1
|
Fang X, Liu J, Jiang A, Li X, Tan P, Liu C, Gong X, Sun H, Du C, Zhang J, Zhang X, Yi Z, Kong F, Zhang J. QTL mapping and multi-omics identify candidate genes for protein and oil in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:115. [PMID: 40353958 DOI: 10.1007/s00122-025-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
KEY MESSAGE QTL mapping, BSA-seq, and RNA-seq revealed key QTL/genes of protein and oil, some of which were aligned with previous QTLs. EMS-mutations and SoyGVD were applied to validate function of candidate genes. Protein and oil are the two principal economic components of soybean seed. Although several related genes regulating soybean protein and oil accumulation have been reported, the regulatory mechanisms remain largely unknown. In this study, quantitative trait loci (QTL) mapping was employed using four generations derived from a cross between Changjiangchun 2 (high protein and oil content) and Yushuxian 2 (low protein and oil content), resulting in the detection of 37 QTLs, including 16 QTLs for protein content and 21 QTLs for oil content. BSA-seq was performed on two parents and two offspring extreme pools from F2 population individuals. Two QTLs, qOIL1.2 and qPRO14.1, were found to overlap with the BSA-seq mapping interval, in which eight genes exhibited single nucleotide polymorphisms (SNPs) or insertion/deletion (InDel) variations within their coding sequences (CDS). RNA-seq was performed on seeds collected at 20, 30, and 40 days after-pollination (DAP) from two extreme pools of F2:3 population individuals. A total of 199 deferentially expressed genes (DEGs) were obtained within the QTLs regions. In conjunction with previous research, 10 protein and four oil QTLs intervals were aligned with previously identified QTLs. Notably, based on EMS-induced mutation lines and SoyGVD database, 12 potential candidate genes were screened out and preliminary validated the function for oil and protein in soybeans. These findings lay the groundwork for further research into candidate genes and marker-assisted selection (MAS) in soybean breeding to enhance seed protein and oil content.
Collapse
Affiliation(s)
- Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jiaqi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Aohua Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Pingting Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chen Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xuan Gong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hao Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chengzhang Du
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Jijun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Xiaochun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Vuong TD, Florez-Palacios L, Mozzoni L, Clubb M, Quigley C, Song Q, Kadam S, Yuan Y, Chan TF, Mian MAR, Nguyen HT. Genomic analysis and characterization of new loci associated with seed protein and oil content in soybeans. THE PLANT GENOME 2023; 16:e20400. [PMID: 37940622 DOI: 10.1002/tpg2.20400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Breeding for increased protein without a reduction in oil content in soybeans [Glycine max (L.) Merr.] is a challenge for soybean breeders but an expected goal. Many efforts have been made to develop new soybean varieties with high yield in combination with desirable protein and/or oil traits. An elite line, R05-1415, was reported to be high yielding, high protein, and low oil. Several significant quantitative trait loci (QTL) for protein and oil were reported in this line, but many of them were unstable across environments or genetic backgrounds. Thus, a new study under multiple field environments using the Infinium BARCSoySNP6K BeadChips was conducted to detect and confirm stable genomic loci for these traits. Genetic analyses consistently detected a single major genomic locus conveying these two traits with remarkably high phenotypic variation explained (R2 ), varying between 24.2% and 43.5%. This new genomic locus is located between 25.0 and 26.7 Mb, distant from the previously reported QTL and did not overlap with other commonly reported QTL and the recently cloned gene Glyma.20G085100. Homolog analysis indicated that this QTL did not result from the paracentric chromosome inversion with an adjacent genomic fragment that harbors the reported QTL. The pleiotropic effect of this QTL could be a challenge for improving protein and oil simultaneously; however, a further study of four candidate genes with significant expressions in the seed developmental stages coupled with haplotype analysis may be able to pinpoint causative genes. The functionality and roles of these genes can be determined and characterized, which lay a solid foundation for the improvement of protein and oil content in soybeans.
