1
|
Feybesse C, Chokron S, Tordjman S. Melatonin in Neurodevelopmental Disorders: A Critical Literature Review. Antioxidants (Basel) 2023; 12:2017. [PMID: 38001870 PMCID: PMC10669594 DOI: 10.3390/antiox12112017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The article presents a review of the relationships between melatonin and neurodevelopmental disorders. First, the antioxidant properties of melatonin and its physiological effects are considered to understand better the role of melatonin in typical and atypical neurodevelopment. Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum disorder or neurogenetic disorders associated with autism (including Smith-Magenis syndrome, Angelman syndrome, Rett's syndrome, Tuberous sclerosis, or Williams-Beuren syndrome) and neurodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia, are discussed with regard to impaired melatonin production and circadian rhythms, in particular, sleep-wake rhythms. This article addresses the issue of overlapping symptoms that are commonly observed within these different mental conditions and debates the role of abnormal melatonin production and altered circadian rhythms in the pathophysiology and behavioral expression of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cyrille Feybesse
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
- Faculté de Médecine, Université de Rennes, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
2
|
Duis J, Nespeca M, Summers J, Bird L, Bindels‐de Heus KG, Valstar MJ, de Wit MY, Navis C, ten Hooven‐Radstaake M, van Iperen‐Kolk BM, Ernst S, Dendrinos M, Katz T, Diaz‐Medina G, Katyayan A, Nangia S, Thibert R, Glaze D, Keary C, Pelc K, Simon N, Sadhwani A, Heussler H, Wheeler A, Woeber C, DeRamus M, Thomas A, Kertcher E, DeValk L, Kalemeris K, Arps K, Baym C, Harris N, Gorham JP, Bohnsack BL, Chambers RC, Harris S, Chambers HG, Okoniewski K, Jalazo ER, Berent A, Bacino CA, Williams C, Anderson A. A multidisciplinary approach and consensus statement to establish standards of care for Angelman syndrome. Mol Genet Genomic Med 2022; 10:e1843. [PMID: 35150089 PMCID: PMC8922964 DOI: 10.1002/mgg3.1843] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurogenetic disorder present in approximately 1/12,000 individuals and characterized by developmental delay, cognitive impairment, motor dysfunction, seizures, gastrointestinal concerns, and abnormal electroencephalographic background. AS is caused by absent expression of the paternally imprinted gene UBE3A in the central nervous system. Disparities in the management of AS are a major problem in preparing for precision therapies and occur even in patients with access to experts and recognized clinics. AS patients receive care based on collective provider experience due to limited evidence-based literature. We present a consensus statement and comprehensive literature review that proposes a standard of care practices for the management of AS at a critical time when therapeutics to alter the natural history of the disease are on the horizon. METHODS We compiled the key recognized clinical features of AS based on consensus from a team of specialists managing patients with AS. Working groups were established to address each focus area with committees comprised of providers who manage >5 individuals. Committees developed management guidelines for their area of expertise. These were compiled into a final document to provide a framework for standardizing management. Evidence from the medical literature was also comprehensively reviewed. RESULTS Areas covered by working groups in the consensus document include genetics, developmental medicine, psychology, general health concerns, neurology (including movement disorders), sleep, psychiatry, orthopedics, ophthalmology, communication, early intervention and therapies, and caregiver health. Working groups created frameworks, including flowcharts and tables, to help with quick access for providers. Data from the literature were incorporated to ensure providers had review of experiential versus evidence-based care guidelines. CONCLUSION Standards of care in the management of AS are keys to ensure optimal care at a critical time when new disease-modifying therapies are emerging. This document is a framework for providers of all familiarity levels.
