1
|
Wang Z, Xie C, Chen X. Diagnostic and therapeutic role of non-coding RNAs regulating programmed cell death in melanoma. Front Oncol 2024; 14:1476684. [PMID: 39777348 PMCID: PMC11703721 DOI: 10.3389/fonc.2024.1476684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity. This review offers a succinct overview of the present understanding concerning the potential diagnostic biomarker potential of lncRNAs in melanoma. Cell death occurs frequently during growth and throughout life and is an active, organized, and genetically determined process. It is essential for the regulation of homeostasis. Controlled cell death and non-programmed cell death are both forms of cell death. The most prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy, necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are less common forms of cell death compared to necrosis, apoptosis, and necroptosis. ncRNAs are regulatory RNA molecules that are not involved in encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs, and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to modulate tumor cell autophagy, pyroptosis, and ferroptosis at the transcriptional or post-transcriptional stage, as well as function as oncogenes and tumor suppressor genes, which can have considerable effects on the incidence and growth of tumors. This review concentrated on the recent advancements in the research of the diagnostic and therapeutic functions of ncRNAs in the regulation of programmed cell death in melanoma.
Collapse
Affiliation(s)
- Zixu Wang
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cong Xie
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Chen
- Office for Postgraduate Student Studies, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Zhou W, Xu X, Cen Y, Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front Immunol 2022; 13:1085766. [PMID: 36601121 PMCID: PMC9806239 DOI: 10.3389/fimmu.2022.1085766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is one of the most lethal tumors with highly aggressive and metastatic properties. Although immunotherapy and targeted therapy have certain therapeutic effects in melanoma, a significant proportion of patients still have drug resistance after treatment. Recent studies have shown that long noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in cancer. They can regulate numerous cellular processes, including cell proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression and the immune microenvironment. The role of lncRNAs in malignant tumors has received much attention, whereas the relationship between lncRNAs and melanoma requires further investigation. Our review summarizes tumor suppressive and oncogenic lncRNAs closely related to the occurrence and development of melanoma. We summarize the role of lncRNAs in the immune microenvironment, immunotherapy and targeted therapy to provide new targets and therapeutic methods for clinical treatment.
Collapse
|
4
|
Zamani M, Foroughmand AM, Hajjari MR, Bakhshinejad B, Johnson R, Galehdari H. CASC11 and PVT1 spliced transcripts play an oncogenic role in colorectal carcinogenesis. Front Oncol 2022; 12:954634. [PMID: 36052265 PMCID: PMC9424822 DOI: 10.3389/fonc.2022.954634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is fundamentally a genetic disorder that alters cellular information flow toward aberrant growth. The coding part accounts for less than 2% of the human genome, and it has become apparent that aberrations within the noncoding genome drive important cancer phenotypes. The numerous carcinogenesis-related genomic variations in the 8q24 region include single nucleotide variations (SNVs), copy number variations (CNVs), and viral integrations occur in the neighboring areas of the MYC locus. It seems that MYC is not the only target of these alterations. The MYC-proximal mutations may act via regulatory noncoding RNAs (ncRNAs). In this study, gene expression analyses indicated that the expression of some PVT1 spliced linear transcripts, CircPVT1, CASC11, and MYC is increased in colorectal cancer (CRC). Moreover, the expression of these genes is associated with some clinicopathological characteristics of CRC. Also, in vitro studies in CRC cell lines demonstrated that CASC11 is mostly detected in the nucleus, and different transcripts of PVT1 have different preferences for nuclear and cytoplasmic parts. Furthermore, perturbation of PVT1 expression and concomitant perturbation in PVT1 and CASC11 expression caused MYC overexpression. It seems that transcription of MYC is under regulatory control at the transcriptional level, i.e., initiation and elongation of transcription by its neighboring genes. Altogether, the current data provide evidence for the notion that these noncoding transcripts can significantly participate in the MYC regulation network and in the carcinogenesis of colorectal cells.
Collapse
Affiliation(s)
- Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mohammad-Reza Hajjari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- *Correspondence: Hamid Galehdari,
| |
Collapse
|
5
|
Badowski C, He B, Garmire LX. Blood-derived lncRNAs as biomarkers for cancer diagnosis: the Good, the Bad and the Beauty. NPJ Precis Oncol 2022; 6:40. [PMID: 35729321 PMCID: PMC9213432 DOI: 10.1038/s41698-022-00283-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer ranks as one of the deadliest diseases worldwide. The high mortality rate associated with cancer is partially due to the lack of reliable early detection methods and/or inaccurate diagnostic tools such as certain protein biomarkers. Cell-free nucleic acids (cfNA) such as circulating long noncoding RNAs (lncRNAs) have been proposed as a new class of potential biomarkers for cancer diagnosis. The reported correlation between the presence of tumors and abnormal levels of lncRNAs in the blood of cancer patients has notably triggered a worldwide interest among clinicians and oncologists who have been actively investigating their potentials as reliable cancer biomarkers. In this report, we review the progress achieved ("the Good") and challenges encountered ("the Bad") in the development of circulating lncRNAs as potential biomarkers for early cancer diagnosis. We report and discuss the diagnostic performance of more than 50 different circulating lncRNAs and emphasize their numerous potential clinical applications ("the Beauty") including therapeutic targets and agents, on top of diagnostic and prognostic capabilities. This review also summarizes the best methods of investigation and provides useful guidelines for clinicians and scientists who desire conducting their own clinical studies on circulating lncRNAs in cancer patients via RT-qPCR or Next Generation Sequencing (NGS).
Collapse
Affiliation(s)
- Cedric Badowski
- University of Hawaii Cancer Center, Epidemiology, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Bing He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Lana X Garmire
- University of Hawaii Cancer Center, Epidemiology, 701 Ilalo Street, Honolulu, HI, 96813, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
6
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
7
|
Non-coding RNA dysregulation in skin cancers. Essays Biochem 2021; 65:641-655. [PMID: 34414406 DOI: 10.1042/ebc20200048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Skin cancers are the most common cancers worldwide. They can be classified in melanoma and non-melanoma skin cancer (NMSC), the latter includes squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and merkel cell carcinoma (MCC). In recent years, the crucial role of non-coding RNAs (ncRNAs) in skin cancer pathogenesis has become increasingly evident. NcRNAs are functional RNA molecules that lack any protein-coding activity. These ncRNAs are classified based on their length: small, medium-size, and long ncRNAs. Among the most studied ncRNAs there are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs). ncRNAs have the ability to regulate gene expression at transcriptional and post-transcriptional levels and are involved in skin cancer cell proliferation, angiogenesis, invasion, and metastasis. Many ncRNAs exhibit tissue- or cell-specific expression while others have been correlated to tumor staging, drug resistance, and prognosis. For these reasons, ncRNAs have both a diagnostic and prognostic significance in skin cancers. Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.