Collapse
Affiliation(s)
- Tri D Vuong
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | | | - Leandro Mozzoni
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Michael Clubb
- Division of Plant Science and Technology, the Fisher Delta Research, Extension and Education Center (FDREEC), University of Missouri, Portageville, Missouri, USA
| | - Chuck Quigley
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Shaila Kadam
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Yuxuan Yuan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ting Fung Chan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | | | - Henry T Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Ostezan A, Prenger EM, Rosso L, Zhang B, Stupar RM, Glenn T, Mian MAR, Li Z. A chromosome 16 deletion conferring a high sucrose phenotype in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:109. [PMID: 37039870 DOI: 10.1007/s00122-023-04354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Sucrose in soybean seeds is desirable for many end-uses. Increased sucrose contents were discovered to associate with a chromosome 16 deletion resulting from fast neutron irradiation. Soybean is one of the most economically important crops in the United States. A primary end-use of soybean is for livestock feed. Therefore, genetic improvement of seed composition is one of the most important goals in soybean breeding programs. Sucrose is desired in animal feed due to its role as an easily digestible energy source. An elite soybean line was irradiated with fast neutrons and the seed from plants were screened for altered seed composition with near-infrared spectroscopy (NIR). One mutant line, G15FN-54, was found to have higher sucrose content (8-9%) than the parental line (5-6%). Comparative genomic hybridization (CGH) revealed three large deletions on chromosomes (Chrs) 10, 13, and 16 in the mutant, which were confirmed through whole genome sequencing (WGS). A bi-parental population derived from the mutant G15FN-54 and the cultivar Benning was developed to conduct a bulked segregant analysis (BSA) with SoySNP50K BeadChips, revealing that the deletion on Chr 16 might be responsible for the altered phenotype. The mapping result using the bi-parental population confirmed that the deletion on Chr 16 conferred elevated sucrose content and a total of 21 genes are located within this Chr 16 deletion. NIR and high-pressure liquid chromatography (HPLC) were used to confirm the stability of the phenotype across generations in the bi-parental population. The mutation will be useful to understand the genetic control of soybean seed sucrose content.
Collapse
Affiliation(s)
- Alexandra Ostezan
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Elizabeth M Prenger
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Luciana Rosso
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bo Zhang
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Travis Glenn
- Deparment of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - M A Rouf Mian
- Soybean and Nitrogen Fixation Research Unit, USDA-ARS, Raleigh, NC, 27607, USA
| | - Zenglu Li
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
5
|
Canella Vieira C, Persa R, Chen P, Jarquin D. Incorporation of Soil-Derived Covariates in Progeny Testing and Line Selection to Enhance Genomic Prediction Accuracy in Soybean Breeding. Front Genet 2022; 13:905824. [PMID: 36159995 PMCID: PMC9493273 DOI: 10.3389/fgene.2022.905824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
The availability of high-dimensional molecular markers has allowed plant breeding programs to maximize their efficiency through the genomic prediction of a phenotype of interest. Yield is a complex quantitative trait whose expression is sensitive to environmental stimuli. In this research, we investigated the potential of incorporating soil texture information and its interaction with molecular markers via covariance structures for enhancing predictive ability across breeding scenarios. A total of 797 soybean lines derived from 367 unique bi-parental populations were genotyped using the Illumina BARCSoySNP6K and tested for yield during 5 years in Tiptonville silt loam, Sharkey clay, and Malden fine sand environments. Four statistical models were considered, including the GBLUP model (M1), the reaction norm model (M2) including the interaction between molecular markers and the environment (G×E), an extended version of M2 that also includes soil type (S), and the interaction between soil type and molecular markers (G×S) (M3), and a parsimonious version of M3 which discards the G×E term (M4). Four cross-validation scenarios simulating progeny testing and line selection of tested–untested genotypes (TG, UG) in observed–unobserved environments [OE, UE] were implemented (CV2 [TG, OE], CV1 [UG, OE], CV0 [TG, UE], and CV00 [UG, UE]). Across environments, the addition of G×S interaction in M3 decreased the amount of variability captured by the environment (−30.4%) and residual (−39.2%) terms as compared to M1. Within environments, the G×S term in M3 reduced the variability captured by the residual term by 60 and 30% when compared to M1 and M2, respectively. M3 outperformed all the other models in CV2 (0.577), CV1 (0.480), and CV0 (0.488). In addition to the Pearson correlation, other measures were considered to assess predictive ability and these showed that the addition of soil texture seems to structure/dissect the environmental term revealing its components that could enhance or hinder the predictability of a model, especially in the most complex prediction scenario (CV00). Hence, the availability of soil texture information before the growing season could be used to optimize the efficiency of a breeding program by allowing the reconsideration of field experimental design, allocation of resources, reduction of preliminary trials, and shortening of the breeding cycle.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Division of Plant Science and Technology, Fisher Delta Research, Extension and Education Center, University of Missouri, Portageville, MO, United States