Collapse
Affiliation(s)
- Jessica Duis
- Section of Genetics & Inherited Metabolic DiseaseSection of Pediatrics, Special CareDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Nespeca
- Department of NeurologyRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Jane Summers
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lynne Bird
- Department of PediatricsClinical Genetics / DysmorphologyUniversity of California, San DiegoRady Children’s Hospital San DiegoSan DiegoCaliforniaUSA
| | - Karen G.C.B. Bindels‐de Heus
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. J. Valstar
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands
| | - Marie‐Claire Y. de Wit
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of Neurology and Pediatric NeurologyErasmus MCRotterdamThe Netherlands
| | - C. Navis
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of ENT (Speech & Language Pathology)Erasmus MCRotterdamThe Netherlands
| | - Maartje ten Hooven‐Radstaake
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Bianca M. van Iperen‐Kolk
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands,Department of Physical TherapyErasmus MCRotterdamThe Netherlands
| | - Susan Ernst
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Melina Dendrinos
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Terry Katz
- Developmental PediatricsDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Gloria Diaz‐Medina
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Akshat Katyayan
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Srishti Nangia
- Department of PediatricsDivision of Child NeurologyWeill Cornell MedicineNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Ronald Thibert
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Daniel Glaze
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Christopher Keary
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Karine Pelc
- Department of NeurologyHôpital Universitaire des Enfants Reine FabiolaUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Nicole Simon
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Anjali Sadhwani
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Helen Heussler
- UQ Child Health Research CentreFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Anne Wheeler
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Caroline Woeber
- Audiology, Speech & Learning ServicesChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Margaret DeRamus
- Department of PsychiatryCarolina Institute for Developmental DisabilitiesUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Amy Thomas
- New York League for Early Learning William O'connor SchoolNew YorkNew YorkUSA
| | | | - Lauren DeValk
- Occupational TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Kristen Kalemeris
- Department of Pediatric RehabilitationMonroe Carell Jr. Children's Hospital at VanderbiltNashvilleTennesseeUSA
| | - Kara Arps
- Department of Physical TherapyChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Carol Baym
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Nicole Harris
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - John P. Gorham
- Department of Ophthalmology and Visual SciencesUniversity of MichiganAnn ArboMichiganUSA
| | - Brenda L. Bohnsack
- Division of OphthalmologyDepartment of OphthalmologyAnn & Robert H. Lurie Children’s Hospital of ChicagoNorthwestern University Feinberg School of MedicineAnn ArboMichiganUSA
| | - Reid C. Chambers
- Department of Orthopedic Surgery Nationwide Children’s HospitalColumbusOhioUSA
| | - Sarah Harris
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Henry G. Chambers
- Orthopedic SurgerySan Diego Department of Pediatric OrthopedicsUniversity of CaliforniaRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Katherine Okoniewski
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | | | - Allyson Berent
- Foundation for Angelman Syndrome TherapeuticsChicagoIllinoisUSA
| | - Carlos A. Bacino
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Charles Williams
- Raymond C. Philips UnitDivision of Genetics and MetabolismDepartment of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Anne Anderson
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
3
|
Woodford EC, McLay L, France KG, Blampied NM, Gibbs R, Swan CE, Eggleston M. Endogenous melatonin and sleep in individuals with Rare Genetic Neurodevelopmental Disorders (RGND): A systematic review. Sleep Med Rev 2021; 57:101433. [PMID: 33561678 DOI: 10.1016/j.smrv.2021.101433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
Individuals with Rare Genetic Neurodevelopmental Disorders (RGND) present with significant sleep problems and circadian rhythm abnormalities of uncertain aetiology. Abnormal melatonin secretion may play a role in sleep disturbance in individuals with higher incidence developmental disabilities, however, RGND research is limited. This review compared the melatonin profiles in a range of RGND with that of the general population and considered the impact of any differences on sleep. A systematic search identified 19 studies that met inclusion criteria. Each study was examined to extract data relating to the study design, participant characteristics, objectives, sleep measures and results, and melatonin measures and findings. Studies were evaluated using the BIOCROSS quality appraisal tool. Nine studies focussed on Smith-Magenis syndrome (SMS), the rest included individuals with Angelman (AS), Fragile-X (FXS), Prader-Willi (PWS), septo-optic dysplasia, PAX6/WAGR and Williams (WS) syndromes (N = 349). Individuals with RGND present with a range of sleep problems, particularly dyssomnias. The melatonin profile varied within and between RGND, with low nocturnal melatonin levels commonly reported. Understanding the relationship between specific sleep and melatonin parameters within RGND may help inform sleep intervention.
