1
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Jain M, Stitt G, Son L, Enioutina EY. Probiotics and Their Bioproducts: A Promising Approach for Targeting Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Microorganisms 2023; 11:2393. [PMID: 37894051 PMCID: PMC10608974 DOI: 10.3390/microorganisms11102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a serious global health problem that poses a threat to the successful treatment of various bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). Conventional treatment of MRSA and VRE infections is challenging and often requires alternative or combination therapies that may have limited efficacy, higher costs, and/or more adverse effects. Therefore, there is an urgent need to find new strategies to combat antibiotic-resistant bacteria. Probiotics and antimicrobial peptides (AMPs) are two promising approaches that have shown potential benefits in various diseases. Probiotics are live microorganisms that confer health benefits to the host when administered in adequate amounts. AMPs, usually produced with probiotic bacteria, are short amino acid sequences that have broad-spectrum activity against bacteria, fungi, viruses, and parasites. Both probiotics and AMPs can modulate the host immune system, inhibit the growth and adhesion of pathogens, disrupt biofilms, and enhance intestinal barrier function. In this paper, we review the current knowledge on the role of probiotics and AMPs in targeting multi-drug-resistant bacteria, with a focus on MRSA and VRE. In addition, we discuss future directions for the clinical use of probiotics.
Collapse
Affiliation(s)
| | | | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA; (M.J.); (G.S.); (L.S.)
| |
Collapse
|
3
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
4
|
Wang G, Zeng H. Antibacterial Effect of Cell-Free Supernatant from Lactobacillus pentosus L-36 against Staphylococcus aureus from Bovine Mastitis. Molecules 2022; 27:7627. [PMID: 36364454 PMCID: PMC9658419 DOI: 10.3390/molecules27217627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 04/02/2025] Open
Abstract
This study sought to analyze the main antibacterial active components of Lactobacillus pentosus (L. pentosus) L-36 cell-free culture supernatants (CFCS) in inhibiting the growth of Staphylococcus aureus (S. aureus), to explore its physicochemical properties and anti-bacterial mechanism. Firstly, the main antibacterial active substance in L-36 CFCS was peptides, which inferred by adjusting pH and enzyme treatment methods. Secondly, the physicochemical properties of the antibacterial active substances in L-36 CFCS were studied from heat, pH, and metal ions, respectively. It demonstrated good antibacterial activity when heated at 65 °C, 85 °C and 100 °C for 10 and 30 min, indicating that it had strong thermal stability. L-36 CFCS had antibacterial activity when the pH value was 2-6, and the antibacterial active substances became stable with the decrease in pH value. After 10 kinds of metal ions were treated, the antibacterial activity did not change significantly, indicating that it was insensitive to metal ions. Finally, scanning electron microscopy, transmission electron microscopy and fluorescence probe were used to reveal the antibacterial mechanism of S. aureus from the aspects of cell morphology and subcellular structure. The results demonstrated that L-36 CFCS could form 1.4-2.3 nm pores in the cell membrane of S. aureus, which increased the permeability of the bacterial cell membrane, resulting in the depolarization of cell membrane potential and leakage of nucleic acid protein and other cell contents. Meanwhile, a large number of ROS are produced and accumulated in the cells, causing damage to DNA, and with the increase in L-36 CFCS concentration, the effect is enhanced, and finally leads to the death of S. aureus. Our study suggests that the main antibacterial active substances of L-36 CFCS are peptides. L-36 CFCS are thermostable, active under acidic conditions, insensitive to metal ions, and exhibit antibacterial effects by damaging cell membranes, DNA and increasing ROS. Using lactic acid bacteria to inhibit S. aureus provides a theoretical basis for the discovery of new antibacterial substances, and will have great significance in the development of antibiotic substitutes, reducing bacterial resistance and ensuring animal food safety.