Collapse
|
8
|
Chen XJ, Liu S, Han DM, Han DZ, Sun WJ, Zhao XC, Liang JQ, Yu L. FUT8-AS1 Inhibits the Malignancy of Melanoma Through Promoting miR-145-5p Biogenesis and Suppressing NRAS/MAPK Signaling. Front Oncol 2021; 10:586085. [PMID: 34094894 PMCID: PMC8170315 DOI: 10.3389/fonc.2020.586085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Melanoma is the major lethal skin malignancy. However, the critical molecular drivers governing melanoma progression and prognosis are still not clear. By analyzing The Cancer Genome Atlas (TCGA) data, we identified FUT8-AS1 as a prognosis-related long non-coding RNA (lncRNA) in melanoma. We further confirmed that FUT8-AS1 is downregulated in melanoma. Reduced expression of FUT8-AS1 is correlated with aggressive clinical factors and inferior overall survival. Using in vitro functional assays, our findings demonstrated that ectopic expression of FUT8-AS1 represses melanoma cell proliferation, migration, and invasion. FUT8-AS1 silencing promotes melanoma cell proliferation, migration, and invasion. Furthermore, in vivo functional assays demonstrated that FUT8-AS1 represses melanoma growth and metastasis. Mechanistically, FUT8-AS1 was found to bind NF90, repress the interaction between NF90 and primary miR-145 (pri-miR-145), relieve the repressive roles of NF90 on mature miR-145-5p biogenesis, and thus promote miR-145-5p biogenesis and upregulate mature miR-145-5p level. The expression of FUT8-AS1 is positively correlated with miR-145-5p in melanoma tissues. Via upregulating miR-145-5p, FUT8-AS1 reduces the expression of NRAS, a target of miR-145-5. FUT8-AS1 further represses MAPK signaling via downregulating NRAS. Functional rescue assays demonstrated that inhibition of miR-145-5p reverses the tumor suppressive roles of FUT8-AS1 in melanoma. The oncogenic roles of FUT8-AS1 silencing are also blocked by MAPK signaling inhibitor MEK162. In conclusion, these findings demonstrate that FUT8-AS1 exerts tumor suppressive roles in melanoma via regulating NF90/miR-145-5p/NRAS/MAPK signaling axis. Targeting FUT8-AS1 and its downstream molecular signaling axis represent promising therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Xiang-jun Chen
- Department of Burns and Plastic Surgery, The 969 Hospital of PLA, Hohhot, China
| | - Sha Liu
- Department of Burns and Plastic Surgery, The 969 Hospital of PLA, Hohhot, China
| | - Dong-mei Han
- Department of Burns and Plastic Surgery, The 969 Hospital of PLA, Hohhot, China
| | - De-zhi Han
- Department of Burns and Plastic Surgery, The 969 Hospital of PLA, Hohhot, China
| | - Wei-jing Sun
- Department of Burns and Plastic Surgery, The 969 Hospital of PLA, Hohhot, China
| | - Xiao-chun Zhao
- Department of Burns and Plastic Surgery, The 969 Hospital of PLA, Hohhot, China
| | - Jun-qing Liang
- The Affiliated People's Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, China
| | - Li Yu
- Department of Intensive Care Unit, The 969 Hospital of PLA, Hohhot, China
| |
Collapse
|
9
|
Liu SR, Yang X, Qi L, Zhu Z, Ji YZ. SMARCA4 promotes benign skin malignant transformation into melanoma through Adherens junction signal transduction. Clin Transl Oncol 2021; 23:591-600. [PMID: 32720055 DOI: 10.1007/s12094-020-02453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Melanoma is a malignant skin tumor, and its incidence is rising. To explore the specific differences in benign and malignant melanoma at the genetic level, we performed a series of bioinformatics analyses, including differential gene analysis, co-expression analysis, enrichment analysis, and regulatory prediction. METHODS The microarray data of benign and malignant melanocytes were downloaded from GEO, and 1917 differential genes were obtained by differential analysis (p < 0.05). Weighted gene co-expression network analysis obtained three functional barrier modules. The essential genes of each module are SMARTA4, HECA, and C1R. RESULTS The results of the enrichment analysis showed that the dysfunctional module gene was mainly associated with RNA splicing and Adherens junction. Through the pivotal analysis of ncRNA, it was found that miR-448, miR-152-3p, and miR-302b-3p essentially regulate three modules, which we consider to be critical regulators. In the pivot analysis of TF, more control modules include ARID3A, E2F1, E2F3, and E2F8. CONCLUSIONS We believe that the regulator (miR-448, miR-152-3p, miR-302b-3p) regulates the expression of the core gene SMARCA4, which in turn affects the signal transduction of the Adherens junction. It eventually leads to the deterioration of benign skin spasms into melanoma.
Collapse
Affiliation(s)
- S-R Liu
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - X Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - L Qi
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Z Zhu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Y-Z Ji
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
10
|
Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B 2021; 11:340-354. [PMID: 33643816 PMCID: PMC7893121 DOI: 10.1016/j.apsb.2020.10.001] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022] Open
Abstract
Enormous studies have corroborated that long non-coding RNAs (lncRNAs) extensively participate in crucial physiological processes such as metabolism and immunity, and are closely related to the occurrence and development of tumors, cardiovascular diseases, nervous system disorders, nephropathy, and other diseases. The application of lncRNAs as biomarkers or intervention targets can provide new insights into the diagnosis and treatment of diseases. This paper has focused on the emerging research into lncRNAs as pharmacological targets and has reviewed the transition of lncRNAs from the role of disease coding to acting as drug candidates, including the current status and progress in preclinical research. Cutting-edge strategies for lncRNA modulation have been summarized, including the sources of lncRNA-related drugs, such as genetic technology and small-molecule compounds, and related delivery methods. The current progress of clinical trials of lncRNA-targeting drugs is also discussed. This information will form a latest updated reference for research and development of lncRNA-based drugs.