| | - Reyna Persa
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Pengyin Chen
- Division of Plant Science and Technology, Fisher Delta Research, Extension and Education Center, University of Missouri, Portageville, MO, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
- *Correspondence: Diego Jarquin,
| |
Collapse
|
6
|
Pang Y, Liu C, Lin M, Ni F, Li W, Cai J, Zhang Z, Zhu H, Liu J, Wu J, Bai G, Liu S. Mapping QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Landrace. Int J Mol Sci 2022; 23:ijms23179662. [PMID: 36077059 PMCID: PMC9456275 DOI: 10.3390/ijms23179662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Wheat stripe (yellow) rust is a worldwide disease that seriously reduces wheat grain yield and quality. Adult-plant resistance (APR) to stripe rust is generally more durable but usually controlled by multiple genes with partial resistance. In this study, a recombinant inbred line population was developed from a cross between a Chinese wheat landrace, Tutoumai, with APR to stripe rust, and a highly susceptible wheat cultivar, Siyang 936. The population was genotyped by genotyping-by-sequencing and phenotyped for APR to stripe rust in four consecutive field experiments. Three QTLs, QYr.sdau-1BL, QYr.sdau-5BL, and QYr.sdau-6BL, were identified for APR to stripe rust, and explained 8.0–21.2%, 10.1–22.7%, and 11.6–18.0% of the phenotypic variation, respectively. QYr.sdau-1BL was further mapped to a 21.6 Mb region using KASP markers derived from SNPs identified by RNA-seq of the two parents. In the QYr.sdau-1BL region, 13 disease-resistance-related genes were differently expressed between the two parents, and therefore were considered as the putative candidates of QYr.sdau-1BL. This study provides favorable gene/QTL and high-throughput markers to breeding programs for marker-assisted selection of the wheat stripe rust APR genes.
Collapse
Affiliation(s)
- Yunlong Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Chunxia Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Wenhui Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jin Cai
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ziliang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Huaqiang Zhu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jingxian Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
7
|
Awata LAO, Ifie BE, Danquah E, Jumbo MB, Suresh LM, Gowda M, Marchelo-Dragga PW, Olsen MS, Shorinola O, Yao NK, Boddupalli PM, Tongoona PB. Introgression of Maize Lethal Necrosis Resistance Quantitative Trait Loci Into Susceptible Maize Populations and Validation of the Resistance Under Field Conditions in Naivasha, Kenya. FRONTIERS IN PLANT SCIENCE 2021; 12:649308. [PMID: 34040620 PMCID: PMC8143050 DOI: 10.3389/fpls.2021.649308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
Maize lethal necrosis (MLN), resulting from co-infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) can cause up to 100% yield losses in maize in Africa under serious disease conditions. Maize improvement through conventional backcross (BC) takes many generations but can significantly be shortened when molecular tools are utilized in the breeding process. We used a donor parent (KS23-6) to transfer quantitative trait loci (QTL) for resistance to MLN into nine adapted but MLN susceptible lines. Nurseries were established in Kiboko, Kenya during 2015-2017 seasons and BC3F2 progeny were developed using marker assisted backcrossing (MABC) approach. Six single nucleotide polymorphism (SNP) markers linked to QTL for resistance to MLN were used to genotype 2,400 BC3F2 lines using Kompetitive Allele Specific PCR (KASP) platform. We detected that two of the six QTL had major effects for resistance to MLN under artificial inoculation field conditions in 56 candidate BC3F2 lines. To confirm whether these two QTL are reproducible under different field conditions, the 56 BC3F2 lines including their parents were evaluated in replicated trials for two seasons under artificial MLN inoculations in Naivasha, Kenya in 2018. Strong association of genotype with phenotype was detected. Consequently, 19 superior BC3F2 lines with favorable alleles and showing improved levels of resistance to MLN under artificial field inoculation were identified. These elite lines represent superior genetic resources for improvement of maize hybrids for resistance to MLN. However, 20 BC3F2 lines were fixed for both KASP markers but were susceptible to MLN under field conditions, which could suggest weak linkage between the KASP markers and target genes. The validated two major QTL can be utilized to speed up the breeding process but additional loci need to be identified between the KASP markers and the resistance genes to strengthen the linkage.
