1
|
Li Y, Wang Z, Kong M, Yong Y, Yang X, Liu C. The role of GZMA as a target of cysteine and biomarker in Alzheimer's disease, pelvic organ prolapse, and tumor progression. Front Pharmacol 2024; 15:1447605. [PMID: 39228516 PMCID: PMC11368878 DOI: 10.3389/fphar.2024.1447605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Objective: This study aims to investigate how changes in peripheral blood metabolites in Alzheimer's Disease (AD) patients affect the development of Pelvic Organ Prolapse (POP) using a multi-omics approach. We specifically explore the interactions of signaling pathways, gene expression, and protein-metabolite interactions, with a focus on GZMA and cysteine in age-related diseases. Methods: This study utilized multi-omics analysis, including metabolomics and transcriptomics, to evaluate the perturbations in peripheral blood metabolites and their effect on POP in AD patients. Additionally, a comprehensive pan-cancer and immune infiltration analysis was performed on the core targets of AD combined with POP, exploring their potential roles in tumor progression and elucidating their pharmacological relevance to solid tumors. Results: We identified 47 differential metabolites linked to 9 significant signaling pathways, such as unsaturated fatty acid biosynthesis and amino acid metabolism. A thorough gene expression analysis revealed numerous differentially expressed genes (DEGs), with Gene Set Enrichment Analysis (GSEA) showing significant changes in gene profiles of AD and POP. Network topology analysis highlighted central nodes in the AD-POP co-expressed genes network. Functional analyses indicated involvement in critical biological processes and pathways. Molecular docking studies showed strong interactions between cysteine and proteins PTGS2 and GZMA, and molecular dynamics simulations confirmed the stability of these complexes. In vitro validation demonstrated that cysteine reduced ROS levels and protected cell viability. GZMA was widely expressed in various cancers, associated with immune cells, and correlated with patient survival prognosis. Conclusion: Multi-omics analysis revealed the role of peripheral blood metabolites in the molecular dynamics of AD and their interactions with POP. This study identified potential biomarkers and therapeutic targets, emphasizing the effectiveness of integrative approaches in treating AD and POP concurrently. The findings highlight the need for in-depth research on novel targets and biomarkers to advance therapeutic strategies.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhuo Wang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Min Kong
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yong
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Yang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang X, Zhang W, Zhou Y, Li Y, Xu X, Xue J, Ma Y, Liu P. SIRT1 as a potential therapeutic target in pelvic organ prolapse due to protective effects against oxidative stress and cellular senescence in human uterosacral ligament fibroblasts. Neurourol Urodyn 2024; 43:1217-1229. [PMID: 38558173 DOI: 10.1002/nau.25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION The pathogenesis of pelvic organ prolapse (POP), an age-related disease, has not been fully elucidated. Therapeutic targets of POP are limited. Silencing information regulator 2 related enzyme 1 (SIRT1), a gene considered capable of regulating oxidative stress and cellular senescence, has been widely demonstrated involved in aging and age-related diseases. The present study aimed to explore the role of SIRT1 in POP in vivo and in vitro. METHODS Expression levels of SIRT1 in uterosacral ligament (USL) tissues from patients with or without POP were measured using immunohistochemical assays. SRT1720, a SIRT1 agonist, was used to upregulate SIRT1, and hydrogen peroxide (H2O2) was used to establish an oxidative stress model in human uterosacral ligament fibroblasts (hUSLFs). The effects of SIRT1 on cell viability, apoptosis, senescence, and reactive oxygen species (ROS) levels were detected, respectively. Western blot assays were used to examine expression levels of apoptosis- and senescence-associated biomarkers. Unpaired Student's t test, Mann-Whitney U test, χ2 test, and one-way ANOVA were performed for determining statistically significant differences. RESULTS Compared to the control group, expression levels of SIRT1 were downregulated in USL tissues and hUSLFs from patients with POP, and associated with stage (p < 0.05). hUSLFs of patients with POP had lower growth rates (p < 0.0001) than those of the control group, which were improved by upregulating SIRT1 (p < 0.05). The senescent proportion was higher in the POP group than the control group (43.63 ± 10.62% vs. 4.84 ± 5.32%, p < 0.0001), which could be reduced by upregulating SIRT1 (p < 0.0001). High ROS levels in the POP group were also alleviated by SRT1720. H2O2 exposure increased ROS levels, inhibited proliferation, and triggered apoptosis and senescence in hUSLFs of patients without POP in a concentration-dependent manner. Further, these damages were alleviated by pretreatment with SRT1720. CONCLUSIONS SIRT1 is downregulated in patients with POP, and the development of SIRT1 activators or agonists may have applications in the treatment and prevention of POP through antioxidative stress and antisenescence effects.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Weiru Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoxuan Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Xue
