1
|
Shao K, Pu W, Zhang J, Guo S, Qian F, Glurich I, Jin Q, Ma Y, Ju S, Zhang Z, Ding W. DNA hypermethylation contributes to colorectal cancer metastasis by regulating the binding of CEBPB and TFCP2 to the CPEB1 promoter. Clin Epigenetics 2021; 13:89. [PMID: 33892791 PMCID: PMC8063327 DOI: 10.1186/s13148-021-01071-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
Background Aberrant DNA methylation has been firmly established as a factor contributing to the pathogenesis of colorectal cancer (CRC) via its capacity to silence tumour suppressor genes. However, the methylation status of multiple tumour suppressor genes and their roles in promoting CRC metastasis are not well characterised. Methods We explored the methylation and expression profiles of CPEB1 (the gene encoding cytoplasmic polyadenylation element-binding protein 1), a candidate CRC tumour suppressor gene, using The Cancer Genome Atlas (TCGA) database and validated these results in both CRC cell lines and cells from Han Chinese CRC patients (n = 104). The functional role of CPEB1 in CRC was examined in experiments performed in vitro and in vivo. A candidate transcription factor capable of regulating CPEB1 expression was predicted in silico and validated by luciferase reporter, DNA pull-down, and electrophoretic mobility shift assays. Results Hypermethylation and decreased expression of CPEB1 in CRC tumour tissues were revealed by TCGA database. We also identified a significant inverse correlation (Pearson’s R = − 0.43, P < 0.001) between promoter methylation and CPEB1 expression. We validated these results in CRC samples and two CRC cell lines. We also demonstrated that up-regulation of CPEB1 resulted in significantly decreased tumour growth, migration, invasion, and tumorigenicity and promoted tumour cell apoptosis both in vitro and in vivo. We identified the transcription factors CCAAT enhancer-binding protein beta (CEBPB) and transcription factor CP2 (TFCP2) as critical regulators of CPEB1 expression. Hypermethylation of the CPEB1 promoter resulted in a simultaneous increase in the capacity for TFCP2 binding and a decreased likelihood of CEBPB binding, both of which led to diminished expression of CPEB1. Conclusions Our results identified a novel tumour-suppressive role of CPEB1 in CRC and found that hypermethylation of the CPEB1 promoter may lead to diminished expression due to decreased chromatin accessibility and transcription factor binding. Collectively, these results suggest a potential role for CPEB1 in the diagnosis and treatment of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01071-z.
Collapse
Affiliation(s)
- Keke Shao
- Department of Laboratory Medicine, the First People's Hospital of Yancheng City/Affiliated Hospital 4 of Nantong University, Yancheng, Jiangsu Province, China
| | - Weilin Pu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Fei Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ingrid Glurich
- Office of Research Support Services, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Qing Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Six Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
2
|
Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T. TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 2018; 420:72-79. [PMID: 29410248 DOI: 10.1016/j.canlet.2018.01.078] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
The TFCP2/Grainyhead family of transcription factors is divided into two distinct subfamilies, one of which includes the Grainyhead-like 1-3 (GRHL1-3) proteins and the other consists of TFCP2 (synonyms: CP2, LSF, LBP-1c), TFCP2L1 (synonyms: CRTR-1, LBP-9) and UBP1 (synonyms: LBP-1a, NF2d9). Transcription factors from the TFCP2/TFCP2L1/UBP1 subfamily are involved in various aspects of cancer development. TFCP2 is a pro-oncogenic factor in hepatocellular carcinoma, pancreatic cancer and breast cancer, may be important in cervical carcinogenesis and in colorectal cancer. TFCP2 can also act as a tumor suppressor, for example, it inhibits melanoma growth. Furthermore, TFCP2 is involved in epithelial-mesenchymal transition and enhances angiogenesis. TFCP2L1 maintains pluripotency and self-renewal of embryonic stem cells and was implicated in a wide variety of cancers, including clear cell renal cell carcinoma, breast cancer and thyroid cancer. Here we present a systematic review of current knowledge of this protein subfamily in the context of cancer. We also discuss potential challenges in investigating this family of transcription factors. These challenges include redundancies between these factors as well as their interactions with each other and their ability to modulate each other's activity.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna I Grabowska
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Agnieszka Taracha
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
3
|
Zhang X, Sun F, Qiao Y, Zheng W, Liu Y, Chen Y, Wu Q, Liu X, Zhu G, Chen Y, Yu Y, Pan Q, Wang J. TFCP2 Is Required for YAP-Dependent Transcription to Stimulate Liver Malignancy. Cell Rep 2017; 21:1227-1239. [DOI: 10.1016/j.celrep.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
|