Collapse
Key Words
- AD, Alzheimer's disease
- ANRIL, antisense noncoding RNA gene at the INK4 locus
- ASO, antisense oligonucleotide
- ASncmtRNA
- ASncmtRNA, antisense noncoding mitochondrial RNA
- BCAR4, breast cancer anti-estrogen resistance 4
- BDNF-AS, brain-derived neurotrophic factor antisense
- CASC9, cancer susceptibility candidate 9
- CDK, cyclin dependent kinase 1
- CHRF, cardiac hypertrophy related factor
- CRISPR, clustered regularly interspaced short palindromic repeats
- Clinical trials
- DACH1, dachshund homolog 1
- DANCR, differentiation antagonizing non-protein coding RNA
- DKD, diabetic kidney disease
- DPF, diphenyl furan
- Delivery
- EBF3-AS, early B cell factor 3-antisense
- ENE, element for nuclear expression
- Erbb4-IR, Erb-B2 receptor tyrosine kinase 4-immunoreactivity
- FDA, U.S. Food and Drug Administration
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GAS5, growth arrest specific 5
- Gene therapy
- HISLA, HIF-1α-stabilizing long noncoding RNA
- HOTAIR, HOX transcript antisense intergenic RNA
- HULC, highly upregulated in liver cancer
- LIPCAR, long intergenic noncoding RNA predicting cardiac remodeling
- LNAs, locked nucleic acids
- LncRNAs
- MALAT1, metastasis associated lung adenocarcinoma transcript 1
- MEG3, maternally expressed gene 3
- MHRT, myosin heavy chain associated RNA transcripts
- MM, multiple myeloma
- NEAT1, nuclear enriched abundant transcript 1
- NKILA, NF-kappaB interacting lncRNA
- NPs, nanoparticles
- Norad, non-coding RNA activated by DNA damage
- OIP5-AS1, opa-interacting protein 5 antisense transcript 1
- PD, Parkinson's disease
- PEG, polyethylene glycol
- PNAs, peptide nucleic acids
- PTO, phosphorothioate
- PVT1, plasmacytoma variant translocation 1
- RGD, arginine-glycine-aspartic acid peptide
- RISC, RNA-induced silencing complex
- SALRNA1, senescence associated long non-coding RNA 1
- SNHG1, small nucleolar RNA host gene 1
- Small molecules
- SncmtRNA, sense noncoding mitochondrial RNA
- THRIL, TNF and HNRNPL related immunoregulatory
- TTTY15, testis-specific transcript, Y-linked 15
- TUG1, taurine-upregulated gene 1
- TWIST1, twist family BHLH transcription factor 1
- Targeted drug
- TncRNA, trophoblast-derived noncoding RNA
- Translational medicine
- UCA1, urothelial carcinoma-associated 1
- UTF1, undifferentiated transcription factor 1
- XIST, X-inactive specific transcript
- lincRNA-p21, long intergenic noncoding RNA p21
- lncRNAs, long non-coding RNAs
- mtlncRNA, mitochondrial long noncoding RNA
- pHLIP, pH-low insertion peptide
- sgRNA, single guide RNA
- siRNAs, small interfering RNAs
Collapse
|
11
|
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int J Mol Sci 2021; 22:1166. [PMID: 33503876 PMCID: PMC7865742 DOI: 10.3390/ijms22031166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is considered a rare tumor, although it is one of the most common cancers in young adults and its incidence has risen in the last decades. Targeted therapy, with BRAF and MEK inhibitors, and immunotherapy revolutionized the treatment of metastatic melanoma but there is still a considerable percentage of patients with primary or acquired resistance to these therapies. Recently, oncology researchers directed their attention at the role of long non-coding RNAs (lncRNAs) in different types of cancers, including melanoma. lncRNAs are RNA transcripts, initially considered "junk sequences", that have been proven to have a crucial role in the fine regulation of physiological and pathological processes of different tissues. Furthermore, they are more expressed in tumors than protein-coding genes, constituting perfect candidates either as biomarkers (diagnostic, prognostic, predictive) or as therapeutic targets. In this work, we reviewed all the literature available for lncRNA in melanoma, elucidating all the potential roles in this tumor.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Luigi Pio Guerrera
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| |
Collapse
|
12
|
Regulation of melanoma malignancy by the RP11-705C15.3/miR-145-5p/NRAS/MAPK signaling axis. Cancer Gene Ther 2020; 28:1198-1212. [PMID: 33311650 PMCID: PMC8571095 DOI: 10.1038/s41417-020-00274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
Melanoma is a common lethal skin cancer. Dissecting molecular mechanisms driving the malignancy of melanoma may uncover potential therapeutic targets. We previously identified miR-145-5p as an important tumor-suppressive microRNA in melanoma. Here, we further investigated the roles of long non-coding RNAs (lncRNAs) in melanoma. We identified RP11-705C15.3, a regulator of miR-145-5p, as an oncogenic lncRNA in melanoma. RP11-705C15.3 competitively bound miR-145-5p, relieved the repressive roles of miR-145-5p on its target NRAS, upregulated NRAS expression, and activated MAPK signaling. In vitro functional assays revealed that ectopic expression of RP11-705C15.3 promoted melanoma cell proliferation, inhibited apoptosis, and promoted migration and invasion. Silencing of RP11-705C15.3 repressed melanoma cell proliferation, induced apoptosis, and repressed migration and invasion. Notably, the roles of RP11-705C15.3 in melanoma cell proliferation, apoptosis, migration and invasion are reversed by miR-145-5p overexpression. In vivo functional assays revealed that RP11-705C15.3 promoted melanoma tumor growth and metastasis, which were also reversed by miR-145-5p overexpression. Furthermore, we investigated the expression of RP11-705C15.3 in clinical melanoma tissues and found that RP11-705C15.3 was increased in melanoma tissues. High expression of RP11-705C15.3 was positively correlated with thickness, ulceration, metastasis, and inferior overall survival. Taken together, our findings suggest RP11-705C15.3 as a novel oncogene in melanoma, and highlight that the RP11-705C15.3/miR-145-5p/NRAS/MAPK signaling axis may be potential therapeutic targets for melanoma.