Collapse
Affiliation(s)
- Emma C Woodford
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand.
| | - Laurie McLay
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand
| | - Karyn G France
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand
| | - Neville M Blampied
- School of Psychology Speech & Hearing, College of Science, University of Canterbury, Christchurch, New Zealand
| | - Rosina Gibbs
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand
| | - Catherine E Swan
- Department of Paediatrics, Canterbury District Health Board, Christchurch, New Zealand
| | - Matt Eggleston
- Mental Health Division, Canterbury District Health Board, New Zealand
| |
Collapse
|
4
|
Buonfiglio D, Hummer DL, Armstrong A, Christopher Ehlen J, DeBruyne JP. Angelman syndrome and melatonin: What can they teach us about sleep regulation. J Pineal Res 2020; 69:e12697. [PMID: 32976638 PMCID: PMC7577950 DOI: 10.1111/jpi.12697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/20/2023]
Abstract
In 1965, Dr Harry Angelman reported a neurodevelopmental disorder affecting three unrelated children who had similar symptoms: brachycephaly, mental retardation, ataxia, seizures, protruding tongues, and remarkable paroxysms of laughter. Over the past 50 years, the disorder became Angelman's namesake and symptomology was expanded to include hyper-activity, stereotypies, and severe sleep disturbances. The sleep disorders in many Angelman syndrome (AS) patients are broadly characterized by difficulty falling and staying asleep at night. Some of these patients sleep less than 4 hours a night and, in most cases, do not make up this lost sleep during the day-leading to the speculation that AS patients may "need" less sleep. Most AS patients also have severely reduced levels of melatonin, a hormone produced by the pineal gland exclusively at night. This nightly pattern of melatonin production is thought to help synchronize internal circadian rhythms and promote nighttime sleep in humans and other diurnal species. It has been proposed that reduced melatonin levels contribute to the sleep problems in AS patients. Indeed, emerging evidence suggests melatonin replacement therapy can improve sleep in many AS patients. However, AS mice show sleep problems that are arguably similar to those in humans despite being on genetic backgrounds that do not make melatonin. This suggests the hypothesis that the change in nighttime melatonin may be a secondary factor rather than the root cause of the sleeping disorder. The goals of this review article are to revisit the sleep and melatonin findings in both AS patients and animal models of AS and discuss what AS may tell us about the underlying mechanisms of, and interplay between, melatonin and sleep.
Collapse
Affiliation(s)
- Daniella Buonfiglio
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel L Hummer
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - Ariel Armstrong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason P DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Kapek Ł, Paprocka J, Kijonka M, Zych M, Emich-Widera E, Rzepka-Migut B, Borys D, Kaczmarczyk-Sedlak I, Sokół M. Circadian Profile of Salivary Melatonin Secretion in Hypoxic Ischemic Encephalopathy. Int J Endocrinol 2020; 2020:6209841. [PMID: 33061967 PMCID: PMC7533010 DOI: 10.1155/2020/6209841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/01/2020] [Accepted: 09/03/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE In the present study, the salivary melatonin secretion in the hypoxic ischemic encephalopathy (HIE) children was measured. The logit model was fitted to the data to obtain the salivary dim light melatonin onsets (DLMOs), and the results were compared with the values estimated from the classic threshold method with a linear interpolation and those previously published for the blood measurements. MATERIALS AND METHODS 9 patients suffering from HIE aged from 65 to 80 months were included in the study. The melatonin levels were assessed by a radioimmunoassay (RIA). The diurnal melatonin secretion was estimated using a nonlinear least squares method. Student's t-test and the Mann-Whitney U test were used for the comparisons of the obtained parameters. RESULTS The circadian profiles of the melatonin secretion for both calculation methods do not differ statistically. The DLMO parameters obtained in the blood and saliva samples in children with hypoxic ischemic encephalopathy were similar.