Collapse
Affiliation(s)
- Gengchen Wang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science and Technology, Tarim University, Alar 843301, China
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
5
|
Murugan R, Guru A, Haridevamuthu B, Sudhakaran G, Arshad A, Arockiaraj J. Lantibiotics: an antimicrobial asset in combating aquaculture diseases. AQUACULTURE INTERNATIONAL 2022; 30:2365-2387. [DOI: 10.1007/s10499-022-00908-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 10/16/2023]
|
6
|
Enhanced Antibacterial Activity of Brevibacillus sp. SPR19 by Atmospheric and Room Temperature Plasma Mutagenesis (ARTP). Sci Pharm 2022. [DOI: 10.3390/scipharm90020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is a major health concern worldwide. In our previous study, some bacterial isolates exhibited antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). However, the production of antibacterial substances by native microorganisms is limited by biosynthetic genes. This study aimed to improve the antibacterial activity of SPR19 using atmospheric and room temperature plasma mutagenesis (ARTP). The results showed that SPR19 belonged to the Brevibacillus genus. The growth curves and production kinetics of antibacterial substances were investigated. Argon-based ARTP was applied to SPR19, and the 469 mutants were preliminarily screened using agar overlay method. The remaining 25 mutants were confirmed by agar well diffusion assay against S. aureus TISTR 517 and MRSA isolates 142, 1096, and 2468. M285 exhibited the highest activity compared to the wild-type strain (10.34–13.59%) and this mutant was stable to produce the active substances throughout 15 generations consistently. The antibacterial substances from M285 were tolerant to various conditions (heat, enzyme, surfactant, and pH) while retaining more than 90% of their activities. Therefore, Brevibacillus sp. SPR19 is a potential source of antibacterial substances. ARTP mutagenesis is a powerful method for strain improvement that can be utilized to treat MRSA infection in the future.
Collapse
|
7
|
Fernandes A, Jobby R. Bacteriocins from lactic acid bacteria and their potential clinical applications. Appl Biochem Biotechnol 2022; 194:4377-4399. [PMID: 35290605 DOI: 10.1007/s12010-022-03870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 01/03/2023]
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides that have long been used in the food industry. Being a highly diverse and heterogeneous group of molecules the classification is ever-evolving. Their production is widespread among bacteria; nevertheless, their biosynthesis and mode of action remain fairly similar. With the advances in drug resistance mechanisms, it is important to look for alternatives to conventional approaches. Therefore, the advantages of bacteriocin over antibiotics need to be considered to provide a scientific basis for their use. Particularly in the last decade, intensive studies look at their potential as next-generation therapeutics against drug-resistant bacteria. Bacteriocins from lactic acid bacteria are being tested as controlling agents for bacterial and viral infections; they can inhibit biofilm synthesis and have potential as contraceptives. Bioengineered peptides have shown enhanced activity and thereby indicate the lack of knowledge we possess regarding these bacteriocins. In this review, we have listed various Gram-positive LAB bacteriocins with their synthesis and mechanism of action. Recent developments in screening and purification technologies have been analyzed with an emphasis on their potential clinical applications. Although extensive research has been done to identify multifunctional bacteriocins, it is important to focus on the mechanism of action of these peptides to get them from bench to bedside.
Collapse
Affiliation(s)
- Abigail Fernandes
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India. .,Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India.
