutic or diagnostic development. FUTURE DIRECTIONS Future studies can gain a better understanding of redox-related miRNAs by investigating their own regulatory mechanisms and the dual role of ROS in the cardiovascular systems. The combination of improved study design and technical advancements will reveal newer pathophysiological importance of redox-related miRNAs.
Collapse
Affiliation(s)
- Yao-Yu Gong
- 1 School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Jiang-Yun Luo
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Li Wang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Yu Huang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
24
|
Zhou H, Wang S, Hu S, Chen Y, Ren J. ER-Mitochondria Microdomains in Cardiac Ischemia-Reperfusion Injury: A Fresh Perspective. Front Physiol 2018; 9:755. [PMID: 29962971 PMCID: PMC6013587 DOI: 10.3389/fphys.2018.00755] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial and endoplasmic reticulum (ER) homeostasis is pivotal to the maintenance of an array of physiological processes. The physical contact and association between ER and mitochondria, known as the ER–mitochondria microdomains or mitochondria-associated ER membrane (MAM), temporally and spatially regulates the mitochondria/ER structure and function. More evidence suggests a role for MAMs in energy production, cellular contraction and mobility, and normal extracellular signal transmission. In pathological states, such as cardiac ischemia–reperfusion (I/R injury), this ER–mitochondria microdomains may act to participate in the cellular redox imbalance, ER stress, mitochondrial injury, energy deletion, and programmed cell death. From a therapeutic perspective, a better understanding of the cellular and molecular mechanisms of the pathogenic ER–mitochondria contact should help to identify potential therapeutic target for cardiac I/R injury and other cardiovascular diseases and also pave the road to new treatment modalities pertinent for the treatment of reperfusion damage in clinical practice. This review will mainly focus on the possible signaling pathways involved in the regulation of the ER–mitochondria contact. In particular, we will summarize the downstream signaling modalities influenced by ER–mitochondria microdomains, for example, mitochondrial fission, mitophagy, calcium balance, oxidative stress, and programmed cell death in details.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese People's Liberation Army General Hospital, People's Liberation Army Medical School, Beijing, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, United States
| | - Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, United States
| | - Shunying Hu
- Chinese People's Liberation Army General Hospital, People's Liberation Army Medical School, Beijing, China
| | - Yundai Chen
- Chinese People's Liberation Army General Hospital, People's Liberation Army Medical School, Beijing, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, United States.,Department of Cardiology, Zhong Shan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8949450. [PMID: 29765507 PMCID: PMC5889877 DOI: 10.1155/2018/8949450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7 μM, correspondingly. Myocardial oxygen consumption was not modified at their respective IC50, although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability.
Collapse
|
26
|
Lozano O, Torres-Quintanilla A, García-Rivas G. Nanomedicine for the cardiac myocyte: Where are we? J Control Release 2017; 271:149-165. [PMID: 29273321 DOI: 10.1016/j.jconrel.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Biomedical achievements in the last few decades, leading to successful therapeutic interventions, have considerably improved human life expectancy. Nevertheless, the increasing load and the still suboptimal outcome for patients with cardiac dysfunction underlines the relevance of continuous research to develop novel therapeutics for these diseases. In this context, the field of nanomedicine has attracted a lot of attention due to the potential novel treatment possibilities, such as controlled and sustained release, tissue targeting, and drug protection from degradation. For cardiac myocytes, which constitute the majority of the heart by mass and are the contractile unit, new options have been explored in terms of the use of nanomaterials (NMs) for therapy, diagnosis, and tissue engineering. This review focuses on the advances of nanomedicine targeted to the cardiac myocyte: first presenting the NMs used and the principal cardiac myocyte-based afflictions, followed by an overview of key advances in the field, including NMs interactions with the cardiac myocyte, therapy delivery, diagnosis based on imaging, and tissue engineering for tissue repair and heart-on-a-chip devices.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico.
| | - Alejandro Torres-Quintanilla
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico
| |
Collapse
|
27
|
Urgiles J, Nathan SR, MacMillan SN, Wilson JJ. Dinuclear nitrido-bridged ruthenium complexes bearing diimine ligands. Dalton Trans 2017; 46:14256-14263. [DOI: 10.1039/c7dt03085a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrido-bridged ruthenium complexes are synthesized via ligand substitution reactions and evaluated for mitochondrial calcium uptake inhibition.
Collapse
Affiliation(s)
- Julie Urgiles
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Sarah R. Nathan
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | | | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|