Collapse
Affiliation(s)
- Luka A. O. Awata
- Directorate of Research, Ministry of Agriculture and Food Security, Juba, South Sudan
| | - Beatrice E. Ifie
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Eric Danquah
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - MacDonald Bright Jumbo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bulawayo, Zimbabwe
| | - L. Mahabaleswara Suresh
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Philip W. Marchelo-Dragga
- Department of Agricultural Sciences, College of Natural Resources and Environmental Studies, University of Juba, Juba, South Sudan
| | - Michael Scott Olsen
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Oluwaseyi Shorinola
- Biosciences eastern and central Africa (BecA) Hub, International Livestock Research Institute (ILRI), Nairobi, Kenya
- John Innes Centre, Norwich, United Kingdom
| | - Nasser Kouadio Yao
- Biosciences eastern and central Africa (BecA) Hub, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Prasanna M. Boddupalli
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Pangirayi B. Tongoona
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
8
|
Rosso ML, Shang C, Song Q, Escamilla D, Gillenwater J, Zhang B. Development of Breeder-Friendly KASP Markers for Low Concentration of Kunitz Trypsin Inhibitor in Soybean Seeds. Int J Mol Sci 2021; 22:2675. [PMID: 33800919 PMCID: PMC7961957 DOI: 10.3390/ijms22052675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
Trypsin inhibitors (TI), a common anti-nutritional factor in soybean, prevent animals' protein digestibility reducing animal growth performance. No commercial soybean cultivars with low or null concentration of TI are available. The availability of a high throughput genotyping assay will be beneficial to incorporate the low TI trait into elite breeding lines. The aim of this study is to develop and validate a breeder friendly Kompetitive Allele Specific PCR (KASP) assay linked to low Kunitz trypsin inhibitor (KTI) in soybean seeds. A total of 200 F3:5 lines derived from PI 547656 (low KTI) X Glenn (normal KTI) were genotyped using the BARCSoySNP6K_v2 Beadchip. F3:4 and F3:5 lines were grown in Blacksburg and Orange, Virginia in three years, respectively, and were measured for KTI content using a quantitative HPLC method. We identified three SNP markers tightly linked to the major QTL associated to low KTI in the mapping population. Based on these SNPs, we developed and validated the KASP assays in a set of 93 diverse germplasm accessions. The marker Gm08_44814503 has 86% selection efficiency for the accessions with low KTI and could be used in marker assisted breeding to facilitate the incorporation of low KTI content in soybean seeds.
Collapse
Affiliation(s)
- M. Luciana Rosso
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.L.R.); (C.S.)
| | - Chao Shang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.L.R.); (C.S.)
| | - Qijian Song
- Beltsville Agricultural Research Center, Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| | - Diana Escamilla
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA;
| | - Jay Gillenwater
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.L.R.); (C.S.)
| |
Collapse
|
9
|
Yang S, Yu W, Wei X, Wang Z, Zhao Y, Zhao X, Tian B, Yuan Y, Zhang X. An extended KASP-SNP resource for molecular breeding in Chinese cabbage(Brassica rapa L. ssp. pekinensis). PLoS One 2020; 15:e0240042. [PMID: 33007009 PMCID: PMC7531813 DOI: 10.1371/journal.pone.0240042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Kompetitive allele-specific PCR (KASP) is a cost-effective single-step SNP genotyping technology, With an objective to enhance the marker repertoire and develop high efficient KASP-SNP markers in Chinese cabbage, we re-sequenced four Chinese cabbage doubled haploid (DH) lines, Y177-47, Y635-10, Y510-1 and Y510-9, and generated a total of more than 38.5 billion clean base pairs. A total of 827,720 SNP loci were identified with an estimated density of 3,217 SNPs/Mb. Further, a total of 387,354 SNPs with at least 30 bp to the next most adjacent SNPs on either side were selected as resource for KASP markers. From this resource, 258 (96.27%) of 268 SNP loci were successfully transformed into KASP-SNP markers using a Roche LightCycler 480-II instrument. Among these markers, 221 (85.66%) were co-dominant markers, 220 (85.27%) were non-synonymous SNPs, and 257 (99.6%) were newly developed markers. In addition, 53 markers were applied for genotyping of 34 Brassica rapa accessions. Cluster analysis separated these 34 accessions into three clusters based on heading types. The millions of SNP loci, a large set of resource for KASP markers, as well as the newly developed KASP markers in this study may facilitate further genetic and molecular breeding studies in Brassica rapa.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wentao Yu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Life Science, Zhengzhou University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoming Tian
- College of Life Science, Zhengzhou University, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| |