| |
Collapse
|
8
|
Mörschbächer AP, Granada CE. MAPPING THE WORLDWIDE KNOWLEDGE OF ANTIMICROBIAL SUBSTANCES PRODUCED BY Lactobacillus spp.: A BIBLIOMETRIC ANALYSIS. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
10
|
Abitayeva GK, Urazova MS, Abilkhadirov AS, Sarmurzina ZS, Shaikhin SM. Characterization of a new bacteriocin-like inhibitory peptide produced by Lactobacillus sakei B-RKM 0559. Biotechnol Lett 2021; 43:2243-2257. [PMID: 34652635 DOI: 10.1007/s10529-021-03193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The biopreservation strategy allows extending the shelf life and food safety through the use of indigenous or controlled microbiota and their antimicrobial compounds. The aim of this work was to characterize an inhibitory substance with bacteriocin-like activity (Sak-59) produced by the potentially probiotic L. sakei strain from artisanal traditional Kazakh horse meat product Kazy. The maximum production of Sak-59 occurred at the stationary phase of the L. sakei growth. Sak-59 showed inhibitory activity against gram-positive meat spoilage bacteria strains of Listeria monocytogenes, Staphylococcus aureus, and pathogenic gram-negative bacteria strains of Serratia marcescens and Escherichia coli, but not against the tested Lactobacilli strains. Sak-59 activity, as measured by diffusion assay in agar wells, was completely suppressed after treatment with proteolytic enzymes and remained stable after treatment with α-amylase and lipase, indicating that Sak-59 is a peptide and most likely not glycosylated or lipidated. It was concluded that Sak-59 is a potential new bacteriocin with a characteristic activity spectrum, which can be useful in the food and feed industries.
Collapse
Affiliation(s)
- Gulyaim K Abitayeva
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Maira S Urazova
- Laboratory of Biotechnology, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., Nur-Sultan, 010000, Republic of Kazakhstan
| | - Arman S Abilkhadirov
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Zinigul S Sarmurzina
- Laboratory of Microbiology, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Serik M Shaikhin
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan.
| |
Collapse
|
11
|
Dai M, Li Y, Xu L, Wu D, Zhou Q, Li P, Gu Q. A Novel Bacteriocin From Lactobacillus Pentosus ZFM94 and Its Antibacterial Mode of Action. Front Nutr 2021; 8:710862. [PMID: 34368212 PMCID: PMC8342802 DOI: 10.3389/fnut.2021.710862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Bacteriocins are bioactive antimicrobial peptides synthesized in the ribosome of numerous bacteria and released extracellularly. Pentocin ZFM94 produced by Lactobacillus pentosus (L. pentosus) ZFM94, isolated from infant feces with strong antibacterial activity, was purified by ammonium sulfate precipitation, dextran gel chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of the purified bacteriocin was 3,547.74 Da determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pentocin ZFM94 exhibited broad-spectrum antimicrobial activity against tested Gram-positive and Gram-negative bacteria, and the minimal inhibitory concentrations (MICs) of Micrococcus luteus (M. luteus) 10,209, Staphylococcus aureus (S. aureus) D48, and Escherichia coli (E. coli) DH5α were 1.75, 2.00, and 2.50 μm, respectively. Pentocin ZFM94 was heat-stable (30 min at 80°C) and showed inhibitory activity over a wide pH range (5.00–7.00). It could be degraded by trypsin and pepsin, but not by amylase, lysozyme, lipase, and ribonuclease A. Fluorescence leakage assay showed that pentocin ZFM94 induced disruption of the cell membrane and caused leakage of cellular content. Furthermore, lipid II was not an antibacterial target of pentocin ZFM94. This study laid the foundation for further development and utilization of L. pentosus ZFM94 and its bacteriocin.