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Gynecology Oncology, Qilu Hospital, Jinan, China
- Shandong Engineering Laboratory for Urogynecology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
3
|
Saatli B, Kurt S, Çağlıyan E, Kızıldağ S. The alteration of apoptosis-related genes in female pelvic supportive tissues with regard to menopausal status. Mol Biol Rep 2023; 51:6. [PMID: 38085363 PMCID: PMC10716063 DOI: 10.1007/s11033-023-09022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE We aimed to compare the expression levels of anti-apoptotic and proapoptotic genes in the parametrium, sacrouterine and round ligaments with respect to menopausal status in women presenting without any indication of pelvic organ prolapse (POP). We hypothesized that apoptosis related gene expressions in female pelvic tissues may be altered during menopause. METHODS The study groups consisted of pre-menopausal (n = 10) and menopausal (n = 10) females who did not have POP symptoms. Three different types of tissue samples (Parametrium, Round Ligament and Sacrouterine Ligament) were obtained and RNA was isolated from these tissues. After purifying and quantifying RNA samples, qPCR was used to determine the expression levels of anti-apoptotic and pro-apoptotic genes. RESULTS BCL-2 gene expression levels were significantly lower in all the tissues of menopausal patients compared to those of premenopausal patients. In comparison to premenopausal patients, the sacrouterine ligament tissue BAD expression level was significantly high (p = 0.035), and the BCL-2/BAD ratio was significantly lower in menopausal patients (p = 0.006). CONCLUSION Apoptosis-related protein levels change during menopause; pro-apoptotic gene expressions decrease and anti-apoptotic gene expressions increase. The significant alteration of BCL-2 and BAD expression in sacrouterine ligament with respect to menopausal status was observed and this suggested that when compared to other pelvic tissues, the sacrouterine ligament, which plays a crucial role for genital organs in restoring normal pelvic anatomy and providing support, could be affected more by menopause.
Collapse
Affiliation(s)
- Bahadır Saatli
- Department of Obstetrics and Gynecology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Serap Kurt
- Department of Medical Biology and Genetics, Dokuz Eylül University School of Medicine, Izmir, Turkey.
| | - Erkan Çağlıyan
- Department of Obstetrics and Gynecology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Sefa Kızıldağ
- Department of Medical Biology and Genetics, Dokuz Eylül University School of Medicine, Izmir, Turkey
| |
Collapse
|
4
|
Aziz F, Li X, Chakraborty A, Zheng Y, Xin M, Liu K, Dong Z. Ubiquitination of ADRα1d/SerpinA1 complex stimulates hypoxia to induce gastric tumorigenesis with a combination of Helicobacter pylori and chronic stress through IL-1α. Gastric Cancer 2022; 25:726-740. [PMID: 35532840 DOI: 10.1007/s10120-022-01297-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) has been recognized as the class I carcinogen of gastric cancer and several studies have demonstrated that chronic stress may accelerate gastric cancer progression. However, the evidence is not sufficient. METHODS Here, we developed a mouse model that combined H. pylori infection with chronic stress. Gastric inflammation promotes gastric tumor development progression. To evaluate the number of pro-inflammatory cells through observing the numbers of activated macrophages and neutrophils in mice gastric tumors compared with untreated mice or only treated with one factor. ADRα1d /SerpinA1 expression and localization were assessed under stress conditions and H. pylori infection, and evaluated by analyzing IL-1α, CD8, platelet, and RBC status using α- or β- blockers against gastritis to prevent gastric cancer. RESULTS Further mechanism study showed that stress hormones increase the number of CD8+ lymphocytes by activating ADRβ2 receptors, leading to IL-1α secretion and tumorigenicity. Gastric carcinogenesis also involves gastric muscle contraction mediated through ADRα1d/Serpina1 interaction. Specifically, we showed that the ADRα1d/SerpinA1 complex increases glucose uptake and the development of hypoxia conditions. These responses promote platelet aggregation and muscle contraction. In turn, gastric cancer cells increase lactate production and promote gastric cell proliferation through Muc-13 and IL-1α stimulation. CONCLUSION H. pylori infection in combination with chronic stress can lead to gastric cancer, and the synergistic effects of cytokine production (i.e. IL-1α), T lymphocyte dysfunction contributes to gastric carcinogenesis which will offer treatment opportunities for stress-associated gastric cancer and provide new strategies for the prevention and treatment of gastric cancer in clinics.