Collapse
Affiliation(s)
- Łukasz Kapek
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
- Faculty of Science and Technology, University of Silesia, Katowice, Poland
| | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kijonka
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Emich-Widera
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Beata Rzepka-Migut
- Department of Pediatric Neurology, St. Queen Jadwiga's Regional Clinical Hospital No. 2, Rzeszów, Poland
| | - Damian Borys
- Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| |
Collapse
|
6
|
Hanzlik E, Klinger SA, Carson R, Duis J. Mirtazapine for sleep disturbances in Angelman syndrome: a retrospective chart review of 8 pediatric cases. J Clin Sleep Med 2020; 16:591-595. [PMID: 32022663 DOI: 10.5664/jcsm.8284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY OBJECTIVES Angelman syndrome (AS) is a rare neurodevelopmental disorder that is characterized by developmental delay, intellectual disability, seizures, a characteristic happy personality, gait ataxia, tremulousness of the limbs, microcephaly, and anxiety. Severe sleep disturbances with the diminished need for sleep and abnormal sleep-wake cycles are seen in up to 90% of patients with AS. AS is caused by absent maternal expression of the gene UBE3A located in the 15q11.2-q13 locus. We hypothesized that selective antagonism of 5-HT₂ and 5-HT₃ serotonin receptors with mirtazapine would benefit sleep disturbances in patients with AS. METHODS Institutional Review Board approval was obtained at Vanderbilt University Medical Center. Medical records of individuals seen in the Comprehensive Angelman Syndrome clinic were retrospectively reviewed to determine the use of mirtazapine for disordered sleep. Parents were asked to respond to a survey to assess the phenotypic features of sleep and behavioral disturbances in AS. They were asked about the use of medications for sleep, focusing on the benefits and risks of mirtazapine. RESULTS A cohort of 8 individuals with AS, ranging in age from 3 to 16 years old with histories of sleep challenges, were treated with 3.75 to 30 mg of mirtazapine at bedtime for 0 to 36 weeks. Nocturnal awakenings were the most common sleep challenge reported. Seven of eight patients reported benefits from mirtazapine, including increased total sleep time, decreased nocturnal awakenings, and decreased time to fall asleep. The most significant side effects of mirtazapine were hyperphagia and weight gain. CONCLUSIONS Individuals with AS have abnormal sleep-wake cycles and a high unmet medical need. Mirtazapine helped with sleep onset and nighttime awakenings in 7 of 8 patients, with 2 patients reporting a positive benefit with respect to behavior. These data suggest that mirtazapine may be considered for the treatment of sleep difficulties in patients with AS who remain refractory to more conventional therapies. Weight gain was a common side-effect and led to discontinuation of treatment in 1 patient.
Collapse
Affiliation(s)
- Emily Hanzlik
- Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah A Klinger
- Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert Carson
- Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jessica Duis
- Medical Genetics & Genomic Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Rzepka-Migut B, Paprocka J. Melatonin-Measurement Methods and the Factors Modifying the Results. A Systematic Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1916. [PMID: 32183489 PMCID: PMC7142625 DOI: 10.3390/ijerph17061916] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023]
Abstract
Melatonin plays an important role in regulating the sleep-wake cycle and adaptation to environmental changes. Concentration measurements in bioliquids such as serum/plasma, saliva and urine are widely used to assess peripheral rhythm. The aim of the study was to compare methods and conditions of determinations carried out with the identification of factors potentially affecting the measurements obtained. We have identified a group of modifiable and unmodifiable factors that facilitate data interpretation. Knowledge of modifiers allows you to carefully plan the test protocol and then compare the results. There is no one universal sampling standard, because the choice of method and biofluid depends on the purpose of the study and the research group.