Collapse
Affiliation(s)
- Mengdi Dai
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanran Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Luyao Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Danli Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
12
|
Twomey E, Hill C, Field D, Begley M. Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. Int J Microbiol 2021; 2021:9990635. [PMID: 34257667 PMCID: PMC8249226 DOI: 10.1155/2021/9990635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bacteriocins are bacterially produced antimicrobial peptides. Although only two peptides have been approved for use as natural preservatives foods, current research is focusing on expanding their application as potential therapeutics against clinical pathogens. Our laboratory group has been working on bacteriocins for over 25 years, and during that time, we have isolated bacteriocin-producing microorganisms from a variety of sources including human skin, human faeces, and various foods. These bacteriocins were purified and characterised, and their potential applications were examined. We have also identified bioengineered derivatives of the prototype lantibiotic nisin which possess more desirable properties than the wild-type, such as enhanced antimicrobial activity. In the current communication, we discuss the main methods that were employed to identify such peptides. Furthermore, we provide a step-by-step guide to carrying out these methods that include accompanying diagrams. We hope that our recommendations and advice will be of use to others in their search for, and subsequent analysis of, novel bacteriocins, and derivatives thereof.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork T12YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork T12YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland
| |
Collapse
|
13
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
14
|
Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Front Mol Biosci 2021; 8:654038. [PMID: 33996906 PMCID: PMC8116899 DOI: 10.3389/fmolb.2021.654038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a pathogen commonly found in nosocomial environments where infections can easily spread - especially given the reduced immune response of patients and large overlap between personnel in charge of their care. Although antibiotics are available to treat nosocomial infections, the increased occurrence of antibiotic resistance has rendered many treatments ineffective. Such is the case for methicillin resistant S. aureus (MRSA), which has continued to be a threat to public health since its emergence. For this reason, alternative treatment technologies utilizing antimicrobials such as bacteriocins, bacteriophages (phages) and phage endolysins are being developed. These antimicrobials provide an advantage over antibiotics in that many have narrow inhibition spectra, enabling treatments to be selected based on the target (pathogenic) bacterium while allowing for survival of commensal bacteria and thus avoiding collateral damage to the microbiome. Bacterial resistance to these treatments occurs less frequently than with antibiotics, particularly in circumstances where combinatory antimicrobial therapies are used. Phage therapy has been well established in Eastern Europe as an effective treatment against bacterial infections. While there are no Randomized Clinical Trials (RCTs) to our knowledge examining phage treatment of S. aureus infections that have completed all trial phases, numerous clinical trials are underway, and several commercial phage preparations are currently available to treat S. aureus infections. Bacteriocins have primarily been used in the food industry for bio-preservation applications. However, the idea of repurposing bacteriocins for human health is an attractive one considering their efficacy against many bacterial pathogens. There are concerns about the ability of bacteriocins to survive the gastrointestinal tract given their proteinaceous nature, however, this obstacle may be overcome by altering the administration route of the therapy through encapsulation, or by bioengineering protease-resistant variants. Obstacles such as enzymatic digestion are less of an issue for topical/local administration, for example, application to the surface of the skin. Bacteriocins have also shown impressive synergistic effects when used in conjunction with other antimicrobials, including antibiotics, which may allow antibiotic-based therapies to be used more sparingly with less resistance development. This review provides an updated account of known bacteriocins, phages and phage endolysins which have demonstrated an impressive ability to kill S. aureus strains. In particular, examples of antimicrobials with the ability to target MRSA strains and their subsequent use in a clinical setting are outlined.
Collapse
Affiliation(s)
- Lauren Walsh
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal N Johnson
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| |
Collapse
|
15
|
Du GF, Yin XF, Yang DH, He QY, Sun X. Proteomic Investigation of the Antibacterial Mechanism of trans-Cinnamaldehyde against Escherichia coli. J Proteome Res 2021; 20:2319-2328. [PMID: 33749271 DOI: 10.1021/acs.jproteome.0c00847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trans-Cinnamaldehyde (TC) is a widely used food additive, known for its sterilization, disinfection, and antiseptic properties. However, its antibacterial mechanism is not completely understood. In this study, quantitative proteomics was performed to investigate differentially expressed proteins (DEPs) in Escherichia coli in response to TC treatment. Bioinformatics analysis suggested aldehyde toxicity, acid stress, oxidative stress, interference of carbohydrate metabolism, energy metabolism, and protein translation as the bactericidal mechanism. E. coli BW25113ΔyqhD, ΔgldA, ΔbetB, ΔtktB, ΔgadA, ΔgadB, ΔgadC, and Δrmf were used to investigate the functions of DEPs through biochemical methods. The present study revealed that TC exerts its antibacterial effects by inducing the toxicity of its aldehyde group producing acid stress. These findings will contribute to the application of TC in the antibacterial field.