Collapse
|
10
|
Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, Fountain JC, Choudhary D, Culbreath AK, Liu X, Huang G, Wang X, Deshmukh R, Holbrook CC, Bertioli DJ, Ozias‐Akins P, Jackson SA, Varshney RK, Guo B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1954-1967. [PMID: 29637729 PMCID: PMC6181220 DOI: 10.1111/pbi.12930] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/28/2018] [Accepted: 03/25/2018] [Indexed: 05/04/2023]
Abstract
Whole-genome resequencing (WGRS) of mapping populations has facilitated development of high-density genetic maps essential for fine mapping and candidate gene discovery for traits of interest in crop species. Leaf spots, including early leaf spot (ELS) and late leaf spot (LLS), and Tomato spotted wilt virus (TSWV) are devastating diseases in peanut causing significant yield loss. We generated WGRS data on a recombinant inbred line population, developed a SNP-based high-density genetic map, and conducted fine mapping, candidate gene discovery and marker validation for ELS, LLS and TSWV. The first sequence-based high-density map was constructed with 8869 SNPs assigned to 20 linkage groups, representing 20 chromosomes, for the 'T' population (Tifrunner × GT-C20) with a map length of 3120 cM and an average distance of 1.45 cM. The quantitative trait locus (QTL) analysis using high-density genetic map and multiple season phenotyping data identified 35 main-effect QTLs with phenotypic variation explained (PVE) from 6.32% to 47.63%. Among major-effect QTLs mapped, there were two QTLs for ELS on B05 with 47.42% PVE and B03 with 47.38% PVE, two QTLs for LLS on A05 with 47.63% and B03 with 34.03% PVE and one QTL for TSWV on B09 with 40.71% PVE. The epistasis and environment interaction analyses identified significant environmental effects on these traits. The identified QTL regions had disease resistance genes including R-genes and transcription factors. KASP markers were developed for major QTLs and validated in the population and are ready for further deployment in genomics-assisted breeding in peanut.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Josh Clevenger
- Center for Applied Genetic TechnologiesMars Wrigley ConfectioneryAthensGAUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Hui Wang
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | - Yaduru Shasidhar
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding & GenomicsUniversity of GeorgiaTiftonGAUSA
| | - Jake C. Fountain
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | - Divya Choudhary
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | | | | | | | - Xingjun Wang
- Shandong Academy of Agricultural SciencesBiotechnology Research CenterJinanChina
| | | | | | - David J. Bertioli
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - Peggy Ozias‐Akins
- Department of Horticulture and Institute of Plant Breeding & GenomicsUniversity of GeorgiaTiftonGAUSA
| | - Scott A. Jackson
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Baozhu Guo
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
| |
Collapse
|
11
|
Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1939-1953. [PMID: 29618164 PMCID: PMC6181215 DOI: 10.1111/pbi.12929] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 05/04/2023]
Abstract
The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean.
Collapse
Affiliation(s)
- Gunvant Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Present address:
Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMN55108USA
| | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Sandip Kale
- Center of Excellence in GenomicsInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GateslebenD‐06466StadtSeelandGermany
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Chengsong Zhu
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Xiaolei Wu
- Crop Science DivisionBayer CropScienceMorrisvilleNCUSA
| | - Yonghe Bai
- Dow AgroSciencesIndianapolisINUSA
- Present address:
Nuseed Americas10 N. East Street, Suite 101WoodlandCA95776USA
| | | | - Fang Lu
- Dow AgroSciencesIndianapolisINUSA
- Present address:
AmgenOne Amgen Center DriveThousand OaksCA91320USA
| | | | | | - Rajeev K. Varshney
- Center of Excellence in GenomicsInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
12
|
Abdelrahman M, Jogaiah S, Burritt DJ, Tran LSP. Legume genetic resources and transcriptome dynamics under abiotic stress conditions. PLANT, CELL & ENVIRONMENT 2018; 41:1972-1983. [PMID: 29314055 DOI: 10.1111/pce.13123] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/04/2023]
Abstract