Collapse
Affiliation(s)
- Beata Rzepka-Migut
- Department of Pediatric Neurology and Pediatrics, St. Queen Jadwiga’s Regional Clinical Hospital No 2 Rzeszów, 35-301 Rzeszów, Poland;
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
8
|
Agar G, Oliver C, Trickett J, Licence L, Richards C. Sleep disorders in children with Angelman and Smith-Magenis syndromes: The assessment of potential causes of disrupted settling and night time waking. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 97:103555. [PMID: 31838315 DOI: 10.1016/j.ridd.2019.103555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sleep problems are common in Smith-Magenis (SMS) and Angelman syndromes (AS). Effectiveness of interventions depends on appropriate assessment, complicated by compromised self-report and health and behaviour difficulties. Studying settling and waking in these syndromes could inform assessment. AIMS To describe settling and waking behaviours in children at high-risk of sleep and health problems, using direct observation. METHODS AND PROCEDURES Video and actigraphy data were collected for 12 participants with AS (Mean age = 8.02, SD = 2.81) and 11 with SMS (Mean age = 8.80, SD = 2.18). Settling (30 min prior to sleep onset) and night waking were coded for nineteen behaviours relating to pain, challenging behaviour and caregiver interaction. Lag sequential analyses were conducted for pain-related behaviours. OUTCOMES AND RESULTS Percentage of time spent in behaviours was calculated. Parent-child interactions (0.00-9.93 %) and challenging behaviours (0 %) were rare at settling and waking in both groups. In the AS group, pain-related behaviours were more likely to occur before waking than by chance (p < 0.001). CONCLUSIONS AND IMPLICATIONS Findings highlight the importance of considering pain as a cause of sleep problems in AS. The principle and methodology could be extended to individuals with ID experiencing sleep problems.
Collapse
Affiliation(s)
- Georgie Agar
- Cerebra Centre for Neurodevelopmental Disorders, University of Birmingham, UK.
| | - Chris Oliver
- Cerebra Centre for Neurodevelopmental Disorders, University of Birmingham, UK
| | - Jayne Trickett
- Cerebra Centre for Neurodevelopmental Disorders, University of Birmingham, UK
| | - Lucy Licence
- Cerebra Centre for Neurodevelopmental Disorders, University of Birmingham, UK
| | - Caroline Richards
- Cerebra Centre for Neurodevelopmental Disorders, University of Birmingham, UK; School of Psychology, 52 Pritchatts Road, University of Birmingham, UK
| |
Collapse
|
9
|
Trickett J, Oliver C, Heald M, Denyer H, Surtees A, Clarkson E, Gringras P, Richards C. Multi-Method Assessment of Sleep in Children With Angelman Syndrome: A Case-Controlled Study. Front Psychiatry 2019; 10:874. [PMID: 31849727 PMCID: PMC6895248 DOI: 10.3389/fpsyt.2019.00874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives: To assess sleep quality and timing in children with Angelman syndrome (AS) with sleep problems using questionnaires and actigraphy and contrast sleep parameters to those of typically developing (TD) children matched for age and sex. Methods: Week-long actigraphy assessments were undertaken with children with AS (n = 20) with parent-reported sleep difficulties and compared with age and sex matched TD controls. The presence of severe sleep problems was assessed using the modified Simonds and Parraga sleep questionnaire. Sleep hygiene was measured using the Family Inventory of Sleep Habits. Results: Actigraphy and parent-completed sleep diary data indicated that children with AS had significantly earlier bedtimes (p = .003, Cohen d = .47) and poorer sleep efficiency (78%, p = .04, d = .33) than TD children (84%). No significant differences in total sleep time, sleep onset latency or wake after sleep onset were found between the two groups. The expected relationship between later bedtimes and increasing age found for the TD group (p < .001, β.78) was not evidenced for the AS group (p = .09, β.39). Considerable inter-individual and night to night variation in actigraphy assessed total sleep time and wake after sleep onset was found for children with AS compared to TD children. Parent report indicated that a greater proportion of children with AS had severe night waking problems compared to TD children (81 versus 5%). No significant differences in sleep hygiene and excessive daytime sleepiness were found between the two groups (p > .05). Conclusions: This study reports the largest objective dataset of sleep quality parameters in children with AS. Sleep quality in this group was characterised by poor efficiency and significant intra- and inter-individual variability that warrants further investigation. This variability should inform assessment and intervention for sleep in children with AS, as averages of total sleep, even across a 7 day period may not capture the difficulties with night waking highlighted by parental questionnaire report.
