1
|
Zhang R, Chen Y, Feng Z, Cai B, Cheng Y, Du Y, Ou S, Chen H, Pan M, Liu H, Pei D, Cao S. Reprogramming human urine cells into intestinal organoids with long-term expansion ability and barrier function. Heliyon 2024; 10:e33736. [PMID: 39040281 PMCID: PMC11261862 DOI: 10.1016/j.heliyon.2024.e33736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Generation of intestinal organoids from human somatic cells by reprogramming would enable intestinal regeneration, disease modeling, and drug screening in a personalized pattern. Here, we report a direct reprogramming protocol for the generation of human urine cells induced intestinal organoids (U-iIOs) under a defined medium. U-iIOs expressed multiple intestinal specific genes and showed resembling gene expression profiles to primary small intestines. U-iIOs can be stably long-term expanded and further differentiated into more mature intestinal lineage cells with high expression of metallothionein and cytochrome P450 (CYP450) genes. These specific molecular features of U-iIOs differ from human pluripotent stem cells derived intestinal organoids (P-iIOs) and intestinal immortalized cell lines. Furthermore, U-iIOs exhibit intestinal barriers indicated by blocking FITC-dextran permeation and uptaking of the specific substrate rhodamine 123. Our study provides a novel platform for patient-specific intestinal organoid generation, which may lead to precision treatment of intestinal diseases and facilitate drug discovery.
Collapse
Affiliation(s)
- Ruifang Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy, and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Yating Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy, and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Yiyi Cheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy, and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunjing Du
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sihua Ou
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Huan Chen
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Mengjie Pan
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - He Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shangtao Cao
- Key Laboratory of Biological Targeting Diagnosis, Therapy, and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
3
|
Singh J, Singh S. Review on kidney diseases: types, treatment and potential of stem cell therapy. RENAL REPLACEMENT THERAPY 2023; 9:21. [PMID: 37131920 PMCID: PMC10134709 DOI: 10.1186/s41100-023-00475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Renal disorders are an emerging global public health issue with a higher growth rate despite progress in supportive therapies. In order to find more promising treatments to stimulate renal repair, stem cell-based technology has been proposed as a potentially therapeutic option. The self-renewal and proliferative nature of stem cells raised the hope to fight against various diseases. Similarly, it opens a new path for the treatment and repair of damaged renal cells. This review focuses on the types of renal diseases; acute and chronic kidney disease-their statistical data, and the conventional drugs used for treatment. It includes the possible stem cell therapy mechanisms involved and outcomes recorded so far, the limitations of using these regenerative medicines, and the progressive improvement in stem cell therapy by adopting approaches like PiggyBac, Sleeping Beauty, and the Sendai virus. Specifically, about the paracrine activities of amniotic fluid stem cells, renal stem cells, embryonic stem cells, mesenchymal stem cell, induced pluripotent stem cells as well as other stem cells.
Collapse
Affiliation(s)
- Jaspreet Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| | - Sanjeev Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| |
Collapse
|
4
|
Mesenchymal stem-cell-derived microvesicles ameliorate MPTP-induced neurotoxicity in mice: a role of the gut-microbiota-brain axis. Psychopharmacology (Berl) 2023; 240:1103-1118. [PMID: 36881113 DOI: 10.1007/s00213-023-06348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. Increasing evidence suggests the role of the gut-microbiota-brain axis in the pathogenesis of PD. Mesenchymal stem-cell-derived microvesicles (MSC-MVs) have emerged as a therapeutic potential for neurological disorders over the last years. OBJECTIVE The objective of this study was to investigate whether MSC-MVs could improve PD-like neurotoxicity in mice after administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). RESULTS MPTP-induced reductions in the dopamine transporter and tyrosine hydroxylase expressions in the striatum and substantia nigra (SNr) were attenuated after a subsequent single administration of MSC-MVs. Increases in the phosphorylated α-synuclein (p-α-Syn)/α-Syn ratio in the striatum, SNr, and colon after MPTP injection were also attenuated after MSC-MVs injection. Furthermore, MSC-MVs restored MPTP-induced abnormalities of the gut microbiota composition. Interestingly, positive correlations between the genus Dubosiella and the p-α-Syn/α-Syn ratio were observed in the brain and colon, suggesting their roles in the gut-microbiota-brain communication. Moreover, MSC-MVs attenuated MPTP-induced reduction of the metabolite, 3,6-dihydroxy-2-[3-methoxy-4-(sulfooxy)phenyl]-7-(sulfinooxy)-3,4-dihydro-2H-1-benzopyran-5-olate, in the blood. Interestingly, a negative correlation between this compound and the p-α-Syn/α-Syn ratio was observed in the brain and colon. CONCLUSIONS These data suggest that MSC-MVs could ameliorate MPTP-induced neurotoxicity in the brain and colon via the gut-microbiota-brain axis. Therefore, MSC-MVs would have a new therapeutic potential for neurological disorders such as PD.