Collapse
Affiliation(s)
- Gao-Fei Du
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.,Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Dong-Hong Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Leite EL, Oliveira AFDE, Carmo FLRDO, Berkova N, Barh D, Ghosh P, Azevedo V. Bacteriocins as an alternative in the treatment of infections by Staphylococcus aureus. AN ACAD BRAS CIENC 2020; 92:e20201216. [PMID: 33084762 DOI: 10.1590/0001-3765202020201216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a highly versatile Gram-positive bacterium that is carried asymptomatically by up to 30% of healthy people, while being a major cause of healthcare-associated infections, making it a worldwide problem in clinical medicine. The adaptive evolution of S. aureus strains is demonstrated by its remarkable capacity to promptly develop high resistance to multiple antibiotics, thus limiting treatment choice. Nowadays, there is a continuous demand for an alternative to the use of antibiotics for S. aureus infections and a strategy to control the spread or to kill phylogenetically related strains. In this scenario, bacteriocins fit as with a promising and interesting alternative. These molecules are produced by a range of bacteria, defined as ribosomally synthesized peptides with bacteriostatic or bactericidal activity against a wide range of pathogens. This work reviews ascertained the main antibiotic-resistance mechanisms of S. aureus strains and the current, informative content concerning the applicability of the use of bacteriocins overlapping the use of conventional antibiotics in the context of S. aureus infections. Besides, we highlight the possible application of these biomolecules on an industrial scale in future work.
Collapse
Affiliation(s)
- Elma L Leite
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France.,Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Alberto F DE Oliveira
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France
| | - Fillipe L R DO Carmo
- Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Nadia Berkova
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, 721172 West Bengal, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA-23284, USA
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Crystal structure and site-directed mutagenesis of circular bacteriocin plantacyclin B21AG reveals cationic and aromatic residues important for antimicrobial activity. Sci Rep 2020; 10:17398. [PMID: 33060678 PMCID: PMC7562740 DOI: 10.1038/s41598-020-74332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022] Open
Abstract
Plantacyclin B21AG is a circular bacteriocin produced by Lactiplantibacillus plantarum B21 which displays antimicrobial activity against various Gram-positive bacteria including foodborne pathogens, Listeria monocytogenes and Clostridium perfringens. It is a 58-amino acid cyclised antimicrobial peptide, with the N and C termini covalently linked together. The circular peptide backbone contributes to remarkable stability, conferring partial proteolytic resistance and structural integrity under a wide temperature and pH range. Here, we report the first crystal structure of a circular bacteriocin from a food grade Lactobacillus. The protein was crystallised using the hanging drop vapour diffusion method and the structure solved to a resolution of 1.8 Å. Sequence alignment against 18 previously characterised circular bacteriocins revealed the presence of conserved charged and aromatic residues. Alanine substitution mutagenesis validated the importance of these residues. Minimum inhibitory concentration analysis of these Ala mutants showed that Phe8Ala and Trp45Ala mutants displayed a 48- and 32-fold reduction in activity, compared to wild type. The Lys19Ala mutant displayed the weakest activity, with a 128-fold reduction. These experiments demonstrate the relative importance of aromatic and cationic residues for the antimicrobial activity of plantacyclin B21AG and by extension, other circular bacteriocins sharing these evolutionarily conserved residues.
Collapse
|
19
|
Rahmeh R, Akbar A, Alonaizi T, Kishk M, Shajan A, Akbar B. Characterization and application of antimicrobials produced by Enterococcus faecium S6 isolated from raw camel milk. J Dairy Sci 2020; 103:11106-11115. [PMID: 32981738 DOI: 10.3168/jds.2020-18871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The emergence of antimicrobial resistance in the food chain and the consumer's demand for safe food without chemical preservatives have generated much interest in natural antimicrobials. Thus, our main goal was to study the mode of action of the crude extract, the enterocins, and the organic acid produced by a bacteriocinogenic Enterococcus faecium strain S6 previously isolated from raw camel milk. Then, we aimed to evaluate their potential application in a food system. These antimicrobials exhibited antimicrobial activity against Listeria monocytogenes, Salmonella enterica, and Escherichia coli. The enterocins were synthesized as primary metabolites beginning at the lag phase, with optimal production at the exponential and stationary phases. The antimicrobials had a direct effect in extending the lag phase of L. monocytogenes, along with a significant inhibitory activity. The organic acid, in particular, inhibited both L. monocytogenes and S. enterica by inducing a total lysis and damage of the cell wall. The enterocins acted on disrupting the cell wall with pore formation, leading to cell death. Moreover, the crude extract revealed a combined inhibitory activity between enterocins and organic acid. Furthermore, the antimicrobials showed promising results through inhibiting L. monocytogenes cells in milk samples up to 1 wk at 4°C.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait.