Collapse
Affiliation(s)
- Faisal Aziz
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China.,The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiang Li
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | | | - Yaqiu Zheng
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China
| | - Mingxia Xin
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Zigang Dong
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, People's Republic of China. .,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
5
|
Jing L, Gao R, Zhang J, Zhang D, Shao J, Jia Z, Ma H. Norwogonin attenuates hypoxia-induced oxidative stress and apoptosis in PC12 cells. BMC Complement Med Ther 2021; 21:18. [PMID: 33413359 PMCID: PMC7791982 DOI: 10.1186/s12906-020-03189-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
Background Norwogonin is a natural flavone with three phenolic hydroxyl groups in skeletal structure and has excellent antioxidant activity. However, the neuroprotective effect of norwogonin remains unclear. Here, we investigated the protective capacity of norwogonin against oxidative damage elicited by hypoxia in PC12 cells. Methods The cell viability and apoptosis were examined by MTT assay and Annexin V-FITC/PI staining, respectively. Reactive oxygen species (ROS) content was measured using DCFH-DA assay. Lactate dehydrogenase (LDH), malondialdehyde (MDA) and antioxidant enzyme levels were determined using commercial kits. The expression of related genes and proteins was measured by real-time quantitative PCR and Western blotting, respectively. Results We found that norwogonin alleviated hypoxia-induced injury in PC12 cells by increasing the cell viability, reducing LDH release, and ameliorating the changes of cell morphology. Norwogonin also acted as an antioxidant by scavenging ROS, reducing MDA production, maintaining the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and decreasing the expression levels of HIF-1α and VEGF. In addition, norwogonin prevented cell apoptosis via inhibiting the expression levels of caspase-3, cytochrome c and Bax, while increasing the expression levels of Bcl-2 and the ratio of Bcl-2/Bax. Conclusions Norwogonin attenuates hypoxia-induced injury in PC12 cells by quenching ROS, maintaining the activities of antioxidant enzymes, and inhibiting mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Linlin Jing
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Rongmin Gao
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Jie Zhang
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Dongmei Zhang
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Jin Shao
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Zhengping Jia
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
6
|
Zhang L, Dai F, Chen G, Wang Y, Liu S, Zhang L, Xian S, Yuan M, Yang D, Zheng Y, Deng Z, Cheng Y, Yang X. Molecular mechanism of extracellular matrix disorder in pelvic organ prolapses. Mol Med Rep 2020; 22:4611-4618. [PMID: 33173982 PMCID: PMC7646844 DOI: 10.3892/mmr.2020.11564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Pelvic organ prolapses (POP) notably reduces the quality of life in elderly populations due to bladder and bowel dysfunction, incontinence, and coital problems. Extracellular matrix (ECM) disorder is a pivotal event in the progression of POP, but to date, its specific underlying mechanism remains unclear. The ligaments of patients with POP and healthy controls were collected to compare the expression of Homeobox11 (HOXA11) and transforming growth factor β (TGF-β1) via immunohistochemical analysis. HOXA11 and TGF-β1 were overexpressed or knocked down in fibroblast cells to explore their effects on the expression of collagen and matrix metalloproteinases (MMPs). HOXA11 and TGF-β1 were greatly reduced in the ligaments of patients with POP. The overexpression and downregulation of HOXA11 and TGF-β1 can mediate ECM disorder via regulating expression of collagen (Col) and MMPs. In addition, HOXA11 and TGF-β1 exerted synergistic effect on the expression of Col and MMPs. The present study identified that HOXA11 and TGF-β1 serve critical roles in mediating ECM disorders, which may be of clinical significance for the diagnosis and treatment of patients with POP.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gantao Chen