Collapse
|
5
|
Gordeeva O, Gordeev A, Erokhov P. Archetypal Architecture Construction, Patterning, and Scaling Invariance in a 3D Embryoid Body Differentiation Model. Front Cell Dev Biol 2022; 10:852071. [PMID: 35573693 PMCID: PMC9091174 DOI: 10.3389/fcell.2022.852071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Self-organized patterning and architecture construction studying is a priority goal for fundamental developmental and stem cell biology. To study the spatiotemporal patterning of pluripotent stem cells of different origins, we developed a three-dimensional embryoid body (EB) differentiation model quantifying volumetric parameters and investigated how the EB architecture formation, patterning, and scaling depend on the proliferation, cavitation, and differentiation dynamics, external environmental factors, and cell numbers. We identified three similar spatiotemporal patterns in the EB architectures, regardless of cell origin, which constitute the EB archetype and mimick the pre-gastrulation embryonic patterns. We found that the EB patterning depends strongly on cellular positional information, culture media factor/morphogen content, and free diffusion from the external environment and between EB cell layers. However, the EB archetype formation is independent of the EB size and initial cell numbers forming EBs; therefore, it is capable of scaling invariance and patterning regulation. Our findings indicate that the underlying principles of reaction-diffusion and positional information concepts can serve as the basis for EB architecture construction, patterning, and scaling. Thus, the 3D EB differentiation model represents a highly reproducible and reliable platform for experimental and theoretical research on developmental and stem cell biology issues.
Collapse
Affiliation(s)
- Olga Gordeeva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Gordeev
- National Institutes of Health’s National Library of Medicine, Bethesda, MD, United States
| | - Pavel Erokhov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Ramires LC, Jeyaraman M, Muthu S, Shankar A N, Santos GS, da Fonseca LF, Lana JF, Rajendran RL, Gangadaran P, Jogalekar MP, Cardoso AA, Eickhoff A. Application of Orthobiologics in Achilles Tendinopathy: A Review. Life (Basel) 2022; 12:399. [PMID: 35330150 PMCID: PMC8954398 DOI: 10.3390/life12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Orthobiologics are biological materials that are intended for the regeneration of bone, cartilage, and soft tissues. In this review, we discuss the application of orthobiologics in Achilles tendinopathy, more specifically. We explain the concepts and definitions of each orthobiologic and the literature regarding its use in tendon disorders. The biological potential of these materials can be harnessed and administered into injured tissues, particularly in areas where standard healing is disrupted, a typical feature of Achilles tendinopathy. These products contain a wide variety of cell populations, cytokines, and growth factors, which have been shown to modulate many other cells at local and distal sites in the body. Collectively, they can shift the state of escalated inflammation and degeneration to reestablish tissue homeostasis. The typical features of Achilles tendinopathy are failed healing responses, persistent inflammation, and predominant catabolic reactions. Therefore, the application of orthobiologic tools represents a viable solution, considering their demonstrated efficacy, safety, and relatively easy manipulation. Perhaps a synergistic approach regarding the combination of these orthobiologics may promote more significant clinical outcomes rather than individual application. Although numerous optimistic results have been registered in the literature, additional studies and clinical trials are still highly desired to further illuminate the clinical utility and efficacy of these therapeutic strategies in the management of tendinopathies.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Centro Clínico Mãe de Deus, Porto Alegre 90110-270, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