| | - Abrar Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Thnayan Alonaizi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Batool Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| |
Collapse
|
20
|
Ma M, Zhao J, Zeng Z, Wan D, Yu P, Cheng D, Gong D, Deng S. Antibacterial activity and membrane-disrupting mechanism of monocaprin against Escherichia coli and its application in apple and carrot juices. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Sharma P, Rashid M, Kaur S. Novel enterocin E20c purified from Enterococcus hirae 20c synergised with ß-lactams and ciprofloxacin against Salmonella enterica. Microb Cell Fact 2020; 19:98. [PMID: 32366243 PMCID: PMC7197179 DOI: 10.1186/s12934-020-01352-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background An increasing rate of antibiotic resistance among Gram-negative bacterial pathogens has created an urgent need to discover novel therapeutic agents to combat infectious diseases. Use of bacteriocins as therapeutic agents has immense potential due to their high potency and mode of action different from that of conventional antibiotics. Results In this study, a novel bacteriocin E20c of molecular weight 6.5 kDa was purified and characterized from the probiotic strain of Enterococcus hirae. E20c had bactericidal activities against several multidrug resistant (MDR) Gram-negative bacterial pathogens. Flow cytometry and scanning electron microscopy studies showed that it killed the Salmonella enterica cells by forming ion-permeable channels in the cell membrane leading to enhanced cell membrane permeability. Further, checkerboard titrations showed that E20c had synergistic interaction with antibiotics such as ampicillin, penicillin, ceftriaxone, and ciprofloxacin against a ciprofloxacin- and penicillin-resistant strain of S. enterica. Conclusion Thus, this study shows the broad spectrum antimicrobial activity of novel enterocin E20c against various MDR pathogens. Further, it highlights the importance of bacteriocins in lowering the minimum inhibitory concentrations of conventional antibiotics when used in combination.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
22
|
Screening of bacteriocin-producing lactic acid bacteria in Chinese homemade pickle and dry-cured meat, and bacteriocin identification by genome sequencing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Boukhris I, Smaoui S, Ennouri K, Morjene N, Farhat-Khemakhem A, Blibech M, Alghamdi OA, Chouayekh H. Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model. PLoS One 2020; 15:e0231397. [PMID: 32302332 PMCID: PMC7164649 DOI: 10.1371/journal.pone.0231397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/22/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is 'generally recognized as safe' (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life.