Collapse
|
13
|
Kolenda T, Guglas K, Baranowski D, Sobocińska J, Kopczyńska M, Teresiak A, Bliźniak R, Lamperska K. cfRNAs as biomarkers in oncology - still experimental or applied tool for personalized medicine already? Rep Pract Oncol Radiother 2020; 25:783-792. [PMID: 32904167 PMCID: PMC7451588 DOI: 10.1016/j.rpor.2020.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods. In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Dawid Baranowski
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
14
|
Wang Y, Li Z, Li W, Zhou L, Jiang Y. Prognostic significance of long non-coding RNAs in clear cell renal cell carcinoma: A meta-analysis. Medicine (Baltimore) 2019; 98:e17276. [PMID: 31577719 PMCID: PMC6783199 DOI: 10.1097/md.0000000000017276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer in adults, and patients with advanced ccRCC have a 5-year survival rate of <30%. The poor prognosis of ccRCC is closely related to its lacking of potential therapeutic and prognostic biomarkers. This meta-analysis aimed to elucidate the precise prognostic value of long non-coding RNAs (lncRNAs) in patients with ccRCC. METHODS A literature search was performed in related databases up to January 31, 2019. Hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) were calculated to explore the relationship between special lncRNAs expression and survival in patients with ccRCC. RESULTS After literature researching, a total of 16 studies, including 13 lncRNAs were identified. The data from studies that investigated the association between lncRNA expression and survival outcomes in patients with ccRCC were extracted. Results revealed that lncRNAs expression was significantly associated with poor overall survival (OS) outcome in patients with ccRCC (HR = 1.71, 95%CI = 1.40-2.01 in up-regulated subgroup; HR = 0.53, 95% CI = 0.25-0.80 in down-regulated subgroup). The overexpression of PVT1 was significantly associated with poor OS in ccRCC (HR = 1.51, 95% CI = 1.02-2.00). Meanwhile, up-regulation of LUCAT1 was significantly related to worse OS in ccRCC patients (HR = 1.51, 95% CI = 1.01-2.00). CONCLUSIONS These results suggest that lncRNAs could be used to predict unfavorable prognosis and function as potential prognostic biomarkers in ccRCC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University
| | - Zhan Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University
| | - Wei Li
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Le Zhou
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Yuehua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
15
|
Liu J, Li R, Liao X, Hu B, Yu J. Comprehensive investigation of the clinical significance and molecular mechanisms of plasmacytoma variant translocation 1 in sarcoma using genome-wide RNA sequencing data. J Cancer 2019; 10:4961-4977. [PMID: 31598169 PMCID: PMC6775530 DOI: 10.7150/jca.31675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: The present study aims to identify the potential clinical application and molecular mechanism of plasmacytoma variant translocation 1 (PVT1) in patients with sarcomas by mining an RNA sequencing dataset from The Cancer Genome Atlas (TCGA) through multiple genome-wide analysis approaches. Methods: A genome-wide RNA sequencing dataset was downloaded from TCGA, survival analysis was used to evaluate the prognostic value of PVT1 in sarcoma. The potential mechanism was investigated by multiple tools: Database for Annotation, Visualization, and Integrated Discovery v6.8, gene set enrichment analysis (GSEA), and Connectivity Map (CMap). Results: Comprehensive survival analysis indicated that overexpression of PVT1 was significantly associated with poor prognosis in patients with sarcoma, and nomogram demonstrated that PVT1 contributed more than other traditional clinical parameters in sarcoma survival prediction. Weighted gene co-expression network analysis identified ten hub differentially expressed genes (DEGs) between sarcoma tissues with low and overexpression of PVT1, and substantiated that these DEGs have a complex co-expression network relationship. CMap analysis has identified that antipyrine, ondansetron, and econazole may be candidate targeted drugs for sarcoma patients with PVT1 overexpression. GSEA revealed that overexpression of PVT1 may be involved in the posttranscriptional regulation of gene expression, tumor invasiveness and metastasis, osteoblast differentiation and development, apoptosis, nuclear factor kappa B, Wnt, and apoptotic related signaling pathways. Conclusions: Our findings indicate that PVT1 may serve as a prognostic indicator in patients with sarcoma. Its underlying mechanism is revealed by GSEA, and CMap offers three candidate drugs for the individualized targeted therapy of sarcoma patients with overexpression of PVT1.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong Li
- Department of Reproductive Center, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bangli Hu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia Yu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
16
|
Li MY, Tang XH, Fu Y, Wang TJ, Zhu JM. Regulatory Mechanisms and Clinical Applications of the Long Non-coding RNA PVT1 in Cancer Treatment. Front Oncol 2019; 9:787. [PMID: 31497532 PMCID: PMC6712078 DOI: 10.3389/fonc.2019.00787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death worldwide, and no obvious decline in incidence and mortality has occurred in recent years. It is imperative to further investigate the mechanisms underlying tumor progression. Long non-coding RNAs have received considerable attention in recent years because of their major regulatory roles in gene expression. Among them, PVT1 is well-studied, and substantial evidence indicates that PVT1 plays critical roles in the onset and development of cancers. Normally, PVT1 acts as an oncogenic factor by promoting cancer cell proliferation, invasion, metastasis, and drug resistance. Herein, we summarize current knowledge regarding the regulatory effects of PVT1 in cancer progression, as well as the related underlying mechanisms, such as interaction with Myc, modulation of miRNAs, and regulation of gene transcription and protein expression. In extracellular fluid, PVT1 mainly promotes cancer initiation, and it normally enhances cellular cancer characteristics in the cytoplasm and cell nucleus. Regarding clinical applications, its role in drug resistance and its potential use as a diagnostic and prognostic marker have received increasing attention. We hope that this review will contribute to a better understanding of the regulatory role of PVT1 in cancer progression, paving the way for the development of PVT1-based therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Huan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tie-Jun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Ming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Xiao W, Yin A. LINC0638 lncRNA is involved in the local recurrence of melanoma following surgical resection. Oncol Lett 2019; 18:101-108. [PMID: 31289478 PMCID: PMC6540316 DOI: 10.3892/ol.2019.10322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Melanoma is a rare malignancy in China and the treatment outcomes are generally satisfactory. However, postoperative recurrence can be life-threatening. The current study aimed to investigate the involvement of long intergenic non-protein coding RNA 1638 (LINC01638) long non-coding RNA (lncRNA) in the recurrence of melanoma. Expression of LINC01638 lncRNA in skin biopsies and plasma of patients with melanoma, patients with benign skin lesions and healthy controls was detected by reverse transcription-quantitative polymerase chain reaction. Diagnostic values of LINC01638 lncRNA for melanoma were analyzed by receiver operating characteristic curve analysis. The association between LINC01638 lncRNA and clinicopathological data of patients with melanoma was analyzed by χ2 test. All patients were followed up for five years to record recurrence. LINC01638 lncRNA expression vectors and shRNAs were transfected into human melanoma cell lines and the effects of LINC01638 lncRNA overexpression and knockdown on cell proliferation were analyzed by cell counting kit-8 assay. LINC01638 lncRNA was significantly upregulated in patients with melanoma compared with the other two groups of patients, and upregulation of LINC01638 lncRNA distinguished patients with melanoma from patients with benign skin lesions and healthy controls. LINC01638 lncRNA expression was significantly associated with tumor size but not with other patient clinical data. Plasma levels of LINC01638 lncRNA were further increased during follow-up in patients with local recurrence but not in patients without recurrence. LINC01638 lncRNA overexpression promoted, while knockdown inhibited proliferation of cells of melanoma cell lines, C32 and SK-MEL-28, in vitro. The upregulation of LINC01638 lncRNA was likely associated with the local recurrence of melanoma following surgical resection.