| | - Navaladi Shankar A
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Alfredo A. Cardoso
- Department of Oncology-Integrative Medicine-Pain Care, IAC—Instituto Ana Cardoso de Práticas Integrativas e Medicina Regenerative, Gramado 95670-000, Brazil;
| | - Alex Eickhoff
- Department of Orthopaedics, Centro Ortopédico Eickhoff, Três de Maio 98910-000, Brazil;
| |
Collapse
|
7
|
AlAbdi L, Saha D, He M, Dar MS, Utturkar SM, Sudyanti PA, McCune S, Spears BH, Breedlove JA, Lanman NA, Gowher H. Oct4-Mediated Inhibition of Lsd1 Activity Promotes the Active and Primed State of Pluripotency Enhancers. Cell Rep 2021; 30:1478-1490.e6. [PMID: 32023463 DOI: 10.1016/j.celrep.2019.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
An aberrant increase in pluripotency gene (PpG) expression due to enhancer reactivation could induce stemness and enhance the tumorigenicity of cancer stem cells. Silencing of PpG enhancers (PpGe) during embryonic stem cell differentiation involves Lsd1-mediated H3K4me1 demethylation and DNA methylation. Here, we observed retention of H3K4me1 and DNA hypomethylation at PpGe associated with a partial repression of PpGs in F9 embryonal carcinoma cells (ECCs) post-differentiation. H3K4me1 demethylation in F9 ECCs could not be rescued by Lsd1 overexpression. Given our observation that H3K4me1 demethylation is accompanied by strong Oct4 repression in P19 ECCs, we tested if Oct4 interaction with Lsd1 affects its catalytic activity. Our data show a dose-dependent inhibition of Lsd1 activity by Oct4 and retention of H3K4me1 at PpGe in Oct4-overexpressing P19 ECCs. These data suggest that Lsd1-Oct4 interaction in cancer stem cells could establish a "primed" enhancer state that is susceptible to reactivation, leading to aberrant PpG expression.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Putu Ayu Sudyanti
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen McCune
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brice H Spears
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - James A Breedlove
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nadia A Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Dessouki FBA, Kukreja RC, Singla DK. Stem Cell-Derived Exosomes Ameliorate Doxorubicin-Induced Muscle Toxicity through Counteracting Pyroptosis. Pharmaceuticals (Basel) 2020; 13:ph13120450. [PMID: 33316945 PMCID: PMC7764639 DOI: 10.3390/ph13120450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (Dox)-induced muscle toxicity (DIMT) is a common occurrence in cancer patients; however, the cause of its development and progression is not established. We tested whether inflammation-triggered cell death, “pyroptosis” plays a role in DIMT. We also examined the potential role of exosomes derived from embryonic stem cells (ES-Exos) in attenuating DIMT. C57BL/6J mice (10 ± 2 wks age) underwent the following treatments: Control (saline), Dox, Dox+ES-Exos, and Dox+MEF-Exos (mouse-embryonic fibroblast-derived exosomes, negative control). Our results demonstrated that Dox significantly reduced muscle function in mice, which was associated with a significant increase in NLRP3 inflammasome and initiation marker TLR4 as compared with controls. Pyroptosis activator, ASC, was significantly increased compared to controls with an upregulation of specific markers (caspase-1, IL-1β, and IL-18). Treatment with ES-Exos but not MEF-Exos showed a significant reduction in inflammasome and pyroptosis along with improved muscle function. Additionally, we detected a significant increase in pro-inflammatory cytokines (TNF-α and IL-6) and inflammatory M1 macrophages in Dox-treated animals. Treatment with ES-Exos decreased M1 macrophages and upregulated anti-inflammatory M2 macrophages. Furthermore, ES-Exos showed a significant reduction in muscular atrophy and fibrosis. In conclusion, these results suggest that DIMT is mediated through inflammation and pyroptosis, which is attenuated following treatment with ES-Exos.