Collapse
Affiliation(s)
- Ines Boukhris
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Nawres Morjene
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ameny Farhat-Khemakhem
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Monia Blibech
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Othman A. Alghamdi
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Thyab Gddoa Al-sahlany S, Altemimi AB, Al-Manhel AJA, Niamah AK, Lakhssassi N, Ibrahim SA. Purification of Bioactive Peptide with Antimicrobial Properties Produced by Saccharomyces cerevisiae. Foods 2020; 9:foods9030324. [PMID: 32168785 PMCID: PMC7142856 DOI: 10.3390/foods9030324] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from Saccharomycescerevisiae (Baker’s yeast) by an ultrafiltration process (two membranes with cut-offs of 2 and 10 kDa) and purified using the ÄKTA Pure 25 system. Antibacterial peptide activity was characterized and examined against four bacterial strains including Gram-positive and Gram-negative bacteria. The optimum condition for yeast growth and antibacterial peptide production against both Escherichia. coli and Klebsiella aerogenes was 25–30 °C within a 48 h period. The isolated peptide had a molecular weight of 9770 Da, was thermostable at 50–90 °C for 30 min, and tolerated a pH range of 5–7 at 4 °C and 25 °C during the first 24 h, making this isolated antibacterial peptides suitable for use in sterilization and thermal processes, which are very important aspect in food production. The isolated antibacterial peptide caused a rapid and steady decline in the number of viable cells from 2 to 2.3 log units of gram-negative strains and from 1.5 to 1.8 log units of gram-positive strains during 24 h of incubation. The isolated antibacterial peptide from Saccharomyces cerevisiae may present a potential biopreservative compound in the food industry exhibiting inhibition activity against gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- Shayma Thyab Gddoa Al-sahlany
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
| | - Alaa Jabbar Abd Al-Manhel
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
| | - Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
- Correspondence: ; Tel.: +964-773-564-0090
| | - Naoufal Lakhssassi
- Department of Plant Soil and Agricultural Systems, Agriculture College, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
25
|
Current developments of bacteriocins, screening methods and their application in aquaculture and aquatic products. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Isolation, Identification, and Characterization of a Novel Bacteriocin Produced by Brevibacillus laterosporus DS-3 Against Methicillin-Resistant Staphylococcus aureus (MRSA). Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09878-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Cheng H, Jiang H, Fang J, Zhu C. Antibiotic Resistance and Characteristics of Integrons in Escherichia coli Isolated from Penaeus vannamei at a Freshwater Shrimp Farm in Zhejiang Province, China. J Food Prot 2019; 82:470-478. [PMID: 30806555 DOI: 10.4315/0362-028x.jfp-18-444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our study was conducted to investigate the antibiotic susceptibility profiles, integrons and their associated gene cassettes (GCs), and insertion sequence common regions of Escherichia coli isolates from Penaeus vannamei collected at a large-scale freshwater shrimp farm in Zhejiang Province, People's Republic of China. A total of 182 E. coli isolates were identified from 200 samples. With the exception of imipenem, isolates were most commonly resistant to β-lactams, followed by tetracylines and sulfonamides. Fifty-two (28.6%) E. coli isolates were classified as multidrug resistant, and the patterns were highly diverse, with 29 types represented. The multiple-antibiotic resistance indices of the isolates were 0.17 to 0.56; 9.3% (17) of the 182 isolates were positive for class 1 integrons, 0.5% (1 isolate) was positive for class 2 integrons, and an insertion sequence common region 1 element was found upstream of the intI1 (integrase) gene in one of the intI1-positive isolates. Four GC arrays were detected in class 1 integrons, and one GC array was detected in class 2 integrons. Although the overall prevalence of antimicrobial-resistant bacteria in P. vannamei was lower than that previously reported for poultry and livestock farms in China, concerns about the inappropriate use of antibiotics and the transmission of antimicrobial-resistant bacteria in aquaculture were raised. Alternative approaches to reducing or replacing the use of antibiotics should be further studied.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jiehong Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
28
|
Anti-staphylococcal activity of bacteriocins of food isolates Enterococcus hirae LD3 and Lactobacillus plantarum LD4 in pasteurized milk. 3 Biotech 2019; 9:8. [PMID: 30622846 DOI: 10.1007/s13205-018-1546-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteriocins of Enterococcus hirae LD3 and Lactobacillus plantarum LD4 have been applied in milk for growth inhibition of Staphylococcus aureus. The enumeration of S. aureus cells in nutrient broth and milk was found log10 9.7 and 10.2 CFU/mL, respectively, whereas it was reduced with increasing concentration of bacteriocins suggesting loss of cell viability. The lethal concentration (LC50) of enterocin LD3 and plantaricin LD4 against S. aureus was 160 and 220 µg/mL, respectively. Bacteriocin-treated cells were stained red with propidium iodide (PI) indicating dead cells further confirms bactericidal nature. The enterocin LD3-treated cells showed higher infrared absorbance at 1451.82 cm- 1 corresponding to phospholipids suggesting membrane-acting nature of the bacteriocin. However, plantaricin LD4-treated cells did not show such alterations suggesting different mode of action. Both bacteriocins caused disruption and shrinkage of target cells, and leakage of intracellular contents as observed in transmission electron microscope (TEM). The present study suggests killing of S. aureus in milk, therefore, enterocin LD3 and plantaricin LD4 may be applied in biopreservation of milk and related food products.