Collapse
Affiliation(s)
- Weirong Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410000, P.R. China
| | - Aiwan Yin
- Department of Traditional Chinese Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
19
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
20
|
Gao G, Li W, Liu S, Han D, Yao X, Jin J, Han D, Sun W, Chen X. The positive feedback loop between ILF3 and lncRNA ILF3-AS1 promotes melanoma proliferation, migration, and invasion. Cancer Manag Res 2018; 10:6791-6802. [PMID: 30588088 PMCID: PMC6294067 DOI: 10.2147/cmar.s186777] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose In our previous study, we identified that lncRNA ILF3 antisense RNA 1 (ILF3-AS1) is increased and has oncogenic roles in melanoma. However, the cause of the upregulation of ILF3-AS1 and the modulation between ILF3-AS1 and ILF3 in melanoma are still unknown. This study aimed to investigate the significances of the interaction between ILF3-AS1 and ILF3 in melanoma. Materials and methods The expression of ILF3 in melanoma tissues and cell lines was measured by quantitative real-time PCR (qRT-PCR). The interactions between ILF3-AS1 and ILF3 were explored by the RNA immunoprecipitation assay, the transcription inhibition assay, qRT-PCR, the chromatin immunoprecipitation assay, and Western blot. Gain-of-function and loss-of-function assays were performed to investigate the effects of ILF3 and ILF3-AS1 on melanoma proliferation, migration, and invasion. Results ILF3 is also increased in melanoma tissues and cell lines. Increased expression of ILF3 predicts poor survival of melanoma patients. Mechanistic investigation revealed that ILF3 directly binds ILF3-AS1, increases ILF3-AS1 transcript stability, and upregulates ILF3-AS1 transcript levels. ILF3-AS1 represses the binding of EZH2 to the promoter of ILF3, induces euchromatin formation at ILF3 promoter, and activates ILF3 transcription. Thus, ILF3 and ILF3-AS1 form positive feedback loop, which induces the upregulation of ILF3 and ILF3-AS1 in melanoma. The expression of ILF3-AS1 is positively correlated with ILF3 in melanoma tissues. Functional assays revealed that overexpression of ILF3 promotes melanoma proliferation, migration, and invasion. Depletion of ILF3 inhibits melanoma proliferation, migration, and invasion. Moreover, concurrent depletion of ILF3 and ILF3-AS1 significantly suppresses melanoma proliferation, migration, and invasion. Conclusion Both ILF3-AS1 and ILF3 are increased in melanoma. ILF3-AS1 and ILF3 positively regulate each other. Concurrent targeting ILF3-AS1 and ILF3 has significant tumor-suppressive roles in melanoma. Our data suggested that targeting the positive feedback loop between ILF3 and ILF3-AS1 may be promising therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| | - Wenjun Li
- Department of Cardio and Nephrology, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China
| | - Sha Liu
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| | - Dongmei Han
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| | - Xingwei Yao
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| | - Juanjuan Jin
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| | - Dezhi Han
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| | - Weijing Sun
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| | - Xiangjun Chen
- Department of Burn and Plastic Surgery, The 253rd Hospital of PLA, Hohhot, Inner Mongolia 010051, China,
| |
Collapse
|
21
|
Yazdi N, Houshmand M, Atashi A, Kazemi A, Najmedini AA, Zarif MN. Long noncoding RNA PVT1: potential oncogene in the development of acute lymphoblastic leukemia. Turk J Biol 2018; 42:405-413. [PMID: 30930624 PMCID: PMC6438125 DOI: 10.3906/biy-1801-46] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence shows that long noncoding RNAs (lncRNAs) participate in various cellular processes, and that plasmacytoma variant translocation 1 (PVT1), a newly described oncogene that interacts with various molecules such as p15, p16, NOP2, and c-Myc, is a major contributing factor in tumor development. However, the role of this oncogene remains unknown in the pathogenesis of acute lymphoblastic leukemia (ALL), the most prevalent form of childhood leukemia. In this study, we first measure the expression level of PVT1 in a Jurkat cell line, then small interfering (siRNA) PVT1 is applied to demonstrate the impact of PVT1 knockdown in apoptosis, proliferation, the cell cycle, and its downstream targets. Our findings show that lncRNA was significantly higher in the ALL cell line than normal lymphocytes and that PVT1 knock-down increased the rate of apoptosis, caused G0/G1 arrest in the cell cycle, reduced the proliferation rate, and, above all, reduced the stability of c-Myc protein. All findings were confirmed at the molecular level. Our results may indicate the role of PVT1 knock-down in the suppression of ALL development and might provide an option for targeted therapy for leukemic conditions.