- Department of Gastroenterology, Third People's Hospital of Xiantao in Hubei Province, Xiantao, Hubei 433000, P.R. China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Kim JM, Choi ME, Kim SK, Kim JW, Kim YM, Choi JS. Keratinocyte Growth Factor-1 Protects Radioiodine-Induced Salivary Gland Dysfunction in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6322. [PMID: 32878050 PMCID: PMC7503708 DOI: 10.3390/ijerph17176322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Most patients with thyroid cancer suffer from salivary gland (SG) dysfunctions after radioiodine (RI) therapy. We investigated the effects of keratinocyte growth factor (KGF)-1 on RI-induced SG dysfunction in an animal model. METHODS Six C57BL/6 mice were assigned to each of the following groups: treatment naïve control group, RI group, and RI+KGF-1 group. Body and SG weights, salivary flow rates, salivary lag times and changes in 99mTc pertechnetate uptake and excretion were measured, and histologic changes were noted. Amylase activities and epidermal growth factor (EGF) concentrations in saliva were also measured. In addition, TUNEL assays were performed and apoptosis-related protein expressions were assessed. RESULTS RI-induced reductions in salivary flow rates and increases in salivary lag times observed in the RI group were not observed in RI+KGF-1 group. Mice in RI group had higher HIF1a levels than controls, but HIF1a levels in RI+KGF-1 group were similar to those in control group. Furthermore, mice in RI+KGF-1 group had more mucin stained acini and decreased periductal fibrosis than mice in RI group, and tissue remodeling of many salivary epithelial cells (AQP5) and endothelial cells (CD31) were observed in RI+KGF-1 group. Amylase activity and expression in saliva were greater in RI+KGF-1 group than in RI group, and fewer apoptotic cells were observed in RI+KGF-1 group. Furthermore, BCLxl (anti-apoptotic) expression was higher, and Bax (pro-apoptotic) expression was lower in RI+KGF-1 group than in RI group. CONCLUSIONS Local delivery of KGF-1 might prevent RI-induced SG damage by reducing apoptosis.
Collapse
Affiliation(s)
- Jeong Mi Kim
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon 22332, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Mi Eun Choi
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, National Cancer Center, Goyang 10408, Korea;
| | - Ji Won Kim
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Young-Mo Kim
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Jeong-Seok Choi
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| |
Collapse
|
8
|
Qiao Y, Xu Z, Yu Y, Hou S, Geng J, Xiao T, Liang Y, Dong Q, Mei Y, Wang B, Qiao H, Dai J, Suo G. Single cell derived spheres of umbilical cord mesenchymal stem cells enhance cell stemness properties, survival ability and therapeutic potential on liver failure. Biomaterials 2019; 227:119573. [PMID: 31670080 DOI: 10.1016/j.biomaterials.2019.119573] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) have shown great potentials in regenerative medicine for their extensive sources, multilineage differentiation potential, low immunogenicity and self-renewal ability. However, the clinical application of UCMSCs still confronts many challenges including the requirement of large quantity of cells, low survival ability in vivo and the loss of main original characteristics due to two-dimensional (2D) culture. The traditional three-dimensional (3D)-spheroid culture can mimic in vivo conditions, but still has limitations in clinical application due to large size of spheroid against direct injection and inner cell death. Based on self-renewal tenet, we produced single cell derived sphere (SCDS) of UCMSCs through combining single cell pattern on chip with 3D culture. Compared with the 2D and traditional 3D culture, SCDS culture has many advantages to meet clinical requirements, including small size, higher abilities of survival and migration, and stronger hypoxia resistance and stemness maintenance. Furthermore, SCDS culture promotes angiogenesis in UCMSCs-xenografts and displays greater therapeutic potential on acute liver failure (ALF) in vivo. Our results suggest that SCDS culture may serve as a simple and effective strategy for UCMSCs optimization to meet clinical demand.