Collapse
|
29
|
Jiang H, Tang X, Zhou Q, Zou J, Li P, Breukink E, Gu Q. Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Appl Microbiol Biotechnol 2018; 102:7465-7473. [PMID: 29982926 DOI: 10.1007/s00253-018-9182-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
Plantaricin NC8, a two-peptide non-lantibiotic class IIb bacteriocin composed of PLNC8α and PLNC8β and derived from Lactobacillus plantarum ZJ316, has been shown to be highly potent against a range of bacteria and fungi. In this study, we assessed the antimicrobial mechanism of plantaricin NC8 against the most sensitive bacterial strain, Micrococcus luteus CGMCC 1.193. The results showed that plantaricin NC8 induced membrane permeabilization and caused cell membrane disruption to M. luteus CGMCC 1.193 cells, as evidenced by electrolyte efflux, loss of proton motive force, and ATP depletion within a few minutes of plantaricin NC8 treatment. Furthermore, scanning and transmission electron microscopy showed that plantaricin NC8 had a drastic impact on the structure and integrity of M. luteus CGMCC 1.193 cells. In addition, we found that either PLNC8α or PLNC8β alone exhibited membrane permeabilization activity, but that PLNC8β had higher permeabilization activity, and their individual effects were not as strong as that of the combined compounds as plantaricin NC8. Finally, we showed that lipid II is not the specific target of plantaricin NC8 against M. luteus CGMCC 1.193. Our study reveals the antimicrobial mechanism of plantaricin NC8 against M. luteus CGMCC 1.193.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.,Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Xuan Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Jiong Zou
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, 3584, CH, Utrecht, the Netherlands
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
30
|
Kaur R, Tiwari SK. Membrane-acting bacteriocin purified from a soil isolate Pediococcus pentosaceus LB44 shows broad host-range. Biochem Biophys Res Commun 2018. [PMID: 29530530 DOI: 10.1016/j.bbrc.2018.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bacteriocin LB44 was purified from cell-free supernatant (CFS) of Pediococcus pentosaceus LB44 using activity-guided chromatography techniques. It was stable up to 121 °C, pH 2.0-6.0, sensitive to proteinase K, papain and trypsin, and retained complete activity in the presence of organic solvents tested. The molecular weight of bacteriocin was ∼6 kDa and initial ten amino acid residues (GECGMCXECG) suggested a new compound. The loss in viable cell count and K+ ion efflux of target cells of Micrococcus luteus suggested bactericidal activity. The cell membrane of bacteriocin-treated cells was found to be ruptured which was further confirmed by Fourier Transform Infrared (FTIR) analysis suggesting interaction of bacteriocin with phospholipids in cell membrane. It showed broad host-range and inhibited the growth of Lactobacillus delbrueckii NRRL B-4525, L. plantarum NRRL B-4496, L. acidophilus NRRL B-4495, Enterococcus hirae LD3, Weissella confusa LM85, Staphylococcus aureus, Salmonella typhi ATCC 13311, Serratia marcescens ATCC 27137, Pseudomonas aeruginosa ATCC 27853, Proteus vulgaris ATCC 29905, Haloferax larsenii HA1, HA3, HA8, HA9 and HA10. These properties suggested a new bacteriocin from soil isolate P. pentosaceus LB44 which may offers possible applications in food-safety and therapeutics.
Collapse
Affiliation(s)
- Ramanjeet Kaur
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|