Collapse
Affiliation(s)
- Narjes Yazdi
- Department of Molecular Genetics, Tehran Medical Branch, Islamic Azad University , Tehran , Iran
| | - Mohammad Houshmand
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud , Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ali Anjam Najmedini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| |
Collapse
|
22
|
Chen X, Yang Y, Cao Y, Wu C, Wu S, Su Z, Jin H, Wang D, Zhang G, Fan W, Lin J, Zeng Y, Hu D. lncRNA PVT1 identified as an independent biomarker for prognosis surveillance of solid tumors based on transcriptome data and meta-analysis. Cancer Manag Res 2018; 10:2711-2727. [PMID: 30147369 PMCID: PMC6101015 DOI: 10.2147/cmar.s166260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Long noncoding RNA PVT1 is dysregulated in some human tumors and has been found to increase the risk of tumor progression and poor prognosis. This study aimed to reanalyze the effect of PVT1 on tumorous prognosis. Materials and methods The effect of PVT1 on metastasis and survival were analyzed by univariate logistic regression and Cox proportional hazards model for 32 types of cancer in the Cancer Genome Atlas database (TCGA), and the relationship between PVT1 level and expression of relative genes was assessed by Pearson correlation analysis. RevMan5.3 and STATA14.0 were used to estimate pooled effects of PVT1 on cancer prognosis with data from TCGA and published studies. Results In TCGA data, high PVT1 expression tended to increase the risk of TNM progression and decreased the overall survival (OS) time in most of cancers. The pooled effect of PVT1 on TNM (pooled-OR=1.46, 95% CI: 1.29-1.65) and OS (pooled HR=1.32, 95% CI: 1.22-1.43), calculated from 37 and 48 cohorts, identified that high PVT1 expression promoted the metastasis and poor prognosis of cancer. Furthermore, the pooled ORs of 2.77 (95% CI: 1.65-4.66), 4.32 (95% CI: 1.99-9.36), 1.35 (95% CI: 1.01-1.80), 1.62 (95% CI: 1.21-2.18) and 1.48 (95% CI: 1.02-2.15) provided evidence that PVT1 played a role in lymph node metastasis, depth of invasion, distant metastasis, differentiation and lymphatic invasion; while the expression of 24 identified target genes was significantly associated with PVT1 level, and high PVT1 expression dependently decreased the OS time under the influence of co-expression genes (OR=1.29, 95% CI: 1.25-1.32) in high-throughput RNA sequencing merging data. In addition, the expression of PVT1 could be upregulated by smoking, with the pooled OR being 1.09 (95% CI 1.01-1.16). Conclusion PVT1 is a dependent biomarker for tumorous prognosis surveillance. However, the reference value of PVT1 needs further study.
Collapse
Affiliation(s)
- Xiaoliang Chen
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Yueying Yang
- Science and Education Department, Shenzhen School of the Affiliated High School of Renmin University of China, Shenzhen, China
| | - Yong Cao
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Changjun Wu
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Shuxian Wu
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Zhan Su
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Hongwei Jin
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Dongli Wang
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Gengxin Zhang
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Wei Fan
- Division of Digestive and Liver Disease, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jinbo Lin
- Department of Oncology, Longgang Central Hospital of Shenzhen Affiliated to Zunyi Medical College, Shenzhen, China,
| | - Yunhong Zeng
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Dongsheng Hu
- School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Li B, He L, Liu H. Down-regulation of LINC00341 predicts a poor prognosis and acts as a tumor suppressor in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4205-4212. [PMID: 31949815 PMCID: PMC6962788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/10/2018] [Indexed: 06/10/2023]
Abstract
Accumulating evidence has suggested that long noncoding RNAs (lncRNAs) play critical roles in tumor cell development and in the progression of human cancer. However, the significance and role of most lncRNAs, especially long intergenic ncRNAs (lincRNAs, the main type of lncRNAs), in gastric cancer is unclear. This study aimed to identify the clinical significance and potential biological function of LINC00341 in gastric cancer. Here, a qRT-PCR assay indicated that the relative expression level of LINC00341 were significantly down-regulated in gastric cancer tissues compared to matched adjacent normal tissues. Levels of LINC00341 in gastric cancer cell lines (MGC-803, BGC-823 and SGC-7901) were also significantly lower than in human normal gastric epithelial cell (GES-1). Patient with low LINC00341 expression were found to be negatively correlated with the TNM stage and lymph node metastasis. A Kaplan-Meier analysis showed that low expression of LINC00341 was significantly correlated with shorter overall survival (OS) of gastric cancer patients. Furthermore, an in vitro assay indicated that the over-expression of LINC00341 inhibited cell growth and migration and induced cell apoptosis in gastric cancer. In summary, this study provides the first evidence that the down-regulation of LINC00341 predicts a poor prognosis and acts as a tumor suppressor in the carcinogenesis of gastric cancer, indicating that LINC00341 may serve as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Baoyu Li
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University Tianjin, People's Republic of China
| | - Lijie He
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University Tianjin, People's Republic of China
| | - Hui Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University Tianjin, People's Republic of China
| |
Collapse
|
24
|
Abstract
Melanoma is an extremely aggressive malignant skin tumor with a high mortality. Various long noncoding RNAs (lncRNAs) have been reported to be associated with the oncogenesis of melanoma. The purposes of this study were to investigate the potential role of lncRNA PVT1 in melanoma progression and to explore its possible mechanisms. A total of 35 patients who were diagnosed with malignant melanoma were enrolled in this study. Expression of PVT1 was significantly upregulated in melanoma tissue and was associated with a poor prognosis. Loss-of-function experiments showed that PVT1 knockdown markedly suppressed the proliferation activity, induced cell cycle arrest at the G0/G1 phase, and enhanced the apoptosis of melanoma cell lines. Bioinformatics analysis and dual-luciferase reporter assay revealed that PVT1 directly bound to miR-26b, which had been verified to be a tumor suppressor in melanoma. Moreover, further functional rescue experiments revealed that PVT1 knockdown could observably reverse the tumor-promoting role of the miR-26b inhibitor. Overall, our study demonstrates the oncogenic role of PVT1 as a miR-26b sponge, possibly providing a novel therapeutic target for melanoma.