Collapse
Affiliation(s)
- Yong Qiao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanzhen Yu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shulan Hou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China; School of Pharmacy, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Junsa Geng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tongqian Xiao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China; School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qun Dong
- Department of Pathology, Taikang Xianlin Drum Tower Hospital, Nanjing, Jiangsu, 210046, China
| | - Yan Mei
- Greepharma Inc., 211100, Nanjing, Jiangsu, China
| | - Bin Wang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jianwu Dai
- State Key Laboratory of Molecular, Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China.
| |
Collapse
|
9
|
Budinurdjaja P, Arsana Wiyasa IW, Oktaviyanti IK, Sargowo D. Search for aglycone isoflavone from soybean as candidate for pelvic organ prolapse treatment: In silico study of TGF-β1, Hsp70, and Bcl-xl signals. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Li K, Li W, Yin H, Cheong YK, Ren G, Yang Z. Pretreatment-Etidronate Alleviates CoCl2 Induced-SH-SY5Y Cell Apoptosis via Decreased HIF-1α and TRPC5 Channel Proteins. Neurochem Res 2018; 44:428-440. [DOI: 10.1007/s11064-018-2696-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/04/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023]
|
11
|
Zhao X, Liu L, Li R, Wei X, Luan W, Liu P, Zhao J. Hypoxia-Inducible Factor 1-α (HIF-1α) Induces Apoptosis of Human Uterosacral Ligament Fibroblasts Through the Death Receptor and Mitochondrial Pathways. Med Sci Monit 2018; 24:8722-8733. [PMID: 30504760 PMCID: PMC6289032 DOI: 10.12659/msm.913384] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Hypoxia induces cell apoptosis in the uterosacral ligaments of patients with pelvic organ prolapse by upregulation of hypoxia-inducible factor-1α (HIF-1α). This study aimed to investigate the effects of HIF-1α on human uterosacral ligament fibroblasts (hUSLFs) following treatment with the chemical inducer of hypoxia, cobalt chloride (CoCl2), and to explore the underlying mechanisms. Material/Methods Ten women who underwent hysterectomy for benign disease provided uterosacral ligament tissue for cell extraction. Following CoCl2 treatment, cell viability of isolated and cultured hUSLFs was evaluated by the MTT assay. JC-1 fluorescence mitochondrial imaging was used to study the change in mitochondrial membrane potential. Cell apoptosis and expression of apoptosis-associated proteins and collagen type I alpha 1 (COL1A1) were measured by flow cytometry, TUNEL and Western blot, respectively. Results Hypoxia increased the expression of HIF-1α and increased cell apoptosis, decreased cell viability and expression levels of COL1A1. The JC-1 assay showed that the mitochondrial membrane potential was reduced and caspase-8, and -9 inhibitors partly reduced hUSLF apoptosis. HIF-1α treatment downregulated the expression of cellular FLICE inhibitory protein (c-FLIP), decoy receptor 2 (DcR2), and the ratio of Bcl-2 to Bax, and upregulated the expression tumor necrosis factor related apoptosis-inducing ligand (TRAIL), death receptor 5 (DR5) or TRAIL-R2, Fas, Bcl-2 interacting protein 3 (BNIP3), and cytochrome C, and increased the activation of caspase-3, caspase-8, and caspase-9, all of which were reversed by knockdown of HIF-1α. Conclusions HIF-1α significantly induced apoptosis of hUSLFs through both the cell death receptor and the mitochondrial-associated apoptosis pathways.
Collapse
Affiliation(s)
- Xinrui Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lidong Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Wenqing Luan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University , Jinan, Shandong, China (mainland)
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|