Collapse
Affiliation(s)
- Fatima Bianca A. Dessouki
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Rakesh C. Kukreja
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Correspondence: ; Tel.: +1-401-823-0953
| |
Collapse
|
9
|
Gordeeva O. TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells 2019; 8:cells8121500. [PMID: 31771212 PMCID: PMC6953027 DOI: 10.3390/cells8121500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family factors induce pleiotropic effects and are involved in the regulation of most normal and pathological cellular processes. The activity of different branches of the TGFβ family signaling pathways and their interplay with other signaling pathways govern the fine regulation of the self-renewal, differentiation onset and specialization of pluripotent stem cells in various cell derivatives. TGFβ family signaling pathways play a pivotal role in balancing basic cellular processes in pluripotent stem cells and their derivatives, although disturbances in their genome integrity induce the rearrangements of signaling pathways and lead to functional impairments and malignant transformation into cancer stem cells. Therefore, the identification of critical nodes and targets in the regulatory cascades of TGFβ family factors and other signaling pathways, and analysis of the rearrangements of the signal regulatory network during stem cell state transitions and interconversions, are key issues for understanding the fundamental mechanisms of both stem cell biology and cancer initiation and progression, as well as for clinical applications. This review summarizes recent advances in our understanding of TGFβ family functions in naїve and primed pluripotent stem cells and discusses how these pathways are involved in perturbations in the signaling network of malignant teratocarcinoma stem cells with impaired differentiation potential.
Collapse
Affiliation(s)
- Olga Gordeeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
10
|
Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol 2019; 317:H460-H471. [PMID: 31172809 PMCID: PMC6732475 DOI: 10.1152/ajpheart.00056.2019] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Doxorubicin (Dox)-induced cardiac side effects are regulated through increased oxidative stress and apoptosis. However, it remains unknown whether Dox induces the specific inflammatory-mediated form of cell death called pyroptosis. The current study is undertaken to determine whether Dox induces pyroptosis in an in vitro model and to test the potential of exosomes derived from embryonic stem cells (ES-Exos) in inhibiting pyroptosis. H9c2 cells were exposed to Dox to generate pyroptosis and then subsequently treated with exosomes to investigate the protective effects of ES-Exos. Mouse embryonic fibroblast-exosomes (MEF-Exos) were used as a cell line control. We confirmed pyroptosis by analyzing the presence of Toll-like receptor 4 (TLR4)-pyrin domain containing-3 (NLRP3) inflammasome that initiates pyroptosis, which was further confirmed with pyroptotic markers caspase-1, IL-1β, caspase-11, and gasdermin-D. The presence of inflammation was confirmed for proinflammatory cytokines, TNF-α, and IL-6. Our data show that Dox exposure significantly (P < 0.05) increases expression of TLR4, NLRP3, pyroptotic markers (caspase-1, IL-1β, caspase-11, and gasdermin-D), and proinflammatory cytokines (TNF-α and IL-6) in H9c2 cells. The increased expression of inflammasome, pyroptosis, and inflammation was significantly (P < 0.05) inhibited by ES-Exos. Interestingly, our cell line control, MEF-Exos, did not show any protective effects. Furthermore, our cytokine array data suggest increased anti-inflammatory (IL-4, IL-9, and IL-13) and decreased proinflammatory cytokines (Fas ligand, IL-12, and TNF-α) in ES-Exos, suggesting that anti-inflammatory cytokines might be mediating the protective effects of ES-Exos. In conclusion, our data show that Dox induces pyroptotic cell death in the H9c2 cell culture model and is attenuated via treatment with ES-Exos.NEW & NOTEWORTHY Doxorubicin (Dox)-induced cardiotoxicity is mediated through increased oxidative stress, apoptosis, and necrosis. We report for the first time as per the best of our knowledge that Dox initiates Toll-like receptor 4 and pyrin domain containing-3 inflammasome formation and induces caspase-1-mediated inflammatory pyroptotic cell death in H9c2 cells. Moreover, we establish that inflammation and pyroptosis is inhibited by embryonic stem cell-derived exosomes that could be used as a future therapeutic option to treat Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zahra Tavakoli Dargani
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| |
Collapse
|
11
|
Expression dynamics of Mage family genes during self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Oncotarget 2019; 10:3248-3266. [PMID: 31143371 PMCID: PMC6524934 DOI: 10.18632/oncotarget.26933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