Collapse
Affiliation(s)
- Bao-Juan Wang
- *Department of Traditional Chinese Medicine, The Second Hospital of Hengshui City, Hengshui City, Hebei Province, P.R. China
| | - Hong-Wei Ding
- †Department of Dermatology, Harrison International Heping Hospital, Hengshui City, Hengshui City, Hebei Province, P.R. China
| | - Guo-An Ma
- †Department of Dermatology, Harrison International Heping Hospital, Hengshui City, Hengshui City, Hebei Province, P.R. China
| |
Collapse
|
25
|
Xu S, Sui J, Yang S, Liu Y, Wang Y, Liang G. Integrative analysis of competing endogenous RNA network focusing on long noncoding RNA associated with progression of cutaneous melanoma. Cancer Med 2018; 7:1019-1029. [PMID: 29522273 PMCID: PMC5911588 DOI: 10.1002/cam4.1315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Cutaneous melanoma (CM) is the most malignant tumor of skin cancers because of its rapid development and high mortality rate. Long noncoding RNAs (lncRNAs), which play essential roles in the tumorigenesis and metastasis of CM and interplay with microRNAs (miRNAs) and mRNAs, are hopefully considered to be efficient biomarkers to detect deterioration during the progression of CM to improve the prognosis. Bioinformatics analysis was fully applied to predict the vital lncRNAs and the associated miRNAs and mRNAs, which eventually constructed the competing endogenous RNA (ceRNA) network to explain the RNA expression patterns in the progression of CM. Further statistical analysis emphasized the importance of these key genes, which were statistically significantly related to one or few clinical features from the ceRNA network. The results showed the lncRNAs MGC12926 and LINC00937 were verified to be strongly connected with the prognosis of CM patients.
Collapse
Affiliation(s)
- Siyi Xu
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjingJiangsuChina
| | - Jing Sui
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjingJiangsuChina
| | - Sheng Yang
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjingJiangsuChina
| | - Yufeng Liu
- TCM of Jiangsu Provincial HospitalNanjingJiangsuChina
| | - Yan Wang
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjingJiangsuChina
| | - Geyu Liang
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
26
|
Aryankalayil MJ, Chopra S, Levin J, Eke I, Makinde A, Das S, Shankavaram U, Vanpouille-Box C, Demaria S, Coleman CN. Radiation-Induced Long Noncoding RNAs in a Mouse Model after Whole-Body Irradiation. Radiat Res 2018; 189:251-263. [PMID: 29309266 PMCID: PMC5967844 DOI: 10.1667/rr14891.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as key molecules in regulating many biological processes and have been implicated in development and disease pathogenesis. Biomarkers of cancer and normal tissue response to treatment are of great interest in precision medicine, as well as in public health and medical management, such as for assessment of radiation injury after an accidental or intentional exposure. Circulating and functional RNAs, including microRNAs (miRNAs) and lncRNAs, in whole blood and other body fluids are potential valuable candidates as biomarkers. Early prediction of possible acute, intermediate and delayed effects of radiation exposure enables timely therapeutic interventions. To address whether long noncoding RNAs (lncRNAs) could serve as biomarkers for radiation biodosimetry we performed whole genome transcriptome analysis in a mouse model after whole-body irradiation. Differential lncRNA expression patterns were evaluated at 16, 24 and 48 h postirradiation in total RNA isolated from whole blood of mice exposed to 1, 2, 4, 8 and 12 Gy of X rays. Sham-irradiated animals served as controls. Significant alterations in the expression patterns of lncRNAs were observed after different radiation doses at the various time points. We identified several radiation-induced lncRNAs known for DNA damage response as well as immune response. Long noncoding RNA targets of tumor protein 53 (P53), Trp53cor1, Dino, Pvt1 and Tug1 and an upstream regulator of p53, Meg3, were altered in response to radiation. Gm14005 ( Morrbid) and Tmevpg1 were regulated by radiation across all time points and doses. These two lncRNAs have important potential as blood-based radiation biomarkers; Gm14005 ( Morrbid) has recently been shown to play a key role in inflammatory response, while Tmevpg1 has been implicated in the regulation of interferon gamma. Precise molecular biomarkers, likely involving a diverse group of inducible molecules, will not only enable the development and effective use of medical countermeasures but may also be used to detect and circumvent or mitigate normal tissue injury in cancer radiotherapy.
Collapse
Affiliation(s)
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Joel Levin
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Adeola Makinde
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - C. Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
- Radiation Research Progrnm, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
27
|
Xu H, Gong J, Liu H. High expression of lncRNA PVT1 independently predicts poor overall survival in patients with primary uveal melanoma. PLoS One 2017; 12:e0189675. [PMID: 29244840 PMCID: PMC5731763 DOI: 10.1371/journal.pone.0189675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The plasmacytoma variant translocation 1 gene (PVT1) plays an oncogenic role in the initiation and progression of multiple cancers. In this study, by using deep-sequencing data and follow-up data in the Cancer Genome Atlas-Uveal melanomas (TCGA-UVM), we assessed the association between the expression of PVT1 and clinicopathological characteristics of patients with uveal melanoma, the mechanism of its dysregulation and its prognostic value. Results showed that high PVT1 expression group had a higher proportion of epithelioid cell dominant disease (a more malignant histological subtype than spindle cell dominant disease) and more cases of extrascleral extension (a risk factor for metastasis) compared with the low PVT1 expression group. 61 out of 80 cases (76.3%) of primary uveal melanoma had PVT1 amplification in TCGA-UVM. In addition, PVT1 expression was strongly and negatively correlated with its methylation status (Pearson's r = -0.712, Spearman's r = -0.806). By performing univariate and multivariate analysis, we found that high PVT1 expression was an independent predictor of poor OS in patients with uveal melanoma (HR: 12.015, 95%CI: 1.854-77.876, p = 0.009). Based on these findings, we infer that PVT1 expression is modulated by both DNA amplification and methylation and its expression might serve as a valuable and specific prognostic biomarker in terms of OS in uveal melanoma.