Collapse
Affiliation(s)
- Jayne Trickett
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Department of Health Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Chris Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Mary Heald
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Forward Thinking Birmingham, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Hayley Denyer
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew Surtees
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Forward Thinking Birmingham, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Emma Clarkson
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- The Huntercombe Group, Worcestershire, United Kingdom
| | - Paul Gringras
- Evelina London Children’s Sleep Medicine Department Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Caroline Richards
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Salminen II, Crespi BJ, Mokkonen M. Baby food and bedtime: Evidence for opposite phenotypes from different genetic and epigenetic alterations in Prader-Willi and Angelman syndromes. SAGE Open Med 2019; 7:2050312118823585. [PMID: 30728968 PMCID: PMC6350130 DOI: 10.1177/2050312118823585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Prader–Willi and Angelman syndromes are often referred to as a sister pair of
neurodevelopmental disorders, resulting from different genetic and epigenetic
alterations to the same chromosomal region, 15q11-q13. Some of the primary
phenotypes of the two syndromes have been suggested to be opposite to one
another, but this hypothesis has yet to be tested comprehensively, and it
remains unclear how opposite effects could be produced by changes to different
genes in one syndrome compared to the other. We evaluated the evidence for
opposite effects on sleep and eating phenotypes in Prader–Willi syndrome and
Angelman syndrome, and developed physiological–genetic models that represent
hypothesized causes of these differences. Sleep latency shows opposite
deviations from controls in Prader–Willi and Angelman syndromes, with shorter
latency in Prader–Willi syndrome by meta-analysis and longer latency in Angelman
syndrome from previous studies. These differences can be accounted for by the
effects of variable gene dosages of UBE3A and MAGEL2, interacting with clock
genes, and leading to acceleration (in Prader–Willi syndrome) or deceleration
(in Angelman syndrome) of circadian rhythms. Prader–Willi and Angelman syndromes
also show evidence of opposite alterations in hyperphagic food selectivity, with
more paternally biased subtypes of Angelman syndrome apparently involving
increased preference for complementary foods (“baby foods”); hedonic reward from
eating may also be increased in Angelman syndrome and decreased in Prader–Willi
syndrome. These differences can be explained in part under a model whereby
hyperphagia and food selectivity are mediated by the effects of the genes
SNORD-116, UBE3A and MAGEL2, with outcomes depending upon the genotypic cause of
Angelman syndrome. The diametric variation observed in sleep and eating
phenotypes in Prader–Willi and Angelman syndromes is consistent with predictions
from the kinship theory of imprinting, reflecting extremes of higher resource
demand in Angelman syndrome and lower demand in Prader–Willi syndrome, with a
special emphasis on social–attentional demands and attachment associated with
bedtime, and feeding demands associated with mother-provided complementary foods
compared to offspring-foraged family-type foods.
Collapse
|
11
|
Paprocka J, Kijonka M, Rzepka B, Sokół M. Melatonin in Hypoxic-Ischemic Brain Injury in Term and Preterm Babies. Int J Endocrinol 2019; 2019:9626715. [PMID: 30915118 PMCID: PMC6402213 DOI: 10.1155/2019/9626715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/05/2022] Open
Abstract
Melatonin may serve as a potential therapeutic free radical scavenger and broad-spectrum antioxidant. It shows neuroprotective properties against hypoxic-ischemic brain injury in animal models. The authors review the studies focusing on the neuroprotective potential of melatonin and its possibility of treatment after perinatal asphyxia. Melatonin efficacy, low toxicity, and ability to readily cross through the blood-brain barrier make it a promising molecule. A very interesting thing is the difference between the half-life of melatonin in preterm neonates (15 hours) and adults (45-60 minutes). Probably, the use of synergic strategies-hypothermia coupled with melatonin treatment-may be promising in improving antioxidant action. The authors discuss and try to summarize the evidence surrounding the use of melatonin in hypoxic-ischemic events in term and preterm babies.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kijonka
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| | - Beata Rzepka
- Students' Scientific Society, Department Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| |
Collapse
|