The biological roles of cancer-testis antigens of the Melanoma antigen (Mage) family in mammalian development, stem cell differentiation and carcinogenesis are largely unknown. In order to understand the involvement of the Mage family genes in maintenance of normal and cancer stem cells, the expression patterns of Mage-a, Mage-b, Mage-d, Mage-e, Mage-h and Mage-l gene subfamilies were analyzed during the self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Clustering analysis based on the gene expression profiles of undifferentiated and differentiating cell populations revealed strong correlations between Mage expression patterns and differentiation and malignant states. Gene co-expression analysis disclosed the potential contributions of Mage family members in self-renewal and differentiation of pluripotent stem and teratocarcinoma cells. Two gene clusters including Mage-a4 and Mage-a8, Mageb1, Mage-d1, Mage-d2, Mage-e1, Mage-l2 were identified as functional antagonists with opposing roles in the regulation of proliferation and differentiation of mouse pluripotent stem and teratocarcinoma cells. The identified aberrant expression patterns of Mage-a2, Mage-a6, Mage-b4, Mageb-16 and Mage-h1 in teratocarcinoma cells can be considered as specific teratocarcinoma biomarkers promoted the malignant phenotype. Our study first provides a model for the involvement of Mage family members in regulatory networks during the self-renewal and early differentiation of normal and cancerous stem cells for further research of the predicted functional modules and the development of new cancer treatment strategies.
Collapse
|
12
|
Suhito IR, Kang ES, Kim DS, Baek S, Park SJ, Moon SH, Luo Z, Lee D, Min J, Kim TH. High density gold nanostructure composites for precise electrochemical detection of human embryonic stem cells in cell mixture. Colloids Surf B Biointerfaces 2019; 180:384-392. [PMID: 31082776 DOI: 10.1016/j.colsurfb.2019.04.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023]
Abstract
Precise detection of undifferentiated human pluripotent stem cells (hPSCs) and their entire subsequent elimination are incredibly important in preventing teratoma formations after transplantation. Recently, electrochemical sensing platforms have demonstrated immense potential as a new tool to detect remaining hPSCs in label-free and non-destructive manner. Nevertheless, one of the critical huddles of this electrochemical sensing approach is its low sensitivity since even low concentrations of remaining hPSCs were reported to form teratoma once transplanted. To address this issue, in this study, we report an engineering-based approach to improve the sensitivity of electrochemical sensing platform for hPSC detection. By optimizing the density of gold nanostructure and the matrigel concentration to improve both electro-catalytic property and biocompatibility, the sensitivity of the developed platform toward hESCs detection could reach 12,500 cells/chip, which is close to the known critical concentration of hPSCs (˜10,000 cells) that induce teratoma formation in vivo. Remarkably, the electrochemical signals were not detectable from other types of stem cell-derived endothelial cells (CB-EPCs) even at high concentrations of CB-EPCs (40,000 cells/chip), proving the high selectivity of the developed platform toward hPSC detection. Hence, the developed platform could be highly useful to solve the safety issues that are related with clinical application of hPSC-derived cells.
Collapse
Affiliation(s)
- Intan Rosalina Suhito
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ee-Seul Kang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Da-Seul Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seungho Baek
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon-Jung Park
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hwan Moon
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Donghyun Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
13
|
Robinson M, Fraser I, McKee E, Scheck K, Chang L, Willerth SM. Transdifferentiating Astrocytes Into Neurons Using ASCL1 Functionalized With a Novel Intracellular Protein Delivery Technology. Front Bioeng Biotechnol 2018; 6:173. [PMID: 30525033 PMCID: PMC6258721 DOI: 10.3389/fbioe.2018.00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/31/2018] [Indexed: 01/26/2023] Open
Abstract
Cellular transdifferentiation changes mature cells from one phenotype into another by altering their gene expression patterns. Manipulating expression of transcription factors, proteins that bind to DNA promoter regions, regulates the levels of key developmental genes. Viral delivery of transcription factors can efficiently reprogram somatic cells, but this method possesses undesirable side effects, including mutations leading to oncogenesis. Using protein transduction domains (PTDs) fused to transcription factors to deliver exogenous transcription factors serves as an alternative strategy that avoids the issues associated with DNA integration into the host genome. However, lysosomal degradation and inefficient nuclear localization pose significant barriers when performing PTD-mediated reprogramming. Here, we investigate a novel PTD by placing a secretion signal sequence next to a cleavage inhibition sequence at the end of the target transcription factor–achaete scute homolog 1 (ASCL1), a powerful regulator of neurogenesis, resulting in superior stability and nuclear localization. A fusion protein consisting of the amino acid sequence of ASCL1 transcription factor with this novel PTD added can transdifferentiate cerebral cortex astrocytes into neurons. Additionally, we show that the synergistic action of certain small molecules improves the efficiency of the transdifferentiation process. This study serves as the first step toward developing a clinically relevant in vivo transdifferentiation strategy for converting astrocytes into neurons.