Collapse
Affiliation(s)
- Haiming Xu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingwen Gong
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hui Liu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
28
|
Cao X, Xu J, Yue D. LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer. Cancer Gene Ther 2017; 25:10-17. [DOI: 10.1038/s41417-017-0006-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 01/27/2023]
|
29
|
Zeng Y, Wang T, Liu Y, Su Z, Lu P, Chen X, Hu D. LncRNA PVT1 as an effective biomarker for cancer diagnosis and detection based on transcriptome data and meta-analysis. Oncotarget 2017; 8:75455-75466. [PMID: 29088881 PMCID: PMC5650436 DOI: 10.18632/oncotarget.20634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Long noncoding RNA (lncRNA) PVT1 was detected all types of cancer from Cancer Genome Atlas (TCGA) project; however, the role of PVT1 in cancer is not clear. This study aimed to reanalyze and determine the effect of PVT1 on cancer diagnosis, especially detection in serum. MATERIALS AND METHODS Differential expression of PVT1 between cancers and corresponding normal tissues and receiver operating characteristic (ROC) curve were analyzed for all types of cancers in TCGA database. RevMan5.3, Meta-DiSc1.4 and STATA14.0 were used to estimate pooled diagnostic effects of PVT1 in tissue as well as serum. RESULTS Compared to corresponding normal tissues, PVT1 expression was significantly upregulated in 18 types of cancer and further being an effective diagnosis biomarker in 16 of them. For the 23 diagnosis tests performed in tissue, the pooled AUC and diagnostic odd ratio (DOR) were estimated to be 0.81 (95% CI: 0.76-0.86) and 17.25 (95% CI: 8.43-35.27), when the pooled AUC and DOR were 0.83 (95%CI: 0.75-0.91) and 13.86 (95% CI: 4.70-40.66) for serum tests. Furthermore, the pooled sensitivity and specificity were 0.83 (95% CI: 0.76-0.89) and 0.74 (95% CI:0.70-0.84) for tissue as well as 0.81 (95% CI: 0.76-0.86) and 0.76 (95% CI:0.70-0.81) for serum. CONCLUSIONS PVT1, especially in serum, might be a usable biomarker for cancer diagnosis / detection.
Collapse
Affiliation(s)
- Yunhong Zeng
- Guangming District People's Hospital of Shenzhen, Shenzhen, Guangdong, P.R. China
| | - Tieqiang Wang
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, P.R. China
| | - Yi Liu
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, P.R. China
| | - Zhan Su
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, P.R. China
| | - Pingtao Lu
- Guangming District People's Hospital of Shenzhen, Shenzhen, Guangdong, P.R. China
| | - Xiaoliang Chen
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong, P.R. China
| | - Dongsheng Hu
- Department of Preventive Medicine, Shenzhen University Health Science Center, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
30
|
Long noncoding RNA HEIH promotes melanoma cell proliferation, migration and invasion via inhibition of miR-200b/a/429. Biosci Rep 2017; 37:BSR20170682. [PMID: 28487474 PMCID: PMC5479024 DOI: 10.1042/bsr20170682] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently dysregulated and have important roles in many diseases, particularly cancers. lncRNA-HEIH was first identified in hepatocellular carcinoma (HCC). The expression, clinical significance and roles of lncRNA-HEIH in melanoma are still unknown. In the present study, we found that lncRNA-HEIH is highly expressed in melanoma tissues and cell lines, associated with advanced clinical stages, and predicts poor outcomes in melanoma patients. Functional assays showed that ectopic expression of lncRNA-HEIH promotes melanoma cell proliferation, migration and invasion. Knockdown of lncRNA-HEIH inhibits melanoma cell proliferation, migration and invasion. Mechanistically, we revealed that lncRNA-HEIH directly binds to miR-200b/a/429 promoter and represses miR-200b/a/429 transcription. The expression of miR-200b is inversely associated with lncRNA-HEIH in melanoma tissues. Furthermore, overexpression of miR-200b/a/429 abrogates melanoma cell proliferation, migration and invasion enhanced by lncRNA-HEIH. In conclusion, we identified lncRNA-HEIH as a key oncogene in melanoma via transcriptional inhibition of miR-200b/a/429. Our data suggested that lncRNA-HEIH may serve as a promising prognostic biomarker and therapeutic target for melanoma.
Collapse
|
31
|
Lv L, Jia JQ, Chen J. The lncRNA CCAT1 Upregulates Proliferation and Invasion in Melanoma Cells via Suppressing miR-33a. Oncol Res 2017; 26:201-208. [PMID: 28409554 PMCID: PMC7844608 DOI: 10.3727/096504017x14920318811749] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is increasingly evident that various long noncoding RNAs (lncRNAs) participate in the tumorigenesis of multiple tumors, including melanoma. lncRNAs have been validated as oncogenic factors in various tumors; however, the potential regulatory mechanism of CCAT1 in melanoma is still unclear. The purpose of this study was to investigate the regulation of CCAT1 on melanoma genesis. The expression of CCAT1 in melanoma tissue and cell lines was measured using qRT-PCR. Interference oligonucleotide or mimic sequences were applied to up- or downregulate RNA expression. CCK-8 and colony formation assays were performed to detect the proliferation capability. Transwell assay was used to assess the migration and invasion capacities. Bioinformatics analysis was performed to predict the target miRNAs of CCAT1. Expression of CCAT1 was significantly upregulated in melanoma tissue and cell lines. CCAT1 knockdown observably suppressed the proliferation, migration, and invasion abilities. Bioinformatics analysis predicted that miR-33a acted as a target of CCAT1, which was confirmed by dual-luciferase reporter assay. CCAT1 knockdown reversed the tumor-promoting ability of the miR-33a inhibitor. CCAT1 acts as an oncogenic factor in the genesis of melanoma and exerts tumor-promoting roles via sponging miR-33a, providing a novel insight for competing endogenous RNA (ceRNA) in the tumorigenesis of melanoma.
Collapse
Affiliation(s)
- Li Lv
- Department of Dermatology, Tianjin Hospital, Tianjin, P.R. China
| | - Jian-Qin Jia
- Department of Dermatology, Tianjin Hospital, Tianjin, P.R. China
| | - Jin Chen
- Department of Dermatology, Public Security Hospital, Tianjin, P.R. China
| |
Collapse
|