Grain legumes are an important source of nutrition and income for billions of consumers and farmers around the world. However, the low productivity of new legume varieties, due to the limited genetic diversity available for legume breeding programmes and poor policymaker support, combined with an increasingly unpredictable global climate is resulting in a large gap between current yields and the increasing demand for legumes as food. Hence, there is a need for novel approaches to develop new high-yielding legume cultivars that are able to cope with a range of environmental stressors. Next-generation technologies are providing the tools that could enable the more rapid and cost-effective genomic and transcriptomic studies for most major crops, allowing the identification of key functional and regulatory genes involved in abiotic stress resistance. In this review, we provide an overview of the recent achievements regarding abiotic stress resistance in a wide range of legume crops and highlight the transcriptomic and miRNA approaches that have been used. In addition, we critically evaluate the availability and importance of legume genetic resources with desirable abiotic stress resistance traits.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Laboratory of Genomic Reproductive Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
13
|
Perchlik M, Tegeder M. Leaf Amino Acid Supply Affects Photosynthetic and Plant Nitrogen Use Efficiency under Nitrogen Stress. PLANT PHYSIOLOGY 2018; 178:174-188. [PMID: 30082496 PMCID: PMC6130036 DOI: 10.1104/pp.18.00597] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 05/18/2023]
Abstract
The coordinated distribution of nitrogen to source leaves and sinks is essential for supporting leaf metabolism while also supplying sufficient nitrogen to seeds for development. This study aimed to understand how regulated amino acid allocation to leaves affects photosynthesis and overall plant nitrogen use efficiency in Arabidopsis (Arabidopsis thaliana) and how soil nitrogen availability influences these processes. Arabidopsis plants with a knockout of AAP2, encoding an amino acid permease involved in xylem-to-phloem transfer of root-derived amino acids, were grown in low-, moderate-, and high-nitrogen environments. We analyzed nitrogen allocation to shoot tissues, photosynthesis, and photosynthetic and plant nitrogen use efficiency in these knockout plants. Our results demonstrate that, independent of nitrogen conditions, aap2 plants allocate more nitrogen to leaves than wild-type plants. Increased leaf nitrogen supply positively affected chlorophyll and Rubisco levels, photosynthetic nitrogen use efficiency, and carbon assimilation and transport to sinks. The aap2 plants outperformed wild-type plants with respect to growth, seed yield and carbon storage pools, and nitrogen use efficiency in both high and deficient nitrogen environments. Overall, this study demonstrates that increasing nitrogen allocation to leaves represents an effective strategy for improving carbon fixation and photosynthetic nitrogen use efficiency. The results indicate that an optimized coordination of nitrogen and carbon partitioning processes is critical for high oilseed production in Arabidopsis, including in plants exposed to limiting nitrogen conditions.
Collapse
Affiliation(s)
- Molly Perchlik
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
14
|
Sundaramoorthy J, Park GT, Mukaiyama K, Tsukamoto C, Chang JH, Lee JD, Kim JH, Seo HS, Song JT. Molecular elucidation of a new allelic variation at the Sg-5 gene associated with the absence of group A saponins in wild soybean. PLoS One 2018; 13:e0192150. [PMID: 29381775 PMCID: PMC5790262 DOI: 10.1371/journal.pone.0192150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/17/2018] [Indexed: 11/18/2022] Open
Abstract
In soybean, triterpenoid saponin is one of the major secondary metabolites and is further classified into group A and DDMP saponins. Although they have known health benefits for humans and animals, acetylation of group A saponins causes bitterness and gives an astringent taste to soy products. Therefore, several studies are being conducted to eliminate acetylated group A saponins. Previous studies have isolated and characterized the Sg-5 (Glyma.15g243300) gene, which encodes the cytochrome P450 72A69 enzyme and is responsible for soyasapogenol A biosynthesis. In this study, we elucidated the molecular identity of a novel mutant of Glycine soja, 'CWS5095'. Phenotypic analysis using TLC and LC-PDA/MS/MS showed that the mutant 'CWS5095' did not produce any group A saponins. Segregation analysis showed that the absence of group A saponins is controlled by a single recessive allele. The locus was mapped on chromosome 15 (4.3 Mb) between Affx-89193969 and Affx-89134397 where the previously identified Glyma.15g243300 gene is positioned. Sequence analysis of the coding region for the Glyma.15g243300 gene revealed the presence of four SNPs in 'CWS5095' compared to the control lines. One of these four SNPs (G1127A) leads to the amino acid change Arg376Lys in the EXXR motif, which is invariably conserved among the CYP450 superfamily proteins. Co-segregation analysis showed that the missense mutation (Arg376Lys) was tightly linked with the absence of group A saponins in 'CWS5095'. Even though Arg and Lys have similar chemical features, the 3D modelled protein structure indicates that the replacement of Arg with Lys may cause a loss-of-function of the Sg-5 protein by inhibiting the stable binding of a heme cofactor to the CYP72A69 apoenzyme.