Collapse
Affiliation(s)
- Meghan Robinson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Ian Fraser
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada
| | - Emily McKee
- Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada
| | - Kali Scheck
- Biology Program, University of Victoria, Victoria, BC, Canada
| | - Lillian Chang
- Biochemistry Program, Bates College, Lewiston, ME, United States
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada.,Mechanical Engineering, Faculty of Engineering, University of Victoria, Victoria, BC, Canada.,Center for Biomedical Research, Faculty of Engineering, University of Victoria, Victoria, BC, Canada.,International Collaboration for Repair Discovery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Gurunathan S, Kim JH. Biocompatible Gold Nanoparticles Ameliorate Retinoic Acid-Induced Cell Death and Induce Differentiation in F9 Teratocarcinoma Stem Cells. NANOMATERIALS 2018; 8:nano8060396. [PMID: 29865197 PMCID: PMC6027053 DOI: 10.3390/nano8060396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023]
Abstract
The unique properties of gold nanoparticles (AuNPs) have attracted much interest for a range of applications, including biomedical applications in the cosmetic industry. The current study assessed the anti-oxidative effect of AuNPs against retinoic acid (RA)-induced loss of cell viability; cell proliferation; expression of oxidative and anti-oxidative stress markers, pro- and anti-apoptotic genes, and differentiation markers; and mitochondrial dysfunction in F9 teratocarcinoma stem cells. AuNPs were prepared by reduction of gold salts using luteolin as a reducing and stabilizing agent. The prepared AuNPs were spherical in shape with an average diameter of 18 nm. F9 cells exposed to various concentrations of these AuNPs were not harmed, whereas cells exposed to RA exhibited a dose-dependent change in cell viability and cell proliferation. The RA-mediated toxicity was associated with increased leakage of lactate dehydrogenase, reactive oxygen species, increased levels of malondialdehyde and nitric oxide, loss of mitochondrial membrane potential, and a reduced level of ATP. Finally, RA increased the level of pro-apoptotic gene expression and decreased the expression of anti-apoptotic genes. Interestingly, the toxic effect of RA appeared to be decreased in cells treated with RA in the presence of AuNPs, which was coincident with the increased levels of anti-oxidant markers including thioredoxin, glutathione peroxidases, glutathione, glutathione disulfide, catalase, and superoxide dismutase. Concomitantly, AuNPs ameliorated the apoptotic response by decreasing the mRNA expression of p53, p21, Bax, Bak, caspase-3, caspase-9, and increasing the expressions of Bcl-2 and Bcl-Xl. Interestingly, AuNPs not only ameliorated oxidative stress but also induced differentiation in F9 cells by increasing the expression of differentiation markers including retinoic acid binding protein, laminin 1, collagen type IV, and Gata 6 and decreasing the expressions of markers of stem cell pluripotency including Nanog, Rex1, octamer-binding transcription factor 4, and Sox-2. These consistent cellular and biochemical data suggest that AuNPs could ameliorate RA-induced cell death and facilitate F9 cell differentiation. AuNPs could be suitable therapeutic agents for the treatment of oxidative stress-related diseases such as atherosclerosis, cancer, diabetes, rheumatoid arthritis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|