Collapse
Affiliation(s)
| | - Gyu Tae Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Hak Soo Seo
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Steele KA, Quinton-Tulloch MJ, Amgai RB, Dhakal R, Khatiwada SP, Vyas D, Heine M, Witcombe JR. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:38. [PMID: 29563850 PMCID: PMC5842261 DOI: 10.1007/s11032-018-0777-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
Few public sector rice breeders have the capacity to use NGS-derived markers in their breeding programmes despite rapidly expanding repositories of rice genome sequence data. They rely on > 18,000 mapped microsatellites (SSRs) for marker-assisted selection (MAS) using gel analysis. Lack of knowledge about target SNP and InDel variant loci has hampered the uptake by many breeders of Kompetitive allele-specific PCR (KASP), a proprietary technology of LGC genomics that can distinguish alleles at variant loci. KASP is a cost-effective single-step genotyping technology, cheaper than SSRs and more flexible than genotyping by sequencing (GBS) or array-based genotyping when used in selection programmes. Before this study, there were 2015 rice KASP marker loci in the public domain, mainly identified by array-based screening, leaving large proportions of the rice genome with no KASP coverage. Here we have addressed the urgent need for a wide choice of appropriate rice KASP assays and demonstrated that NGS can detect many more KASP to give full genome coverage. Through re-sequencing of nine indica rice breeding lines or released varieties, this study has identified 2.5 million variant sites. Stringent filtering of variants generated 1.3 million potential KASP assay designs, including 92,500 potential functional markers. This strategy delivers a 650-fold increase in potential selectable KASP markers at a density of 3.1 per 1 kb in the indica crosses analysed and 377,178 polymorphic KASP design sites on average per cross. This knowledge is available to breeders and has been utilised to improve the efficiency of public sector breeding in Nepal, enabling identification of polymorphic KASP at any region or quantitative trait loci in relevant crosses. Validation of 39 new KASP was carried out by genotyping progeny from a range of crosses to show that they detected segregating alleles. The new KASP have replaced SSRs to aid trait selection during marker-assisted backcrossing in these crosses, where target traits include rice blast and BLB resistance loci. Furthermore, we provide the software for plant breeders to generate KASP designs from their own datasets.
Collapse
Affiliation(s)
- Katherine A. Steele
- School of the Environment, Natural Resources and Geography, SENRGY, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | - Mark J. Quinton-Tulloch
- School of the Environment, Natural Resources and Geography, SENRGY, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | - Resham B. Amgai
- Biotechnology Division, Nepal Agricultural Research Council, PO Box No. 1135, Kathmandu, Nepal
| | - Rajeev Dhakal
- Anamolbiu Private Ltd., P.O. Box 28, Jagritichok, Bharatpur-11, Chitwan, Nepal
- Present Address: LI-BIRD, PO Box 324, Gairapatan, Kaski, Pokhara, Nepal
| | - Shambhu P. Khatiwada
- Biotechnology Division, Nepal Agricultural Research Council, PO Box No. 1135, Kathmandu, Nepal
| | - Darshna Vyas
- LGC Genomics, Units 1 & 2, Trident Industrial Estate, Pindar Road, Hoddesdon, Herts EN11 0WZ UK
| | - Martin Heine
- LGC Genomics, TGS Haus 8, Ostendstr. 25, 12459 Berlin, Germany
- Present Address: NuGEN Technologies Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070 USA
| | - John R. Witcombe
- School of the Environment, Natural Resources and Geography, SENRGY, Bangor University, Bangor, Gwynedd LL57 2UW UK
| |
Collapse
|
16
|
Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Shannon GJ, Carter TC, Nguyen HT. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1975-1991. [PMID: 28801731 PMCID: PMC5606949 DOI: 10.1007/s00122-017-2955-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/26/2017] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.
Collapse
Affiliation(s)
- Gunvant Patil
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Rouf Mian
- Soybean and Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC, 27607, USA.
| | - Tri Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996-4561, USA
| | - Qijian Song
- Agricultural Research Service, Department of Agriculture United States, Beltsville, MD, 20705, USA
| | - Pengyin Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grover J Shannon
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tommy C Carter
- Soybean and Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC, 27607, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|